解析几何第四版吕林根课后习题答案第一章

合集下载

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何第一章习题及解答

解析几何第一章习题及解答

第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。

ABCabcABCDabca b +b c +3. 试证三角形的三中线可以构成一个三角形。

证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。

4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且 111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

1-5解析几何吕林根第四版

1-5解析几何吕林根第四版

因为M1为P2 P3的中点,故M1(
x2
+ 2
x3
,y2
+ 2
y3 ,z2
+ 2
z3
),又因为G为重心,
故有P1G 2= GM1,即重心G把中线分成定比λ 2,
P1
利用定比分点坐标公式可得
x x= 1 + x2 + x3 ,y y= 1 + y2 + y3 ,z
3
3
z1 + z2 + z3 . G 3
e1, e2 , e3 两两相互垂直的笛卡尔标架叫做笛卡尔直角标架;简称直角标架;
在一般情况下,叫做仿射标架.
P
e3 r
e1 O
e2
e3 e1 O e2
e3 e1 O e2
注: (1) 标架{O; e1, e2 , e3}中的向量 e1, e2, e3 是有顺序的,交换它们
的次序将会得到另一标架.
(2) 空间标架有无穷多个.
e3
e1 O
e2
e3
e2 O
e1
右手(旋)标架
左手(旋)标架
二、坐标
{ } 定义 1.5.2 (1)式中的 x, y, z 叫做向量 r 关于标架 O;e1, e2, e3 的
坐标或称为分量,记做 r{x, y, z} 或{x, y, z} .
{ } 定义 1.5.3 对于取定了标架 O;e1,e2,e3 的空间中任意点 P ,向量 OP { } 叫做点 P 的向径,或称点 P 的位置向量,向径 OP 关于标架 O;e1,e2,e3 的坐 { } 标 x, y, z 叫做点 P 关于标架 O;e1,e2,e3 的坐标,记做 P ( x, y, z) 或 ( x, y, z).

1-3解析几何吕林根第四版

1-3解析几何吕林根第四版

所以 2AM = (AB + AC) + (BM + CM),

BM + CM = BM − MB = 0
A
因而 2A= M AB + AC
即 = AM 1 (AB + AC)
2
BM C
例 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,
,
证明三中线矢量 AL, BM, CN 可以构成一个三角形.
例:用矢量法证明,平行四边行的对角线互相平分.
[证明]:如图,在平行四边形ABCD中,O是对角线AC,
BD的交点
A= D OD − OA
B= C OC − OB AD = BC ∴OD − OA = OC − OB OA + OC = OD + OB 由于 (OA + OC) / /AC, (OB + OD) / /BD,
而AC不行于BD, 所以 OA + OC=OB + OD=0
从而OA=OC,OB=OD。
数量乘向量(小结)
一、数乘的概念
二、数乘的运算规律
1⋅ a =a
λ(µ a) = (λµ )a
(λ + µ )a = λa + µ a λ(a + b) = λa + λb
证明:
= AL
1 (AB + AC) 2
= BM 1 (BA + BC) 2
A N
M
= CN 1 (CA + CB)
2
B
L
C
∴ AL + BM + CN= 1 (AB + AC + BA + BC + CA + CB=) 0 2

1-4解析几何吕林根第四版

1-4解析几何吕林根第四版
GF与 CG共线
证明: AG = λGD; BG = µGE;
CG = AG − AC = λ AD − AC
=
λ

1
(
1+ λ
AB + AC)

AC
1+λ 2
= λ AB − λ + 2 AC
2(1 + λ) 2(1 + λ)
CG = BG − BC = µ BE − BC 1+ µ
= µ • (AE − AB) − BC 1+ µ
八、共面向量的条件
定理1.4.7 三向量共面的充要条件是它们线性相关. 定理1.4.8 空间任何四个向量总是线性相关.
推论 空间四个以上向量总是线性相关.
例6
设 p = a − b + 5 − 1 b + b − 3a , q = 4a + 5b,
2
5
试证明 : p // q.
证明:
p
=
(1

5
组合,即
r = xe1 + ye2 + ze3 ,
C
并且其中系数 x, y, z 被
e1, e2, e3, r 惟一确定.
P
向量 e1, e2, e3 叫做空间向量的基底.
E3 e3 r
E1 e1 O e2 E2
B
A
例1 已知三角形OAB,其中= OA a= , OB b, 而M、N分别
是三角形OA,OB 两边上的点,且有OM= λ a (0 < λ < 1) ,
线性相关.
推论 一组向量如果含有零向量,那么这组向量必线性相关.
七、共线向量的条件

