变压器的空载运行资料
电机学变压器的运行原理(空载、负载、数学模型)

第8章 变压器
28
2、T型等效电路 T型等效电路的形成过程,见下图。
I&1 R1
X 1
R2
I&0
Rm
U&1
E&2 E&1E&2 E&1
E&2
Xm
X 2 I&2
U&2
Z L
T型等效电路的形成过程
第8章 变压器
29
Γ型等效电路
对于电力变压器,一般 I1NZ1<0.08U1N,且 I1NZ1 与 -E1是相量相加,因此可将励磁支路前移与电源并 联,得到Γ型等效电路。
1、空载电流的波形
电网电压为正弦波,铁 心中主磁通亦为正弦波。若 铁心不饱和(Bm < 1.3T), 空载电流 i0 也是正弦波。
电力变压器,Bm= 1.4T ~1.73T,铁心都是饱和的 。其励磁电流呈尖顶波,除 基波外,还有较强的三次谐 波和其它高次谐波。
第8章 变压器
11
2、空载电流与主磁通的相量关系
问题:一般电力变压器 的变比 k 较大,一、二 次侧的电压、电流差别
很大,计算不便,画相
量图更加困难。因此,
下面介绍分析变压器的 一个重要方法——等效 电路、折算。
第8章 变压器
19
四、绕组归算(折算)及数学模型
所谓把二次侧折算到一次侧,就是用一个匝数为N1 的等效绕组,去替代变压器匝数为N2二次侧绕组,折 算后的变压器变比 N1/ N1=1 。
第8章 变压器
30
4、简化等效电路和相量图
对于电力变压器,由于 I0<0.03I1N,故在分析变压器满载及负 载电流较大时,可以近似地认为 I0=0,将励磁支路断开,等效电 路进一步简化成一个串联阻抗,如图所示。
第二章 变压器的运行原理

Electric Machinery
本章节重点和难点: 重点: (1)变压器空载运行时磁动势、电动势平衡关系,等值电路和相 量图; (2)变压器负载运行时磁动势、电动势平衡关系,等值电路和相 量图; (3)绕组折算前后的电磁关系; (4)变压器空载实验和短路实验,变压器各参数的物理意义; (5)变压器的运行特性。 难点: (1)变压器绕组折算的概念和方法; (2)变压器的等值电路和相量图; (3)励磁阻抗Zm与漏阻抗Z1的区别; (4)励磁电流与铁芯饱和程度的关系; (5)参数测定、标么值。
空载损耗约占额定容量的(0.2~1)%,随 容量的增大而减小。这一数值并不大,但因为 电力变压器在电力系统中用量很大,且常年接 在电网上,因而减少空载损耗具有重要的经济 意义。工程上为减少空载损耗,改进设计结构 的方向是采用优质铁磁材料:优质硅钢片、激 光化硅钢片或应用非晶态合金。
Electric Machinery
漏电动势 : E1
2 2
fN 1 1
2 fN 1 1
Electric Machinery
E 1 j 2 f
N 1 1
I 0 j 2 fL 1 I 0 j I 0 x 1
I0
x 1 2 f
N1
2
为一次侧漏抗,反映漏磁通的作用。
变压器的空载运行及负载运行

N1I0 N1 I0 N1 I1L N2 I2
N1 I1L - N2 I2
其中I1L远远大于I0,大部分用来抵抗副边电流引起的磁通量变化。
当负载运行时可认为I1L=I1。
I1
I2 k
或 I1 I2
1 k
N2 N1
k为变压器变比
一、二次电流比近似与匝数成反 比。可见匝数不同,不仅能改变 电压,同时也能改变电流。
产业信息
中国变压器设备-尤其是特种变压器-已 走向世界成为“中国制造” 品牌
谢谢聆听
P0 = PFe + Pcu ≈ PFe
铁损耗分量
铁损耗分量:符号为I10P,供给铁磁材料 铁损(磁滞和涡流损耗),为有功分量
Part 2 空载运行分析
思考
如果误将变压器高低压侧接反,会发生什么异常现象?
