药理学中的受体
受体名词解释药理学

受体是指细胞中具有接受和转导信息功能的蛋白质,在细胞信号传导的过程接受信息的主要作用。
受体在细胞膜中称为膜受体,在胞质内和核内的受体分别称为胞质受体和和核受体。
而受体在不同的人体系统内担任不同的功能,如胰岛内的胰岛素受体、甲状腺受体、乙酰胆碱受体、中枢神经受体及一些对机体有害的肿瘤受体等。
当人体机体发生病变而导致受体被占领或障碍则影响到细胞信号传导甚至引起相应症状。
如乙酰胆碱受体受到免疫破化失去传导神经冲动的功能,导致肌肉不能收缩,产生肌无力,而出现眼睑下垂等症状。
受体在细胞信号传导上起到调节机体生命活动中生理功能的作用,如有不适,建议及时就诊。
药理学考试重点

药理学考试重点1、受体、激动药、拮抗药、治疗指数概念受体:是一类介导细胞信号转导的功能蛋白质,能识别周围环境中某种微量化学物质,首先与之结合,并通过中介的信号放大系统,触发后续的生理反应或药理效应。
激动药:为既有亲和力又有内在活性的药物,能和受体结合并激动受体而产生效应。
拮抗药:能与受体结合,具有较强亲和力而无内在活性的药物。
治疗指数(TI):半数致死量和半数有效量的比值称为治疗指数。
治疗指数大的药物相对较治疗指数小的药物安全。
2、影响药物作用的主要因素(1)药物方面的因素:a.药物剂型:相同药物不同剂型,药物吸收速度和吸收的量可能不同,导致药物起效时间和作用强度的差异。
b.联合用药及药物相互作用:联合用药可能在药动学和药效学方面发生相互作用致药物作用改变。
(2)机体方面因素:年龄、性别、遗传、病理和心理因素对药物作用均可能产生影响。
3、传出神经系统药物分类及代表性药物M、N受体激动药(氨甲酰胆碱)胆碱受体激动药M受体激动药(毛果芸香碱)拟胆碱药N受体激动药(烟碱)胆碱酯酶抑制药可逆性抑制剂(新斯的明)不可逆性抑制剂(有机磷酸酯类)拟似药α、β受体激动药(肾上腺素、麻黄碱)α1、α2受体激动药(去甲肾上腺素)α1受体激动药(去氧肾上腺素、甲氧明)α2受体激动药(可乐定)肾上腺素受体激动药β1、β2受体激动药(异丙肾上腺素)β1受体激动药(多巴酚丁胺)β2受体激动药(沙丁胺醇)M受体阻断药(阿托品)胆碱受体阻断药M1受体阻断药(哌仑西平)N受体阻断药N1阻断(美卡拉明)抗胆碱药N2阻断去极化(琥珀胆碱)胆碱酯酶复活药(碘解磷定)非去极化(筒箭毒碱)α1、α2受体阻断药(酚妥拉明)α1受体阻断药(哌唑嗪)阻断药肾上腺素受体阻断药β1、β2受体阻断药(无内在活性,普萘洛尔;有内在活性,吲哚洛尔)β1受体阻断药(无内在活性,阿替洛尔;有内在活性,醋丁洛尔)α、β受体阻断药(拉贝洛尔)去甲肾上腺素能神经阻滞药(利血平)4、临床常用镇静催眠药主要类别、代表性药物,各类药物的主要特点(1)苯二氮卓类:代表性药物有地西泮(安定)、三唑仑等,其特点是有较好的抗焦虑和镇静催眠作用,安全范围大。
护理药理学-配体受体 动画

配体 受体
受体配体关系,就好比“钥匙与锁” 的关系
配体相插 到锁里面
产生效应相当于锁被打开了
受体配体关系就好比钥匙与锁的关系配体配体相当于钥匙受体受体相当于锁配体与受体相结合当于钥匙插到锁里面产生效应相当于锁被打开了
受体 配体 细胞
受体:是位于细胞膜或 细胞内一些具有识别、 结合特异性配体并产生 特定效应的大分子物质。
配体:能与受体特异性结 合的物质均可称为配体。
当受体和配体相结合后, 会引发相应的效应。
《分子药理学》第一章受体

•
活化的βγ亚基复合物也可直接激活
胞内靶分子,具有传递信号的功能。如心
肌细胞中G蛋白偶联受体在乙酰胆碱刺激下,
活化的βγ亚基复合物能开启质膜上的K+通
道,改变心肌细胞的膜电位。
二、G 蛋白信号转导机制
• (一)G 蛋白通过 AC 的信号转导机制 • 1. 信号分子结合改变受体构象; • 2. 受体与 G 蛋白结合并使其激活; • 3. GTP 取代 GDP,G 游离; • 4. G 结合并激活 AC,产生 cAMP; • 5. GTP 水解, G 与 再结合。
分子药理学
molecular pharmacology
简介
• 分子药理学属于一门新兴学科,其与传统药理学 的最大区别就在于,它是从分子水平和基因表达 的角度去阐释药物作用及其机制。生命科学的发 展由宏观到微观,药理学的发展也由整体水平、 器官水平、组织水平深入到细胞水平和分子水平。 近代药理学的进展,主要表现在受体理论、离子 通道、自体活性物质、信息传递、细胞因子等分 子水平上的研究突破。分子药理学是指其学科层 次、水平上的科学性和先进性达到“分子水平 ”, 且又属于“药理学”范畴,分子生物学等相关学 科的基础知识贯穿其中。
受体与细胞间信号转导
【目的要求】
1.掌握受体的概念和分类。
2.熟悉各类受体的基本结构;酶促效应 产生第二信使。
3.了解受体的信号转导机制;受体的调 节。
信号分子介导的细胞反应过程: 信号分子合成 信号分子释放 输送到靶细胞
护理药理学-受体和配体

