离散系统z域分析
离散系统的Z域分析法

D z-1
X(k-1)
z-1X(z)
X
注意:z域框图只能求系统零状态响应 注意 域框图只能求系统零状态响应
第
例题
1.求如图系统的单位响应 求如图系统的单位响应h(k)和单位阶跃响应 和单位阶跃响应g(k) 求如图系统的单位响应 和单位阶跃响应
8 页
2. 知 阶 散 统 初 条 为 zi (0) = 2, yzi (1) =1 已 二 离 系 的 始 件 y , 当 入 (k) = ε (k)时 输 f , 1 5 k k 输 全 应 (k) =[ + 4⋅ 2 − ⋅ 3 ]ε (k), 出 响 y 2 2 求 差 方 ., 画 系 框 。 此 分 程 并 出 统 图
求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法: y(k) =y zi (k) + yzs (k) yzs (k) = h(k) ∗ x(k) 时域方法: 时域方法 •z变换方法: 变换方法: 变换方法 Yzs (z) = H(z) ⋅ X(z)
X
第
二.系统框图的z域分析法
基本思路: 基本思路 时域框图 z域框图 域框图 z域代数方程 域代数方程 Yzs(z)
7 页
yzs(k)
x(k) ⇒ X (z) yzs (k) ⇒ Yzs (z) 延迟单元 x(k)
x(k)ε (k) ↔ X(z) x(k −1)ε (k) ↔ z−1X(z) + x(−1)
y(k)
X
第 5 页
优点: 优点:
•差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •将时域卷积→z域乘积; 将时域卷积→ 域乘积; 将时域卷积 域乘积 •部分分式展开后求解z逆变换较容易; 部分分式展开后求解z 部分分式展开后求解 逆变换较容易; •z变换过程自动引入了系统初始状态(相当于0变换过程自动引入了系统初始状态(相当于0 变换过程自动引入了系统初始状态 的条件) 可同时求出零输入和零状态响应。 的条件),可同时求出零输入和零状态响应。 , 注意:z域求解系统只需 -状态[y(-1),y(-2), …,] 注意: 域求解系统只需0 状态 域求解系统只需 时域求解系统要递推出0 状态确定待定系数。 时域求解系统要递推出 +状态确定待定系数。
离散系统Z域分析

离散系统Z域分析一、零输入响应的z域求解对于线性时不变离散时间系统,在零输入,即激励时,其差分方程为(8-45) 考虑响应为时的值,则初始条件为。
将式(8-45)两边取单边z变换,并根据z变换的移位性式(8-14),可得故(8-46)对应式(8-46)响应的序列可由z反变换求得例8-19若已知描述某离散时间系统的差分方程为初始条件为,求零输入响应。
解零输入时,,有若记,则对上式两边取单边z变换,有可得因故零输入响应为二、零状态响应的z域求解阶线性时不变离散时间系统的差分方程为(8-47)在零状态,即时,将等式(8-47)两边取单边z变换,可得( 8-48)其中设激励序列为因果序列,即当时, ,且。
有(8-49)故零状态响应为例8-20若已知且,求零状态响应。
解设,则有故所求零状态响应为三、全响应的z域求解对于线性时不变离散时间系统,若激励和初始状态均不为零,则对应的响应称为全响应。
根据线性时不变特性,全响应可按(8-50)计算,其中分别表示零输入和零状态响应,求解方法如上所述。
也可直接由时域差分方程求z变换而进行计算,即在激励为,初始条件不全为零时,对方程式(8-47)进行单边z变换,有(8-51)可见式(8-51)为一个代数方程,由此可解得全响应的像函数,从而求得全响应。
例8-21已知且,求全响应。
解设,对差分方程两边取单边z变换,有得有故全响应为可见这与例8-19和例8-20结果之和相同。
实验十一z变换及离散时间系统z域分析分析解析

南昌大学实验报告学生姓名: 周倩文 学 号: 6301712010 班级: 通信121班实验类型: ■验证□综合□设计□创新 实验日期: 5月30号 实验成绩:z 变换及离散时间系统的Z 域分析一、目的(1)掌握利用MATLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MATLAB 实现方法二、离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N 个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;三、离散系统零极点图及零极点分析 1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MATLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特
性
离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用
信号与系统实验(MATLAB 西电版)实验17 离散系统的Z域分析