变压器低压侧如果接到高压电源上,则铁心主磁 通Φm会增加,磁路饱和程度增加,因而励磁电流I0大 大增加,有可能烧毁线圈(励磁电流随磁路饱和程度 增加而急剧增大)
单相变压器空载运行示意图
Part 2 空载运行分析
空载电流的作用与组成
I10 I10Q I10P
励磁分量
励磁分量:符号为I10Q,用来建立主磁 通,相位与主磁通相同,为无功分量
变压器空载运行时,只从电源吸收少量有功功率P0, 用来供给铁心中铁损PFe和少量绕组铜损Pcu=R1I102 (可忽略不计)。容量越大,空载功率P0越小
Part 3 变压器的负载运行
变压器作用 通过对变压器负载运行的分析,可以清楚地看出变压器具有变电压、 变电流、变阻抗的作用。
• 变换电压 U1/U2≈E1/E2=k=N1/N2
• 变换电流 I1/I2≈N2/N1=1/k
变压器的原理与空载运行

变压器的原理和空载运行变压器空载运行指变压器一次绕组接额定频率、额定电压的交流电源,二次绕组开路的运行状态。
一、变压器的空载运行1.理想变压器的空载运行空载电流还建立空载磁动势产生交变的磁通; 铁心磁导率远大于空气磁导率,绝大部分磁通沿铁心闭合,同时交链一、二次绕组,称为主磁通Φ。
另外有很少一部分磁通只交链一次绕组,主要沿非铁磁材料闭合,称为一次绕组的漏磁通空载运行时,一次绕组所接电源为额定频率、额定电压的正弦交流电,根据电磁感应定律,一次绕组的感应电动势为变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压Ú1时,流过电流Í1,在铁芯中就产生交变磁通Ø1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势É1,É2,感应电势式E=4.44fNØm式中:E--感应电势有效值 f--频率 N--匝数Øm--主磁通最大值.不计一次、二次绕组的电阻和铁耗,其间耦合系数 K=1 的变压器称之为理想变压器描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,则有不计铁心损失,根据能量守恒原理可得由此得出一次、二次绕组电压和电流有效值的关系K=N1/N2,称为匝比(亦称电压比)。
2.实际变压器的空载运行空载运行时,空载电流i0产生励磁磁势F0,F0建立主磁通Φ,而交变磁通在原绕组内感应电势e1,单独产生磁通的电流为磁化电流i0w,i0w与电势E1之间的夹角是90°,故i0w是一个纯粹的无功电流。
铁心中的磁通不变,一定存在损耗,为了供给损耗,励磁电流中除了用来产生磁通的无功电流外,还应包括一个有功电流i0r,即im=i0w+i0r,其向量关系如图。
-E1=imRm+jimXm=imZm,Xm是主磁通Φ引起的电抗,为励磁电抗。
变压器空载运行

06
变压器空载运行的未来发展
提高变压器的效率
优化变压器设计
通过改进变压器结构设计、选择更优质的材料和采用先进的 制造工艺,减少变压器的损耗和提升其效率。
高效变压器产品的研发
研发出更高效、更节能的变压器,以满足电力传输和分配的 更高要求。
提高变压器的可靠性
增强变压器保护措施
通过增加变压器保护装置,如过载保护、短路保护和过电压保护等,提高变 压器的运行可靠性。
02
变压器空载运行与负载运行
变压器空载运行与负载运行的比较
空载运行指变压器二次侧开路,一次侧通过励磁电流维持 磁场,不向外部输送功率;负载运行指变压器二次侧有负 载,通过传输电能向外部输送功率。
空载运行时,变压器铁损(铁芯涡流损耗和磁滞损耗)和 铜损(线圈电阻损耗)为主要损耗;负载运行时,变压器 传输的功率和铜损为主要损耗。
05
变压器空载运行的安全措施
安装和操作安全要求
确保变压器安装牢固、可靠,避免出现晃动或 位移。
在操作过程中,应穿戴适当的个人防护装备, 如绝缘手套ቤተ መጻሕፍቲ ባይዱ护目镜。
