生物化学--糖代谢
生物化学 糖代谢

6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)
植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)
⑴乙醇发酵
COOH C CH3
CO2
生物化学第八章糖代谢

§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。
生物化学-糖代谢

2021/3/29
25
G
G-6-P F-6-P F-1,6-BP 3-磷酸甘油醛
磷酸戊糖途径
NADPH 5-磷酸核糖
丙酮酸
2021/3/29
乙酰CoA
TAC
CO2+H2O+ ATP
26
整个代谢途径在胞液(cytoplasm)中进行。 关键酶是6-磷酸葡萄糖脱氢酶(glucose-6phosphate dehydrogenase)。
内 膜 折 叠 成 嵴
,
有 双 层 膜 结 构
,
2021/3/29
节首
33
章首
线粒体的功能特点
呼吸链(respiratatory chain)由供氢体、传递体、受氢体以 及相应的酶系统所组成的这种代谢途径一般称为生物氧化还原 链。如果受氢体是氧,则称为呼吸链。
外膜对大多数小分子物质和离子可通透,
NADPH在体内可用于: ⑴ 作为供氢体,参与体内的合成代谢:如参与合
成脂肪酸、胆固醇,一些氨基酸。 ⑵ 参与羟化反应:作为加单氧酶的辅酶,参与对
代谢物的羟化。
2021/3/29
29
⑶ 使氧化型谷胱甘肽还原。 ⑷ 维持巯基酶的活性。 ⑸ 维持红细胞膜的完整性:由于6-磷酸葡萄
糖脱氢酶遗传性缺陷可导致蚕豆病,表现为 溶血性贫血。
2021/3/29
30
2. 是体内生成5-磷酸核糖的惟一代谢途径:
体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸核糖的 形式提供,这是体内惟一的一条能生成5-磷酸核糖的代谢途径。
磷酸戊糖途径是体内糖代谢与核苷酸及核酸代谢的交汇途径。
2021/3/29
31
能量变化(3)
有氧氧化能量变化:以每分子葡萄糖计
生物化学糖代谢

H
C
OH
6-磷酸葡萄 糖酸脱氢酶
H
C
OH
HC
H C ቤተ መጻሕፍቲ ባይዱH
H C OH
CH2OPO3 2-
CH2OPO3 2-
CH2OPO3 2-
6-磷酸葡萄糖酸
核酮糖5-磷酸
阶段2. 5-磷酸核酮糖的基团转移反应过程
CH2OH 2 CO
H C OH
磷酸戊糖异构酶
H C OH
CH2OPO3 2-
核酮糖5-磷酸
OH C
2 H C OH H C OH H C OH CH2OPO3 2-
核糖5-磷酸
CH2OH 4 CO
H C OH H C OH
CH2OPO3 2-
磷酸戊糖差向异构酶
CH2OH CO
4 HO C H H C OH CH2OPO3 2-
核酮糖5-磷酸
木酮糖5-磷酸
CH2OH CO
OH C
CH2OH C=O
2.缩合: UDPG + (G)n
*
糖原合酶
(G)n+1 + UDP
3.分支:
• 当直链长度达12个葡萄糖残基以上时,在 分支酶的催化下,将距末端6~7个葡萄糖 残基组成的寡糖链由α-1,4-糖苷键转变 为α-1,6-糖苷键,使糖原出现分支。
α-1,4 α-1,6
由葡萄糖生成糖原主要有5步反应:
CH2OH CO
OH C
转酮酶
1CH2OH 2C=O
HO C H + 2 H C OH
2 H C OH
H C OH
CH2OPO3 2- CH2OPO3 2-
HO 3C H
CHO
2 H 4C OH + CHOH
生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。
糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。
糖代谢主要包括两大路径:糖酵解和糖异生。
本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。
糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。
糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。
其中主要以糖原泛素和琥珀酸途径为代表。
糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。
它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。
糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。
糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。
接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。
随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。
草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。
草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。
琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。
琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。
琥珀酸途径的关键酶有异构酶、羧酸还原酶等。
糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。
糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。
糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。
丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。
生物化学第2篇 第04章 物质代谢与调节--糖代谢

食物糖: 淀粉.糖元.双糖.纤维素
(+)
消化.吸收
单糖
(代谢)
第一节
糖的生理功能
供能 供碳原 转化成肌体成分 转化成生物活性物质
概述
糖的消化.吸收
消化:口腔开始.小肠为主.酶促反应 吸收:依赖载体.耗能的主动吸收(主)依赖载体.不耗能的促进吸 收
糖代谢概况
酵解从Gn开始:
Gn
1-P-G
6-P-G
其他己糖也可转变成磷酸己糖而进入酵解途径.
