直角三角形全等的判定方法
直角三角形全等的判定

两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
B
B′
C
A C′
A′
直角三角形全等的判定定理
定理:
斜边和一条直角边对应相等的两个直角三角形全 等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵ AC=A′C ′
AB=A′B′
B
∴Rt△ABC≌Rt△A′B′C′(HL).
B′
C
A C′
A′
知识在于积累
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
; / 优鸟-专业菜谱摄影设计制作
hmq823dfk
有生死离别,但也充满了坑坑坎坎。从女儿的出生、送人到今天的相聚,一幕幕场景在脑海中浮现„„人有悲欢离合, 月有阴晴圆缺,此事古难全。想着想着,渐渐地进入了梦乡。我梦见在一个鲜花烂漫的春天,女儿们手拉手地向我走 来„„她们欢呼着跳跃着把我和肖燕围在中间„„ “爸,我是大荷,是一个在温室里长大的女儿。我的人生没有经过 任何分吹雨打,一路从幸福中走来。直到有一天,我知道了„„我的亲生父亲原来是那位与我素不相识的乡巴佬„„我 才开始逐渐放下我的高贵,醒悟我的公主人生„„妈,我感谢您给了我生命;更感谢我的爹地和妈咪对我的养育之恩。 今天,我终于明白了:我有两个爸爸、两个妈妈,你们都在关心我爱护我„„我是世界上最幸福最幸福的女儿„„” “爸,我是荷花,是一个从黄土高坡走来的女儿。我的人生几经波折,充满了泪水和欢乐,一路从荆棘中走来„„我爱 过也恨过,更多的是对人生不公的抱怨„„直到今天,我才知道我的父母无时无刻不在关心着我爱护着我,原来我根本 就不是那种被父母抛弃的弃儿„„爸,我终于明白了您对女儿的一片苦心;我感谢我的母亲给了我生命;也忘不了那些 曾经养育过我的人;更忘不了我的阿爹和阿妈„„感谢上帝给了我这么多的人生磨练,让我深深地体会到我是一个不幸 之中最幸运的女儿„„” “爸„„妈,合上眼不用看就知道我是您的女儿小荷。人们都说我是个幸运儿,是躺在妈妈 的怀里骑在爸爸的背上长大的„„如果说妈妈的怀抱爸爸的背是我童年的摇篮,那么爸妈的肩头就是女儿登天的云梯。 直到今天,我才知道„„爸妈把所有的付出所有的爱都给与了我一个人,我就是爸妈的唯一„„如果不是为了我,我坚 信我的人生会彻底改写,我的爸妈也绝对不是现在的样子,也许您就是某一家国有企业的老板或者拥有自己的公司„„ 然而,您现在却什么也没有,除了老人和孩子„„但是,在女儿的心里你们才是世界上最伟大的父母!是世界上最富有 的人!爸„„妈,如果人生真的有来世,我一定还做您的女儿!”„„„„深夜,万籁俱静,我独自一人思前想后,一 个念头跳入我的脑际,如果能把我过去的一切写下来,不也是一件很有意义的事情吗?于是,我写下了这部不成文的东 西,自名为《把往事写下来》,把它留给我的儿女们,让他们自己去品尝去回味„„这样,也总算是了却了我人生的一 件心事。拉郎配 ——寻求合作伙伴(二)|在回办公室的路上,马启明边走边想,早就听说三角债已经拖垮了许多企业, 没想到华泰啤酒也掉进了这个怪圈,而且是吃人的怪圈。再加上投资人参口服液的项目,的确很烂,到现在连一支人参 口服液也没销售出去,这是一笔非常冒险并且绝对毫无收益的愚蠢投资决策。投资失误!雪上
直角三角形全等的判定

直角三角形全等的判定
直角三角形同余的判断:1。
对应边相等的两个三角形的三组同余。
2.两条边和它们的夹角相等的两个三角形。
3.两个三角形有两个角,它们的夹紧边全等。
判定方法
方法一:SSS(边边边),即三边对应相等的两个三角形全等。
方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。
方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。
方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。
方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。
性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.。
能够完全重合的顶点称为对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
直角三角形全等的判定

全等相似三角形的判定方法

全等相似三角形的判定方法
全等和相似三角形的判定方法如下:
全等三角形的判定方法:
1.SSS(边、边、边):三边长度相等。
2.SAS(边、角、边):两边夹角相等。
3.ASA(角、边、角):两角夹边相等。
4.AAS(角、角、边):两角非夹边相等。
5.RHS(直角、斜边、边):在一对直角三角形中,斜边及另一条
直角边相等。
相似三角形的判定方法:
1.两角分别对应相等的两个三角形相似。
2.两边成比例且夹角相等的两个三角形相似。
3.三边成比例的两个三角形相似。
4.一条直角边与斜边成比例的两个直角三角形相似。
三角形全等与相似判定