保持操作现场整洁,避免杂物和人员走动,以 免影响操作安全。
维护和检修安全要求
制定详细的维护和检修计划,并按照计划进行实施 。
在维护和检修前,必须了解变压器的结构和工作原 理,并遵循相关的安全规定。
绝缘电阻异常处理
如果测量结果异常,需要进一步检查变压器的内部结构和绕组情况,确定故 障位置并进行维修或更换。
听变压器的声响
正常声响的判断
正常运行中的变压器会发出嗡嗡声,这是由于磁场作用在铁芯和绕组上产生的振 动所引起的。如果变压器的声响过大或者存在其他异常声响,可能是故障的征兆 。
2.1 变压器的空载运行

• 3、感应电动势的正方向与产生它的磁通的正 方向符合右手螺旋定则;
A ˙I1 ˙E1
˙U1 ˙E1σ
X
Ф˙ m
N1
N2
Ф˙ 1σ
Ф˙ 2σ
˙I2 a ˙E2 ˙U2 ˙E2σ
x
三、空载时的电磁关系
磁动势
˙U1
˙I0
Ф˙ m ˙F 0 =˙ I0N1 Ф˙ 1σ
I0 A
˙E1 ˙U1 ˙E1σ
X
Ф˙ m
N1
N2
˙
Ф1σ
˙
Ф2σ
I2 0 a
˙E2 ˙E2σ
˙U2
x
Z0
U1 I0
E1 I0
Z1
Zm
Z1
U1 E1 I0 Z1 I0 (Z m Z1 )
激磁阻抗 原绕组漏阻抗
U1 I0 (Zm Z1)
Z1 R1 jx1
I0
U1
E1
U1 E1 I0Z1
˙E1
˙E2 ˙E1σ
˙I0r1
1、电动势与磁通的关系
φ=Φmsinωt
e1
N1
d
dt
N1m
cost
2E1 sin(t 90)
e2
N2
d
dt
N2m
cost
2E2 sin(t 90)
e1
N1
d1
dt
N11m cost
E1
N1m
2
4.44
fN 1m
E2
N 2m
2
4.44
fN 2m
2E1 sin(t 90)
U1 E1
变压器的空载运行

导致绝缘损坏和设备故障。
未来发展趋势预测
第一季度
第二季度
第三季度
第四季度
高效节能技术
随着能源短缺和环保意 识的提高,高效节能技 术将成为变压器空载运 行领域的重要发展方向 。例如,采用非晶合金 铁芯、优化线圈设计等 ,以降低空载损耗。
智能化监控与管理
借助物联网、大数据等 先进技术,实现对变压 器空载运行的实时监控 与智能管理。通过数据 分析,及时发现潜在问 题并采取相应的优化措
变压器的空载运行
汇报人:XX
contents
目录
• 变压器基本原理与结构 • 空载运行特性分析 • 空载运行对变压器影响 • 空载运行优化措施探讨 • 实验研究及案例分析 • 总结与展望
01
变压器基本原理与结
变压器的工作原理基于电磁感应,当 原边绕组施加交流电压时,会在铁芯 中产生交变磁通,从而在副边绕组中 感应出电动势。
电压变换原理
电流变换原理
根据磁动势平衡原理,原、副边电流 与匝数成反比,从而实现电流的变换 。
通过改变原、副边绕组的匝数比,可 以实现电压的升高或降低。
变压器主要结构组成
01
02
03
04
铁芯
铁芯是变压器的磁路部分,一 般采用硅钢片叠装而成,以减
少涡流和磁滞损耗。
绕组
绕组是变压器的电路部分,由 原边绕组和副边绕组组成,一 般采用绝缘铜线或铝线绕制。
空载电压波形畸变现象
波形畸变原因
变压器空载运行时,由于铁芯的非线 性磁化特性,使得磁通与励磁电流之 间呈现非线性关系,从而导致空载电 压波形发生畸变。
波形畸变影响
空载电压波形畸变会使得电压波形中 的谐波成分增加,对电网和用电设备 产生不良影响,如增加电网的谐波污 染、降低用电设备的运行效率等。
变压器的空载运行

Xm
I1L I2
U 2 ZL
第三章 变压器
简化等效电路:
RS X S
I1 I2
U 1
U 2 Z L
其中
RS R1 R2 X S X1 X 2 ZS RS jX S
分别称为短路电阻、短路 电抗和短路阻抗。
由简化等效电路可知,短路阻抗起限制短路电流的作用, 由于短路阻抗值很小,所以变压器的短路电流值较大,一般 可达额定电流的10~20倍。