无氧酵解总结
在胞液中进行 原料:G或者Gn. 产物:乳酸. 不可逆.催化不可逆反应的三个酶即为限速酶 (整个途径中速度最慢的酶). 两步耗能反应,两步底物水平磷酸化(代谢物在代谢
过程中,由于脱H或者脱水,分子内部能量重新分布,形成一个高能磷酸 键,此磷酸基可直接转给ADP生成ATP).尽生成ATP
不耗能.
肝、肌Gn分解的不同在于6-P-G的去路不 同.此导致Gn合成、分解的功能不同.
三. Gn合成与分解的调节
肝Gn合成与分解通过调节以保证血[G]的恒 定. 肌Gn合成与分解通过调节以保证肌肉组织 对能量的需求. 所以,调节的条件和因素也不同 Gn合成与分解是由两套酶催化的不同途径, 但受相同体系的调节. Gn合成酶、 Gn磷酸化酶均受共价修饰、 变构的双重调节.
分解:无氧酵解.有氧氧化.戊糖旁路.糖醛酸途径等 糖元合成与分解 糖异生
第二节 糖的分解代谢
一、糖的无氧酵解
定义:在缺氧情况下,葡萄糖生成乳酸的过程. 包括: G
酵解途径
丙酮酸
LDH
乳酸
细胞定位: 胞液
过程
生物化学 --糖代谢(共32张PPT)
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O
生物化学第九章:糖代谢
COOH C=O + NADH + H+ CH3 丙酮酸
乳酸脱氢酶
COOH CHOH + NAD+ CH3 乳酸
COOH 丙酮酸脱羧酶 C=O CH3 丙酮酸 CHO CH3 乙醛 + NADH + H+ TPP, TPP,Mg2+ CHO CH3 乙醛 乙醇脱氢酶 CH2OH CH3 乙醇 + NAD+ + CO2
P96图23P96图23-1
2、乙酰CoA进入三羧酸循环彻底氧化 乙酰CoA CoA进入三羧酸循环彻底氧化 ① 三羧酸循环的反应过程: 9步(P98图23-3) 三羧酸循环的反应过程: 9步 P98图23- Ⅰ. 缩合反应
*
▲ ▲ ▲
*
▲
*
*
柠檬酸合酶
Ⅱ.第一次氧化脱羧 Ⅱ.第一次氧化脱羧
*
▲ ▲ ▲ ▲
糖的消化、 第一节 糖的消化、吸收和转运
一、消化
1、α-淀粉酶(唾液淀粉酶,液化酶;胰腺) 淀粉酶(唾液淀粉酶,液化酶;胰腺) 是一种内切酶,水解α 1,4-糖苷键, 是一种内切酶,水解α-1,4-糖苷键,将淀粉随机切断成 分子量较小的糊精。 分子量较小的糊精。 淀粉酶(胰腺) 2、β-淀粉酶(胰腺) 从链的非还原性末端开始,水解α 糖苷键, 从链的非还原性末端开始,水解α-1,4-糖苷键,每次切 下两个葡萄糖单位—— ——β 麦芽糖。 下两个葡萄糖单位——β-麦芽糖。 淀粉酶(糖化酶) 3、γ-淀粉酶(糖化酶) 从链的非还原性末端开始,水解α 糖苷键和α 从链的非还原性末端开始,水解α-1,4-糖苷键和α-1,6糖苷键,将淀粉完全水解成葡萄糖。 糖苷键,将淀粉完全水解成葡萄糖。
生物化学简明教程 第9章 糖代谢(共110张PPT)
(5)特殊生理功能的物质 (6)保护与润滑:蛋白聚糖(粘膜与分泌物)
9.1 多糖和低聚糖的酶促降解
• 糖类中多糖和低聚糖,由于分子大,不能透