实验17 离散系统的Z域分析
离散系统的分析方法可分为时域解法和变换域解法两大 类。其中离散系统变换域解法只有一种,即Z变换域解法。Z 变换域没有物理性质,它只是一种数学手段,之所以在离散 系统的分析中引入Z变换的概念,就是要像在连续系统分析 时引入拉氏变换一样,简化分析方法和过程,为系统的分析 研究提供一条新的途径。
F=ztrans(f): 实现函数f(n)的Z变换,默认返回函数F是 关于z
F=ztrans(f,w):实现函数f(n)的Z变换,返回函数F是关 于w
F=ztrans(f,k,w):实现函数f(k)的Z变换,返回函数F是 关于w的函数。
实验17 离散系统的Z域分析
2. 单边逆Z变换函数iztrans 功能:iztrans可以实现信号F(z)的逆Z
实验17 离散系统的Z域分析
3) 一个离散LTI系统,差分方程为y(k)-0.81y(k-2)=f(k)-f(k-2),
(1) 系统函数H(z); (2) 单位序列响应h(k)的数学表达式,并画出波形; (3) 单位阶跃响应的波形g(k); (4) 绘出频率响应函数H(ejθ)
实验17 离散系统的Z域分析
实验17 离散系统的Z域分析
MATLAB %确定信号的Z syms n z% f1=3^n f1_z=ztrans(f1) f2=cos(2*n) f2_z=ztrans(f2);
实验17 离散系统的Z域分析
f1 = 3^n f1_z = 1/3*z/(1/3*z-1) f2 = cos(2*n) f2_z = (z+1-2*cos(1)^2)*z/(1+2*z+z^2-4*z*cos(1)^2)
极点图见图17.3
实验17 离散系统的Z域分析
7.离散时间信号与系统的z域分析

第七章离散时间系统的Z域分析7.1 学习要求1.熟练掌握信号的Z域分析方法:Z变换的定义、收敛区及基本性质,能够应用长除法和部分分式分解法求Z反变换。
2.掌握序列的傅里叶变换的定义和基本性质,并了解Z变换与拉普拉斯变换、傅里叶变换的关系。
3.掌握离散系统响应的Z变换分析方法:深刻理解离散系统的系统函数的概念,掌握离散时间系统的时域和Z域框图与流图描述形式。
7.2 学习重点1.z变换,z反变换定义、基本性质、计算方法。
2.离散时间系统的z域分析。
3.离散时间系统的频率响应特性。
7.3知识结构7.4内容摘要7.4.1 Z变换1.定义∑∞-∞=-=n nz n x z X )()( 表示为:)()]([z X n x Z =。
2. 收敛域 (1) 有限长序列12(),()0,x n n n n x n n ≤≤⎧=⎨⎩其他当0,021>>n n 时,收敛条件为0>z ;当0,021<<n n 时,收敛条件为∞<z ;当0,021><n n 时,收敛条件为∞<<z 0。
(2) 右边序列11(),()0,x n n n x n n n ≥⎧=⎨<⎩当01>n 时,收敛域为1x R z >,1x R 为最小收敛半径;当01<n 时,收敛域为∞<<z R x 1。
(3) 左边序列2(),()0,x n n n x n n ≤⎧=⎨⎩其他 当02<n ,收敛域为2x R z <,2x R 为最大收敛半径; 当02>n ,收敛域为20x R z <<。
(4) 双边序列双边序列指n 为任意值时,)(n x 皆有值的序列,即左边序列和右边序列之和。
其z 变换:∑∑∑∞=--∞=--∞-∞=-+==1)()()()(n n nnn nzn x zn x zn x z X双边序列的收敛域为一环形区域21x x R z R <<。
第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )
在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1
离散系统的Z域分析