X
m
1
2
I2
a
E 2 E 2
U
2
ZL
x
第三章 变压器
用图示负载运行时的电磁过程
U 1 I1 U 2 I2
F1 N1I1 F2 N 2 I2
F0 N1I0
R1I1
1
E1
E1
0
E 2
2
E 2
R2 I2
第三章 变压器
3.3.2 基本方程
反映了供电电压的稳定性。
用相量图可以推导出电压变化率的表达式:
式中
β
I2
ΔU
β(R*s
cos 2
X
* s
sin2
)
称为负载系数
I2N
由表达式可知,电压变化率的大小与负载大小、性质及
变压器的本身参数有关。
第三章 变压器
当变压器带阻性负载(2 0 )和阻感性负载(2 0 )时,U为
E 1
I1R1
jI1X1
E 1
I1Z1
E1
U1 E1 4.44 fN1m U 2 E2 I2R2 jI2 X 2 E2 I2Z2 U 2 I2Z L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 变压器
三、相量图
作相量图的步骤——对 应T型等效电路, 假定 变压器带感性负载。
12 )U 1 11) jX 1I1
9) E1
2 )I2 1 )U 2 3 )I2R2
4 ) jX 2I2
10 ) I1 R1 8)I1 I0 (I2 )
7) I0
第三章 变压器
3.4.2 短路实验
1.目的:通过测量短路电流、短路电压及短路功率来计算变压器 的短路电压百分数、铜损和短路阻抗。
2. 接线图 *
*W A
~V
U02PS)~S通,1I.过S3f和I(调NUP范SS节,)围画 曲电内出 线压I变 ;,让S 化 短,f测路( U出电S 对)流和I应S 在的 3)同时记录实验室的室温;
一、磁动势平衡方程
F1 F2 F0
或
N1I1 N2I2 N1I0
用电流形式表示 I1
I0 (
N2 N1
) I2
I0 (
I2 k
)
I0
I1L
产 表生 明主: 变磁压通器;另的一负个载是电负流载包分括量两I个1L ,分它量起平: 一衡个二是次励磁磁动电势流的I0作,它用用。来
E 2 E 1
E 1 Zm I0 U 2 I2 ZL
第三章 变压器
二、等效电路 根据折算后的方程,可以作出变压器的等效电路。
T型等效电路:
近似等效电路
R1 X1
R2 X 2
R1 X1
R2 X 2
U 1
I1
I0
Rm
I2 U 2
I1
Z LU1
E 1
I1R1
jI1X1
E 1
I1Z1
E1
U1 E1 4.44 fN1m U 2 E2 I2R2 jI2 X 2 E2 I2Z2 U 2 I2Z L
第三章 变压器
3.3.3 等效电路及相量图
一、折算
折算:将变压器的二次(或一次)绕组用另一个绕组(N2=N1)来 等效,同时对该绕组的电磁量作相应的变换,以保持两侧的电磁 关系不变,用一个等效的电路代替实际的变压器。
Xm
I1L I2
U 2 ZL
第三章 变压器
简化等效电路:
RS X S
I1 I2
U 1
U 2 Z L
其中
RS R1 R2 X S X1 X 2 ZS RS jX S
分别称为短路电阻、短路 电抗和短路阻抗。
由简化等效电路可知,短路阻抗起限制短路电流的作用, 由于短路阻抗值很小,所以变压器的短路电流值较大,一般 可达额定电流的10~20倍。
3 )忽略 R1 和 X1 ,即 P0 pFe
第三章 变压器
4)求出参数
k U 20
U1N
I0 %
I0 I1 N
100%
Zm
U1N I0
Rm
P0 I02
Xm
Z
2 m
Rm2
5)空载电流和空载功率必须是额定电压时的值,并以此求 取励磁参数;
6)若要得到高压侧参数,须折算; 7)对三相变压器,各公式中的电压、电流和功率均为相值;
根据方程可作出简化相量图
2
思考 题
作出变压器带上不同性质 负载时的简化相量图?