过细胞膜,所以在被生物体利用乏前必须水 解成单糖,其水解均依靠酶的催化
淀粉的酶促水解
纤维素的酶促水解
9.1.1 淀粉的酶促水解
• α-淀粉酶:水解淀粉分子内部任意部位的α1,4糖苷键(内切酶)
经过一轮循环,乙酰CoA的2个碳原子被氧化成CO2;在循 环中有1次底物水平磷酸化,可生成1分子ATP;更为重要的是 有 4 次 脱 氢 反 应 , 氢 的 接 受 体 分 别 为 NAD+ 或 FAD , 生 成 3 分 子
乙醛 乳酸
乙醇
糖酵解产能效率
步骤
能量产物
葡萄糖→ G-6-P
-ATP
F-6-P → F-1,6-2P
-ATP
1,3-二磷酸甘油酸 → 3-磷酸甘油酸 +2 ATP
PEP → 烯醇式丙酮酸
+2 ATP
合计
ATP
ATP数 -1 -1 +2 +2
+2(葡糖糖) +3(糖原、淀粉)
葡萄糖酵解产能196kJ/mol,糖原、淀粉酵解产能183kJ/mol, 1molATP捕获。
从葡萄糖或糖原开始至生成丙酮酸, 分别包括10或 11步连续的酶促步骤
己糖磷酸酯的生成
丙糖磷酸的生成 4个阶段 丙酮酸和ATP的生成
丙酮酸继续氧化
(1)己糖磷酸酯的生成
从葡萄糖开始经过三步--消耗2个ATP,有2个不可逆反应
ATP ADP
葡萄糖 激酶
ATP ADP
果糖磷 酸激酶
《生物化学(高职案例版)》第6章:糖代谢
异柠檬酸
NAD+ NADH+H+ NAD+
③ CO2
⑥
FAD
NADH+H+
④
⑤ CoASH CO2 CoASH
(2) 三羧酸循环的特点
TAC是1分子乙酰CoA彻底氧化的过程
• 四次脱氢,二次脱羧,一次底物水平磷酸 化。 生成1分子FADH2,3分子NADH+H+,2 分子CO2, 1分子GTP。 • 产能12分子ATP • 关键酶有:柠檬酸合酶
• 糖原储存的主要器官及其生理意义
肌肉:肌糖原,180 ~ 300g,主要供肌肉收缩所需
肝脏:肝糖原,70 ~ 100g,维持血糖水平
• 糖原的结构特点及其意义
1. 葡萄糖单元以α-1,4-糖苷 键 形成长链。 2. 约10个葡萄糖单元处形成分 枝,分枝处葡萄糖以α-1,6糖苷键连接,分支增加,溶 解度增加。 3. 每条链都终止于一个非还原 端.非还原端增多,以利于其
ATP
ADP
6-磷酸果糖
磷酸果糖激酶
1,6-二磷酸果糖
关键酶
⑷ 磷酸己糖裂解成2分子磷酸丙糖 磷酸二羟丙酮 E 1,6-二磷酸果糖 E 3-磷酸甘油醛
第一阶段特点:
1.能量变化 耗能:2ATP 2.有C链长短的变化(6C→3C)
2.磷酸丙糖转变为丙酮酸
(1)3-磷酸甘油醛氧化为1,3-二磷酸甘油酸
3-磷酸甘油酸
2-磷酸甘油酸 磷酸烯醇式丙酮酸
丙酮酸
(二)糖酵解反应的特点
⑴ 反应部位:胞液 终产物:乳酸 ⑵ 糖酵解是产能过程: 方式:底物水平磷酸化 净生成ATP数量:2ATP
(3) 关键酶:3个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(allose) (altrose) (glucose) (mannose) (gulose) (idose)