k
cos(
0
k
)
k
z
z2 z2 z cos 2z2 2z cos 0
0
1
2
..........
k
sin 0k
k
z
2z2
z 2
sin 0 z cos 0
1 2
.........
k k
k
z (z )2k kk Nhomakorabea1
五、ZT & DTFT
求和收敛
设f(k)
为因果序列、则
F (e j ) f k e jk
Z eS Ts e e Ts jTs e j
k
F (z) f (k)zk k 0
e Ts
Ts
2 s
S 域中的一点→ → Z 域中的一点;Z 域中的一点→ → S 域中的无穷个点。
S 1 Ln z 1 Ln(e j ) 1 Ln j
Ts
Ts
Ts
Ts
三、收敛域: F (z) f k zk
ak (k) bk (k 1) z z ∣a∣< |z|< |b|
za zb
jIm[z]
|b|
|a|
o
Re[z]
四、常用 z 变换
(k+1) ←→z; (k-1) ←→z-1;……
(k) ←→1 (k) ←→z/(z-1) ←→ - (- k-1)
零、极 点分布
k k z k k 1
F(z)
K1 e j z
z e j
K1 e j z
z e j
若z> , f(k)=2K1kcos(k+)(k),… …
(3) F(z)有重极点 推导记忆:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f S (t) f (t) T (t) f (kT) (t kT)
k
两边取双边拉普拉斯变换,得
第6-1页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
FSb (s) f (kT) ekTs k
令z = esT,上式将成为复变量z的函数,用F(z)表示;
f(kT) →f(k) ,得
第6-2页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
6.3.3 收敛域
z变换定义为一无穷幂级数之和,显然只有当该幂级
数收敛,即
f (k)zk
k
时,其z变换才存在。上式称为绝对可和条件,它是 序列f(k)的z变换存在的充分必要条件。
收敛域的定义:
对于序列f(k),满足 f (k)z k k
6.1 z变换
注意:对双边z变换必须表明收敛域,否则其对应的原 序列将不唯一。
例
f1(k)=2k(k)←→F1(z)=
z z2
, z>2
f2(k)= –2k(– k –1)←→F2(z)=
z z2
, z<2
对单边z变换,其收敛域比较简单,一定是某个圆以
外的区域。可以省略。
常用序列的z变换: (k) ←→ 1 ,z>0
1 (az 1 ) N 1 lim
N 1 az 1
可见,仅当az-1<1,即
jIm[z]
z >a =时,其z变换存在。
Fy (z)
z
z
a
收敛域为|z|>|a|
|a|
o
Re[z]
第6-5页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例3 求反因果序列 的z变换。
bk ,
f
信号与系统 电子教案
第六章 离散系统z域分析
在连续系统中,为了避开解微分方程的困难,可以
通过拉氏变换把微分方程转换为代数方程。出于同样的 动机,也可以通过一种称为z变换的数学工具,把差分方 程转换为代数方程。
6.1 z变换
6.1.1 从拉氏变换到z变换
对连续信号进行均匀冲激取样后,就得到离散信号:
取样信号
f(k-1) ←→ z-1F(z) + f(-1) f(k-2) ←→ z-2F(z) + f(-2) + f(-1)z-1
m1
f (k m) z m F (z) f (k m)z k k 0
第6-10页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
f(k+1) ←→ zF(z) – f(0)z
对任意常数a1、a2,则 a1f1(k)+a2f2(k) ←→ a1F1(z)+a2F2(z)
其收敛域至少是F1(z) )与F2(z)收敛域的相交部分。
例: 2(k)+ 3(k) ←→ 2 + 3z
z 1
,z>1
第6-9页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
二、移位(移序)特性 单边、双边差别大!
所有z值组成的集合称为z变换F(z)的收敛域。
第6-3页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例1求以下有限序列的z变换(1) f1(k)=(k) ↓k=0
解
(2) f2(k)={1 , 2 , 3 , 2,1}
(1) F1 (z) (k)z k (k)z k 1
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例4 双边序列f(k)=fy(k)+ff(k)= 的z变换。
bk , a k ,
k 0 k 0
解
F(z)
Fy (z)
Ff
(z)
z z b
z
z a
|b|
jIm[z]
可见,其收敛域为a<z<b (显然要求a<b,否则无共 同收敛域)
|a|
双边z变换的移位: 若 f(k) ←→ F(z) , <z<,且对整数m>0,则
f(km) ←→ zmF(z), <z<
证明:Z[f(k+m)]=
nkm
f (k m)z k
f (n)z n z m z m F (z)
k
n
单边z变换的移位:
若 f(k) ←→ F(z), |z| > ,且有整数m>0, 则
F (z) f (k)z k
称为序列f(k)的 双边z变换
k
F (z) f (k)z k k 0
称为序列f(k)的 单边z变换
若f(k)为因果序列,则单边、双边z 变换相等,否则不 等。今后在不致混淆的情况下,统称它们为z变换。
F(z) = Z[f(k)] ,f(k)= Z-1[F(z)] ;f(k)←→F(z)
f
(k)
0,
k 0 bk (k 1)
k 0
解
Ff
Байду номын сангаас
(z)
1
(bz 1 ) k
k
(b 1 z) m
m1
b 1 z (b 1 z) N 1
lim
N
1 b 1z
可见,b-1z<1,即z<b时,其z变换存在,
Ff
(z)
z zb
收敛域为|z|< |b|
jIm[z]
|b|
o
Re[z]
第6-6页
对有限序列的z变换的收敛域一般为0<z<∞,有时
它在0或/和∞也收敛。
第6-4页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.1 z变换
例2
求因果序列f
y
(k)
a
k
(k)
0, a k ,
k 0 k 0
的z变换(式中a为常数)。
解:代入定义
Fy (z)
ak z k
k 0
N
lim (az 1 )k N k0
o
Re[z]
序列的收敛域大致有一下几种情况:
(1)对于有限长的序列,其双边z变换在整个平面; (2)对因果序列,其z变换的收敛域为某个圆外区域; (3)对反因果序列,其z变换的收敛域为某个圆内区域; (4)对双边序列,其z变换的收敛域为环状区域;
第6-7页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
k
k
可见,其单边、双边z变换相等。与z 无关,
所以其收敛域为整个z 平面。
(2) f2(k)的双边z 变换为
F2(z) = z2 + 2z + 3 + 2z-1 + z-2 收敛域为0<z< ∞ f2 (k)的单边z 变换为
F2 (z) f2 (k)zk 3 2z1 z2 收敛域为z > 0 k 0
(k) –(– k –1)
z ,z>1 z 1 ,z<1
第6-8页
■
©盐城工学院电工电子课程组
信号与系统 电子教案
6.2 z变换的性质
6.2 z变换的性质
本节讨论z变换的性质,若无特殊说明,它既适 用于单边也适用于双边z变换。
一、线性
若 f1(k)←→F1(z) 1<z<1, f2(k) ←→ F2(k) 2<z<2