第三章 变压器
3.4 变压器的参数测定
3.4.1 空载实验
一、目的:通过测量空载电流和一、二次电压及空载功率来计算 变比、空载电流百分数、铁损和励磁阻抗。
二、接线图 *
*W A
~V
三、要求及分析 1)低压侧加电压,高压侧开路; V 向2I0)电调 压节f (U,U测11在出)和0U~P2001,.2IU0f和(NU范P01 ,围)画曲内出线单方
电磁关系将一、二次电流联系起来,二次电流增加或减少必 然引起一次电流的增加或减少。
第三章 变压器
负载运行时,忽略空载电流有:
I1
I2 或 I1 k I2
1 k
N2 N1
表明,一、二次电流比近似与匝数成反比。
二、电动势平衡方程
根据基尔霍夫电压定律可写出一、二次侧电动势平衡方程
U 1
折算原则:1)保持二次侧磁动势不变;2)保持二次侧各功率 或损耗不变。
方法:(将二次侧折算到一次侧)
I 2
I2 k
E2 kE2 E1 U2 kU2
r2 k 2r2
x2 k 2 x2
Z
L
k2ZL
第三章 变压器
折算后的方程式为
U1 E 1 I1R1 jI1 X1 E1 I1Z1 U 2 E 2 I2 R2 jI2 X 2 E 2 I2 Z2 I1 I2 I0
U1 E1 4.44 fN1m
U 20 E2
U 2 E2 4.44 fN2m
第三章 变压器
3.3 单相变压器的负载运行
变压器一次侧接在额定频率、额定电压的交流电源上,二次接 上负载的运行状态,称为负载运行。
3.3.1 负载运行时的电磁关系
A I1
U 1
E 1
E 1σ
第三章 变压器
3.2 单相变压器的空载运行
3.2.1 电磁关系
一、物理情况
0
U1 I0
U 1
E 1
1
E 1σ
U2
U 1
I0
F0 I0 N1
(I2 )
u1
E 2 U 20
u2
E 1
Φ0
E 2
பைடு நூலகம்Φ1σ
E 1σ
I0 R1
第三章 变压器
2、空载时基本方程式:
U1 E1 R1 I0 E1 E1
X
m
1
2
I2
a
E 2 E 2
U
2
ZL
x
第三章 变压器
用图示负载运行时的电磁过程
U 1 I1 U 2 I2
F1 N1I1 F2 N 2 I2
F0 N1I0
R1I1
1
E1
E1
0
E 2
2
E 2
R2 I2
第三章 变压器
3.3.2 基本方程
6) m超前E1900 5)E2 E1
第三章 变压器
作相量图的步骤(假定带感性负载)——对应简化等效电路
由等效电路可知
U2 I2 Z2 I1 I2 U1 U2
I1RS
jX S I1
U 1
jI1 X S
I1 I2
I1 RS U 2