3.3.2 简单线性规划问题

合集下载

人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

钢板张数最少?

A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,

x x

2y 3y

18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC


5
, kl

a


ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),

课件8:3.3.2 简单的线性规划问题

课件8:3.3.2 简单的线性规划问题

解:设投资人分别用 x 万元、y 万元投资甲、乙两个项目,
x+y≤10, 由题意知x0≥.30x,+0.1y≤1.8,
y≥0.
目标函数 z=x+0.5y.
上述不等式组表示的平面区域如图所示,阴影部分(含边界)即
可行域.
作直线 l0:x+0.5y=0,并作平行于直线 l0 的一组直线 x+0.5y =z,z∈R,与可行域相交,其中有一条直线经过可行域上的 M 点且与直线 x+0.5y=0 的距离最大,这里 M 点是直线 x+y= 10 和 0.3x+0.1y=1.8 的交点. 解方程组x0+.3xy+=01.01,y=1.8, 得xy==46,,
解:设此工厂应生产甲、乙两种产品 x kg、y kg,利润 z 万元,
9x+4y≤360, 4x+5y≤200, 则依题意可得约束条件:3x+10y≤300, x≥0, y≥0.
利润目标函数为 z=7x+12y.
作出不等式组所表示的平面区域,即可行域(如下图).
作直线l:7x+12y=0,把直线l向右上方平移至l1位置时,直 线l经过可行域上的点M时,此时z=7x+12y取最大值.
【答案】6
9 5
题型三 线性规划的实际应用 例3:某投资人打算投资甲、乙两个项目,根据预测,甲、乙 项目可能的最大盈利率分别为100%和50%,可能的最大亏损 率分别为30%和10%,投资人计划投资金额不超过10万元,要 求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两 个项目各投资多少万元,才能使可能的盈利最大?
解方程组x7+x+2y1=0y3=,17, 得 M(1,1). 故当 x=1,y=1 时,zmin=8.
2x+y≥4, 变式训练 1:设 x,y 满足x-y≥-1, 则 z=x+y( )

《3.3.2简单的线性规划问题》教案

《3.3.2简单的线性规划问题》教案

简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。

教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。

教学过程设计。

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题
B (1.5,2.5)
Z max=17 Z min=-11
1 o A (-2,-1)
x5y 3
C
3
x
5x 3y 15
3x+5y=0
练习 变式1.若求z=x-2y的最大值和最小值呢?
5yxx3y1, 15,
z x2y y 1 x z
y5
x 5y 3.
求z的最大值与最小值。
约束条件
(线性约束条件)
这里的约 束条件是 关于x,y 的一次不 等式,又 叫线性约 束条件.
线性规划定义
线性规划:求线性目标函数在线性约束条件下的最 大值或最小值的问题,统称为线性规划问题.
可行解 :满足线性约束条
件的解(x,y)叫可行解; 2x+y=3
2x+y=12
可行域 :由所有可行解组
22
∴ -z/2最小时,z最大
y x 1 x y 0
-z/2最大时,z最小
B (1.5,2.5) x 2y 0
故过点C时,z最大,
过点B时,z最小.
1
zmax=3
x5y 3 C
zmin=-3.5
o
3
x
5x 3y 15
注:一般,目标函数的最A优解是唯一的(在可行域的顶点处取得) ,有时是不唯一的(在可(-行2,域-1)的边界取得)。
成的集合叫做可行域;
最优解 :使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
可行域
(1,1)
(5,2)
线性目标函数
线性规划相关名称
所表示的几何 意义——在y 轴上的截距或
线性目 标函数
线性约 束条件
与其相关。

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x

7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

解决问题 (1)用不等式组表示问题中的限制条件: 用不等式组表示问题中的限制条件: 设甲、乙两种产 品分别生产x 品分别生产x、y 件,由已知条件 可得二元一次不 等式组:
x &≥0 y≥0
(2)画出不等式组所表示的平面区域: 画出不等式组所表示的平面区域:
解:设需要截第一种钢板x张,第二种 设需要截第一种钢板x 钢板y 钢板y张,则目标函数为z=x+y 则目标函数为z=x+y
2x+y≧ 15 ≧ x+2y ≧ 18 x+3y ≧ 27 x ≥0,x∈N ∈ y ≥0,y∈N ∈
18 16 14 12 10 8 6 4 2
将目标函数化为: 将目标函数化为: y=-x+z,显然 越少, 显然z y=-x+z,显然z越少, 钢板数和越少。 钢板数和越少。
【教学重点】 教学重点】
利用图解法求得线性规划问题的最优解; 利用图解法求得线性规划问题的最优解;
【教学难点】 教学难点】
把实际问题转化成线性规划问题,并给出解答, 把实际问题转化成线性规划问题,并给出解答,解决难点的 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 利用图解法求得最优解。 利用图解法求得最优解。
y
M
o
3/7
5/7
6/7 x
M点是两条直线的交点,解方程组 点是两条直线的交点, 点是两条直线的交点
7 x + 7 y = 5 14 x + 7 y = 6
所以z 所以 min=28x+21y=16 + =
x 点的坐标为: 得M点的坐标为: 点的坐标为 y