《解析几何》(第四版)吕林根许子道编第一章向量与坐标1.8两向量的向量积

《解析几何》(第四版)吕林根许子道编第一章向量与坐标1.8两向量的向量积

j
i
a
bYX(1XX1X12i(2(jiY1kiji))ZY1X1kY1)2Y(2j((iXk2ji)j) YY21XZj
(a
b)
c
a
c
b
c.
(1.8-5)


a,
b,
c中至少有一个是零矢
,
或a,
b,
c为一组
共线矢, (1.8 5)成立.
现假设不是上述情况.
设c 为c的单(a位矢b ),先c 证
a
c
b
c
.
证明向量积的分配律: (a+b)c=(a c)+(b c)
引理 a c a2
证明 两矢方向: 一致;引入
成立;

a
//
b ,则
a
b
a
b
b
sin (a, b )
a
ba
b a sin (a, b ),

a
b 与b
a模相等.
又由向量积定义,a
b 与b
a同时垂直于
a与b,
所其以次, a因 从 b与abba的共终线点. 来看
a,
b 决定的平面
,
顺序
b,
a,
b
a构成右手标架
o; b, a,b a
,
所以a
b与
b
a的方向相反 ,
从而得
a b b a.
定理1.8.4 向量积满足数因子的结 合律,即
为数,(a,ab)为 b任 意a向(量b.)
(a
b ).
(1.8-3)
推论 , 为任意实数,则
(a) (b ) ( )(a b ).

解析几何全册课件(吕林根版)精选全文完整版

解析几何全册课件(吕林根版)精选全文完整版
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

上一页
下一页
返回


为直线上的点,
6、线段的定比分点坐标
上一页
下一页
返回
由题意知:
上一页
下一页
返回
定理1.5.4 已知两个非零向量
7、其它相关定理

共线的充要条件是
定理1.5.6 已知三个非零向量
,则
共面的充要条件是
上一页
返回
空间一点在轴上的投影(Projection)
§1.6 向量在轴上的射影

根据题意有
所求方程为
上一页
下一页
返回
根据题意有
化简得所求方程

上一页
下一页
返回
例4 方程 的图形是怎样的?
根据题意有
图形上不封顶,下封底.

以上方法称为截痕法.
上一页
下一页
返回
以上几例表明研究空间曲面有两个基本问题:
线为
的连
的中点
对边
一组
设四面体

e
e
e
AP
e
AD
e
AC
e

3-1解析几何吕林根第四版

3-1解析几何吕林根第四版

R(0,0,c)(其中a 0,b 0,c 0),求此平面方程.
z
将 A D, B D, C D,
c
a
b
c
代入所设方程
Ax By Cz D 0,
o
xa
y
b

x y z 1 平面的截距式方程
a bc
x轴上截距 y轴上截距 z 轴上截距
5. 平面的截距式方程
若已知三点为平面与三坐标的交点 M1 a,0,0, M2 0,b,0,
化简得
n1
n2
2x 3 y z 6 0.
nr
例 求过点(1,0,-1), 且平行于向量 n1 {2,1,1} 和 n1 {1, 1, 0} 的平
面方程.
解 取所求平面法向量 n n1 n2 {1,1, 3},
所求平面方程为
1 ( x 1) 1 ( y 0) 3 ( z 1) 0, n1
为所求平面之法向.
故得平面方程为: r
( x x1, y y1, z z1) n 14( x 2) 9( y 1) (z 4)
14x 9 y z 15 0

r ( x x2, y y2, z z2) n
14( x 1) 9( y 3) (z 2)
14x 9 y-z 15 0
所以, 点B与C分居在平面的两侧.
的方位向量。
ur uur ur
uuuuur ur
在空间取仿射坐标系 O;e1, e2, e3 ,并设点 M0 的向 OM0 r0 ,平面
z
uuuur r
上任意一点 M 的向径为 OM r ,
b
r ur r r
M0
a
M
则平面 的向量式参数方程为 r r0 ua vb
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在矢量、OB、、OD、OE、OF、AB、BC、CD、DE、和中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的矢量对是:图1-1.和和和和和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=NM.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、; (2) 、; (3) 、;(4) AD、; (5) BE、.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量ba,应满足什么条件?(1=+(2+=+(3-=+(4+=C(5=[解]:(1),-=+;(2),+=+(3≥且,-=+ (4),+=(5),≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,可 以构成一个三角形.[证明]: )(21+=Θ )(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