(galactose) (talose)
D系酮糖的立体结 构(Fischer式)
D(-)-赤藓酮糖
(erythrulose)
二羟丙酮
(dihytroasetone)
D(-)-核酮糖
(ribulose)
▪ 淀粉可分为糖淀粉(又称直链淀粉)和胶淀粉(又
称支链淀粉)。其所占比例随植物品种而不同,一
般糖淀粉的含量为20%-30%,胶淀粉含量为70%-
80%。
2020/8/9
17
直链淀粉
定义:由D-葡萄糖单位通过α-1,4-糖苷键连 接而成的链状化合物。 溶于热水,遇碘显蓝色。
分子量20210/.80/9×104~2.0×106
18
支链淀粉
▪D-葡萄糖以α-1,4糖苷键相连,同时,每隔20-25个葡 萄糖单位,有一个以α-1,6糖苷键相连的支链。 ▪纯的支链淀粉在热水中膨胀成糊状。遇碘显紫红色。
NRE
分支点
RE
分子量5.0×104~4.0×108
支链淀粉示意图
糖的种类
糖原
糖原是动物组织内糖的贮存形式。主要贮存在肌肉和肝 脏中,其他组织,如心肌、肾脏、脑等,也含有少量糖原。 肌糖原分解为肌肉自身收缩供给能量,肝糖原分解主要维 持血糖浓度 。 结构与支链淀粉相似,由D-葡萄糖单体以α-1,4 糖苷 键和α-1,6糖苷键(分支点)结合形成。 糖原分子比支链淀粉更大,分支更多,结构更复杂。
2020/8/9
20
相对分202子0/8/质9 量大于1×108
21
糖原是无定性粉末,溶于热水,溶解后呈胶体溶液。 糖原溶液遇碘呈紫红色。
2020/8/9
22
糖的种类
纤维素
植物细胞壁的主要成分,由D-葡萄糖单体以β-1,
4 糖苷键连接形成的一种非分支多糖。
不能被人体消化吸收 ,但却具有重要生理功能。
7.3.2 糖类的主要生物学功能
•构成动植物骨架结构的组成成分,如纤维素; •生物体内的主要能源物质,维持正常生命活动 •其它生物分子合成的前体, 如氨基酸、核苷 酸、脂等 •特殊的生物活性,人体中的肝素有抗凝血作用,
肺炎球菌细胞壁中的多糖有抗原作用。
7.3.3 生物体内的糖类
单糖:在温和条件下不能水解为更小的单位
同位素示踪法 酶抑制剂的应用 利用遗传缺陷症研究代谢途径
7.2 生物体内的糖类(复习)
7.3.1 糖类定义 7.3.2 糖类的生物学作用 7.3.3 生物体内的糖类 1、单糖 2、寡糖 3、多糖
7.3.1 糖类定义
• 糖类是多羟基醛,酮或水解时产生这类 化合物的物质,是自然界数量最多的有 机化合物。
7 糖类分解代谢
7.1 新陈代谢概论 7.2 生物体内的糖类 7.3 双糖和多糖的酶促降解 7.4 糖酵解 7.5 三羧酸循环 7.6 磷酸戊糖途径
2020/8/9
1
7.1 新陈代谢概述
“生之本,本于阴阳”(黄帝内经), “新陈代谢是宇宙间普遍的永远 不可抵抗的规律”(毛泽东),只有新陈代谢才是生命最基本的特征。
分解代谢(异化作用)
大分子 小子
➢新陈代谢的三个特点:
• 1、新陈代谢的化学反应是由多步反应步骤完 成的,且顺序性很强,环环相扣。
• 2、反应条件比较温和,均是由酶且往往是由 多酶系统或别构酶催化下逐步完成,代谢效率 极高。