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

可 行 域
y 4x+y=1 0 4x+3y=2 0 x 4x+y=1 0 A(1.25, 5) 4x+3y=2 0 x
O
O
解决问题
• (5)获得结果:
每天生产甲产品4件,乙产品2件时, 工厂可获得最大利润14万元
相关概念
一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
X+3y=2
例7、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产 1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐 15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产 这两种混合肥料。列出满足生产条件的数学关系式, 并画出相应的平面区域。并计算生产甲、乙两种肥料 各多少车皮,能够产生最大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
3.3.2简单的线性规划问题
y
o
x
引例
• 某工厂有A、B两种配件生产甲、乙两种产 品,每生产一件甲产品使用4个A配件耗时 1h,每生产一件乙产品使用4个B配件耗时 2h,该厂每天最多可从配件厂获得16个A配 件和12个B配件,按每天8h计算,该厂所有
可能的日生产安排是什么?
解决问题
• (1)用不等式组表示问题中的限制条件:
分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105

课件3:3.3.2 简单的线性规划问题

课件3:3.3.2 简单的线性规划问题
最优解
M
y=3
x
x +2y-8=0
线性规划问题
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组. 线性约束条件:约束条件中均为关于x、y的一次不等 式或方程. 目标函数:欲求最值的关于x、y的解析式. 线性目标函数:欲求最值的解析式是关于x、y的一次 解析式.
有关概念
可行解:满足线性约束条件的解(x,y). 线性规划:求线性目标函数在线性约束条件下的最大值 或最小值. 可行域:所有可行解组成的集合. 最优解:使目标函数达到最大值或 最小值 的可 行 解.
截距
z 3
最大,即z最大.
解方程组
x x
2y 4
8
0得
所以 zmax 2 x 3 y 14
M 4,2
答:每天生产甲产品4件,乙产品2件时,工厂可获最大 利润14万元.
认识名词
x 2y 8
44
x y
16 12
x
0
线性目标 y 0
函数
z 2x 3y
可行解
y
N O
可行域
x=4
解:设需截第一种钢板x张,第一种钢板y张,则
2x+y≥15, x+2y≥18, x+3y≥27, x≥0 ,x∈N y≥0 ,y∈N 目标函数为 z=x+y 作出可行域(如图)

y
调整优值法
15
目标函数z= x+y x+y =0
10 B(3,9)
8
C(4,8)
A(18/5,39/5)
6
4
2
0
2
4
可行域中的整点(5,2)使z =320x+504y取得最小值,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2 简单线性规划问题第二十九课时教学目标1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.教学重点 重点是二元一次不等式(组)表示平面的区域.教学难点 难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.课时安排 3课时教学过程导入新课二元一次不等式a x+b y+c >0和a x+b y+c <0表示什么图形答:表示直线a x+b y+c =0某一侧所有点组成的平面区域.规律: ax+by+c >0(a >0)表示直线 ax+by+c=0的右侧区域,ax+by+c <0(a >0)表示直线ax+by+c=0的左侧区域记忆口诀:a 正大>右,a 负小<左。

a 为负时可化为正。

推进新课 [合作探究]在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么解:设甲、乙两种产品分别生产x 、y 件,由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x z=2x+3y 如何将上述不等式组表示成平面上的区域 [教师精讲]见教材 有关概念1、线性约束条件:不等式组是一组对变量x 、y 的约束条件。

2、线性目标函数.t=2x+y3、线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,4、可行解:满足线性约束条件的解(x,y)5、可行域:由所有可行解组成的集合6、最优解: [知识拓展]再看下面的问题:若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.解:做可行域ABC .作直线l 0:2x+y=0上.平行移动直线l 0经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12, t min =2×1+3=3.课堂小结 用图解法解决简单的线性规划问题的基本步骤:1.要根据线性约束条件画出可行域2.设t=0,做出直线l 0.3.平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.5.做答。

布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y x z=90x+100y. 作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大 解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y.作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.3.3.2 简单线性规划问题第三十课时教学目标1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.教学重点 重点是二元一次不等式(组)表示平面的区域.教学难点 难点是把实际问题转化为线性规划问题,并给出解答.教学过程导入新课1、前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念. 解决简单的线性规划问题的基本步骤:1.要根据线性约束条件画出可行域2.设t=0,做出直线l 0.3.平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.5.做答。

推进新课【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y ,即,90031t x y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t/900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.解:可行域如图所示. 四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191). 因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.解:可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t∈R).∵x、y 是上面不等式组表示的区域内的点的坐标.由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min =1.评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.课堂练习:(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x课堂小结1、解决简单的线性规划问题的基本步骤:(1)要根据线性约束条件画出可行域 (2)设t=0,做出直线l 0.(3)平移直线l 0,从而找到最优解.(4)最后求得目标函数的最大值及最小值.(5)做答。

2、以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.布置作业课本第105页习题3.3A 组3、 4.简单线性规划问题例1例3例2课堂小结第三十一课时导入新课前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kgAB解:若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x作出可行域.考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值. 由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小.解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16. 由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人高中 40 3 54/班 2/人由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=×45x+×40y,可行域如下图把z=+变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线. 由图可以看出,当直线z=+经过可行域上的点M 时,截距545z 最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=+取最大值,最大值为252. 由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 课堂小结1、解决简单的线性规划问题的基本步骤:(1)要根据线性约束条件画出可行域 (2)设t=0,做出直线l 0.(3)平移直线l 0,从而找到最优解.(4)最后求得目标函数的最大值及最小值.(5)做答。

相关文档
最新文档