三角形全等与相似判定
三角形全等:完全重合
判定
1、三组对应边分别相等(SSS或“边边边”) 这一条也是三角形具有稳定性的原因 2.有两边及其夹角对应相等(SAS或“边角边”)
3.有两角及其夹边对应相等(ASA或“角边角”) 4.有两角及一边对应相等(AAS或“角角边”)
பைடு நூலகம்
5.直角三角形全等条件:斜边及一直角边对应相等 (HL或“斜边,直角边”)
3.如图,在△ABC中,AB=AC,D为边BC上一点,以AB, BD为邻边作▱ABDE,连接AD,EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
4.四边形ABCD是平行四边形,点E 在BA 的延长线上, 且BE=AD ,点F 在AD上,AF=AB, 求证:△AEF≌△DFC
1.如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AC=AD, 连接BD,CE,求证:△ABD≌△AEC.
2.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB 至点D,使DB=AB,连结CD,以CD为直角边作等腰直 角三角形CDE,其中∠DCE=90°,连结BE (1)求证:△ACD≌△BCE; (2)若AC=3cm,则BE=__________cm
三角形相似:对应角相等,对应边成比例。
(1)平行于三角形一边的直线,截三角形其他两边 或延长线所得的三角形与原三角形相似。(简叙为 两角对应相等两个三角形相似). (2)两边夹角相等 (SAS) (3)三条边对应成比例 ( SSS) (4)两个角分别对应相等(AA)
直角三角形相似的判定定理: 直角三角形被斜边上的高分成两个直角三角形和 原三角形相似.
直角三角形全等判定定理

在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
动动手 做一做
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
忆一忆
1、全等三角形的对应边 应角-相---等-------
-相---等-----,,对
2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
认识直角三角形 Rt△ABC
A
直
斜边
角
边
C
直角边
B
直角三角形全等的判定
直角三角形全等的判定
舞台背景的形状是两个直角三角形,工作人 员想知道两个直角三角形是否全等,但每个三 角形都有一条直角边被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
ቤተ መጻሕፍቲ ባይዱ
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
小结
一般三角
形全等的 “SAS” “ ASA ” “ AAS ” “ SSS ”
直角三角形全等的判定

结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果
相应,言必有据.这是初学证明者谨记 和遵循的原则.
; 亚博足彩 亚博app ;
H.L.). 2.三边对应相等的两个三角形全等(S.S.S.).
3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
4.两角及其夹边对应相等的两个三角形全等(A.S.A.).
5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.).
综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B
B′
B′
A● (1)
C A′ ● (2)
C′A′
●
(3)
C′
因此,两边及其中一边的对角对应相等的两个三角形不
一定全等.
切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
C D
F
E
A
B
老师期望:请将证明过程规范化书写出来 .
直角三角形全等的判定

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形全等的判定
教学目的:
1、通过本节课的学习,进一步弄清全等三角形的判定定理:SAS、ASA、AAS、SSS。
2、通过探究,弄清直角三角形全等的判定定理:HL。
3、培养学生探究解决问题的能力和合作的品质。
教学要求:
1、熟练运用SAS、ASA、AAS、SSS。
2、理解并运用HL。
教学重点:引导学生分析、理解HL定理。
教学难点:熟练运用HL定理解决问题。
教学方法:探究、合作学习。
教学过程:
一、复习引入:
1、学生先说说三角形全等的判定定理有哪些?
2、做一做:
具有下列条件的Rt△ABC和Rt△A′B′C′是否全等。
①AC=A′C′∠A=∠A′
②AC=A′C′BC=B′C′
③AB=A′B′∠B=∠B′
④AC=A′C′AB=A′B′
二、探究:已知Rt△ABC和Rt△A′B′C′,AC=A′C′,
AB=A′B′,它们全等吗?
推理过程:P.91
结论:斜边、直角边定理:HL
斜边和一条直角边对应相等的两个直角三角形全等。
三、例题讲解:P.91、例1
结论:角平分线的性质;三角形的内心。
四、练习:
1、判断下列说法是否正确,说明理由。
①②③④
2、如图:AC=AD,∠C=∠D=90°,你
能说明∠ABC与∠ABD为什么相等吗?
3、如图:∠B=∠E=90°,AB=AE,
∠1=∠2,则∠3=∠4,请说明理由。
4、议一议:已知∠ACB=∠BDA=90°,
要使△ABC≌BDA,还需要增加一个什么
条件?把它们分别写出来。
5、如图,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC,则△ABP≌△PDC,请说明理由。
五、体会分享:学生说一说。
六、小结:①②③
七、作业:课本P.94第6题;练习册P.41第4题。
A
B
C
D P。