• 3、表现出高度灵敏的自我调节能力。
2020/8/9
4
➢新陈代谢研究方法:见书P132
D(+)-木酮糖
(xylulose)
D(+)-阿洛酮糖
(psicose,allulose)
D(-)-果糖
(fructose)
D(+)-山梨糖
(sorbose)
D(-)-塔洛糖
(tagalose)
由于Fischer式不能反应单糖分 子中原子和基团在空间的相互关系 ,故常用Haworth式
绕C4-C5 键转 120°
➢概念:新陈代谢(Metabolism)泛指生物与周围环境进行
的物质和能量交换的过程。 •化学本质:活细胞内,由多酶体系协同作用并高度协调的 化学反应网络。 •二个方面:同化作用(合成代谢)和异化作用(分解代谢) 。
➢新陈代谢内涵
小分子 大分子
合成代谢(同化作用)
需要能量
新
能
物
陈
量
质
代
代
代
谢
谢
谢
释放能量
➢可增加人体肠道益生菌,改善肠胃功能、减
少结肠癌发病率、增强机体免疫等功能。
➢帮助减肥:多吃粗粮肚子里就装不下其他热量
高的食物了。
2020/8/9
23
纤维素链
微纤维 细胞壁
纤维素一级结构
植物细胞中的 纤维素微纤维
植物细胞壁与纤维素的结构
7.3 双糖和多糖的酶促降解
• 7.3.1 双糖的降解 • 7.3.2 淀粉的降解 • 7.3.3 糖原的降解 • 7.3.4 细胞壁多糖(纤维素和果胶质)的降解
从左转折
旋转
C1上的-OH “下上”
6 5
4
成环
1 32
-D-吡喃葡萄糖
成环
D-葡萄糖由Fischer式改写为 Haworth式的步骤
-D-吡喃葡萄糖
糖的种类
㈡ 寡糖
▪ 水解可产生2-10个单糖残基。
▪ 自然界中常见的寡糖见书P136。
2020/8/9
14
重要的二糖
D-麦芽糖 α(1→4)糖苷键型
纤维二糖 β(1→4)糖苷键型
蔗糖 α(1→2)糖苷键型
乳糖 β(1→4)糖苷键型
糖的种类
㈢ 多糖
淀粉(starch) 糖原(glycogen) 纤维素(cellulose) ………(见书P146)
2020/8/9
16
淀粉
糖的种类
▪ 淀粉广泛地存在于许多植物的种子、块茎和根中,
如大米中约含70%-80%,小麦中约含60%-65%。
寡糖:水解时每个分子产生2-10个单糖残基
多糖: 能水解成多个单糖分子,属于高分子碳水
化合物,分子量可达到数百万。
2020/8/9
9
糖的种类
㈠ 单糖
最简单的糖,不再被水解成更小的糖 单位。
➢根据碳原子个数分为丙糖、丁糖等 ➢根据结构特点又分为醛糖和酮糖。
D系醛糖的立体结 构(Fischer式)
D(-)-赤鲜糖
(erythrose)
D(+)-甘油醛
(allose)
D(-)-苏阿糖
(threose)
D(-)-核糖
(ribose)
D(-)-阿拉伯糖
(arabinose)
D(+)-木糖
(xylose)
D(-)-来苏糖
(lysose)
D(+)-阿洛糖 D(+)-阿卓糖 D(+)-葡萄糖 D(+)-甘露糖 D(+)-古洛糖 D(-)-艾杜糖 D(+)-半乳糖 D(+)-塔洛糖