7. 设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ OM += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ON OM OL OC OB OA ++=++∴8. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB +OC +=4.[证明]:因为OM =21(OA +OC ), =21(OB +OD ), 所以 2OM =21(OA +OB ++OD ) 所以OA +OB +OC +=4.9 在平行六面体ABCDEFGH (参看第一节第4题图)中,证明→→→→=++AG AH AF AC 2.证明 →→→→→→→→→→→→=+++=+++=++AG CG FG AF AC DH AD AF AC AH AF AC 2.图1-510. 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即)(21→→→+=BC AD MN ,故→MN 平行且等于)(21→→+BC AD .11. 用矢量法证明,平行四边行的对角线互相平分.[证明]:如图1-4,在平行四边形ABCD 中,O 是对角线AC ,BD的交点但 OBOD OC OAOBOC BC OA OD AD +=+-=-∴=-=-=Θ由于)(+∥,)(+∥,而AC 不平行于,∴0=+=+,从而OA=OC ,OB=OD 。

12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0ρ.[证明]:因为1OA +3OA =λ2OA , 2OA +4OA =λ3OA , ……1-n OA +1OA =λn OA ,n OA +2OA =λ1OA ,所以 2(1OA +2OA +…+n OA )=λ(1OA +2OA +…+n OA ),所以 (λ-2)(1OA +2OA +…+n OA )=0ρ. 显然 λ≠2, 即 λ-2≠0.所以 1OA +2OA +…+n OA =0ρ.13.在12题的条件下,设P 是任意点,证明:n PA PA PA n =+++K 21 证明:21=+++n OA OA OA ΛΘ()()()21=-++-+-∴PA PA n Λ即 n PA PA n =+++Λ21§1.4 矢量的线性关系与矢量的分解 1.在平行四边形ABCD 中,(1)设对角线,,==求.,,, 解:()()()()a b DA a b CD a b BC a b AB +-=-=+=--=21,21,21,21.设边BC 和CD 的(2)中点M 和N ,且==,求,。

解:()()32122,21-=⎪⎭⎫⎝⎛--==-=()+=⎪⎭⎫ ⎝⎛++-=-==21212222.在平行六面体ABCD-EFGH 中,设,,,321e e e ===三个面上对角线矢量设为,,,===试把矢量γμλ++=写成321,,e e e 的线性组合。

证明:2312,e e e e -==-==, 13e e -==,AF AH AC a γμλ++=()()()321e e e γμμλγλ++-++-=3. 设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA =λ (OB -),(1+λ)OP =+λ,从而 OP =λλ++1OB.4. 在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e +=-+=+=,同理123132e e +=(2)因为||||TC =||11e , 且 BT 与TC 方向相同,所以 BT ||21e . 由上题结论有||||1||212211e e e e e e +||||212112e e +5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量OC OB OA ,,,的分解式。

解:G Θ是ABC ∆的重心。

∴连接并延长与BC 交于P()()()AC AB AC AB AP AG AC AB AP +=+•==+=31213232,21Θ 同理()()+=+=31,31 C O()++=+=∴31(1) G P()++=+=31(2) A B()CB CA OC CG OC OG ++=+=31(3) (图1)由(1)(2)(3)得()()++++++++=31313 ++= 即()OC OB OA OG ++=316.用矢量法证明以下各题(1)三角形三中线共点证明:设BC ,CA ,AB 中,点分别为L ,M ,N 。

AL 与BM 交于1P ,AL 于CN 交于2P BM 于CN 交于3P ,取空间任一点O ,则 A()BC BA OB BM OB BP OB OP ++=+=+=313211 ()()OC OB OA OB OC OB OA OB ++=-+-+=3131 A同理()OP ++=312 N M()OP ++=313 B L C321,,P P P ∴三点重合 O ∴三角形三中线共点 (图2) (第3页)7.已知矢量,不共线,问-=2与23-=是否线性相关? 证明:设存在不全为0的μλ,,使得0=+μλ 即()()()()0232022=--+-⇒=--+-μλμλμλλ故由已知,不共线得{{0003202===-=--⇒μλμλμλ与假设矛盾, 故不存在不全为0的μλ,,使得0=+μλ成立。

所以,线性无关。

8. 证明三个矢量a ρ=-1e +32e +23e , b ρ=41e -62e +23e ,c ρ=-31e +122e +113e 共面,其中能否用b ρ,线性表示?如能表示,写出线性表示关系式.[证明]:由于矢量1e , 2e , 3e 不共面,即它们线性无关.考虑表达式 λ+μb ρ+v =0ρ,即λ (-1e +32e +23e )+μ (41e -62e +23e )+v (-31e +122e +113e )=0ρ,或 (-λ+4μ-3v ) 1e +(3λ-6μ+12v ) 2e +(2λ+2μ+11v ) 3e =0ρ.由于1e , 2e , 3e 线性无关,故有⎪⎩⎪⎨⎧=++==-+-.01122,01263,034v v v μλμλμλ+- 解得 λ=-10,μ=-1,v =2.由于 λ=-10≠0,所以a ρ能用b ρ,c ρ线性表示a ρ=-101b ρ+51c ρ.9.证明三个矢量λννμμλ---,,共面。

相关文档
最新文档