护理药理学
Pharmacology in Nursing
第一单元 总论
受体和配体
受体和配体
(一)受体与配体
分子生物学研究发现,许多药物是通过与受体结合而 呈现作用。
受体是位于细胞膜或细胞内一些具有识别、结合特异 性配体并产生特定效应的大分子物质。
能与受体特异性结合的物质称为配体,如神经递质、 激素、自体活性物质和化学结构与之相似的药物等。
受体和配体
受体 配体
细胞
受体:是位于细胞膜或 细胞内一些具有识别、 结合特异性配体并产生 特定效应的大分子物
当受体和配体相结合后, 会引发相应的效应。
受体和配体
配体 受体
受体配体关系,就好比“钥匙与锁” 的关系
配体相当于钥匙
受体相当于锁 配体与受体相结合当于钥匙插 到锁里面
产生效应相当于锁被打开了
受体和配体
(二)受体的特性
受体具有特异性、敏感性、饱和性、可逆性、可调节 性、多样性。
谢谢
受体——百度百科

受体——百度百科2014-5-1 摘编受体是一类存在于胞膜或胞内的,能与细胞外专一信号分子结合进而激活细胞内一系列生物化学反应,使细胞对外界刺激产生相应的效应的特殊蛋白质。
与受体结合的生物活性物质统称为配体(ligand)。
受体与配体结合即发生分子构象变化,从而引起细胞反应,如介导细胞间信号转导、细胞间黏合、胞吞等过程。
中文名受体外文名 receptor药理学概念糖蛋白或脂蛋白构成的生物大分子存在位置细胞膜、胞浆或细胞核内功能识别特异的信号物质等特征结合的特异性、高度的亲和力等目录1简介 2功能 3特征 4分类 5概括 6本质 7特性 8与生理学和医学的关系 9药理1简介受体(receptor)受体细胞受体在药理学上是指糖蛋白或脂蛋白构成的生物大分子,存在于细胞膜、胞浆或细胞核内。
不同的受体有特异的结构和构型。
受体在细胞生物学中是一个很泛的概念,意指任何能够同激素、神经递质、药物或细胞内的信号分子结合并能引起细胞功能变化的生物大分子。
受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,它能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。
在细胞通讯中,由信号传导细胞送出的信号分子必须被靶细胞接收才能触发靶细胞的应答,接收信息的分子称为受体,此时的信号分子被称为配体(ligand)。
在细胞通讯中受体通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。
2功能受体是细胞表面或亚细胞组分中的一种分子,可以识别并特异地与有生物活性的化学信号物质(配体)结合,从而激活或启动一系列生物化学反应,最后导致该信号物质特定的生物效应。
通常受体具有两个功能:1、识别特异的信号物质--配体,识别的表现在于两者结合。
配体,是指这样一些信号物质,除了与受体结合外本身并无其他功能,它不能参加代谢产生有用产物,也不直接诱导任何细胞活性,更无酶的特点,它唯一的功能就是通知细胞在环境中存在一种特殊信号或刺激因素。
《受体药理学》课件

CONTENTS
• 受体药理学概述 • 受体药理学发展历程 • 受体药理学在药物研发中的应
用 • 受体药理学在临床医学中的应
用 • 受体药理学研究方法与技术
01
受体药理学概述
受体定义
受体:是一种存在于细胞表面的或细胞内的特殊蛋白质,能够识别、结合某种特 定的生物活性物质,从而引发一系列生物化学反应,最终产生生物学效应。
学反应,最终产生生物学效应。
02
受体的作用机制包括:信号转导、基因表达和细胞凋
亡等。
03
受体的作用机制与疾病的发生和发展密切相关,因此
受体药理学在药物研发和疾病治疗中具有重要意义。
02
受体药理学发展历程
受体理论的提
受体理论的提出可以追溯到20世纪初 ,当时科学家们开始意识到细胞膜上 存在可以与化学物质结合的特殊部位 ,这些部位被称为“受体”。
03
药物相互作用与受 体
不同药物可能竞争或协同作用于 同一受体,影响治疗效果和安全 性。
受体药理学与个体化治疗
受体变异与疾病
某些疾病可能与受体基因变异有关,个体化治疗需 要考虑这些因素。
受体药理学指导的药物选择
根据患者的受体状态和功能,选择最合适的药物治 疗方案。
受体药理学在精准医学中的应用
结合基因组学、蛋白质组学等技术,实现疾病的精 准诊断和治疗。
05
受体药理学研究方法与技术
受体研究方法
放射配体结合法
利用放射性同位素标记的配体与 受体结合,通过测量放射性信号 的强度来测定受体数量和亲和力 。
荧光染料标记法
利用荧光染料标记的配体与受体 结合,通过荧光检测技术观察荧 光信号的变化,从而测定受体数 量和亲和力。
药理学受体记忆口诀

药理学受体记忆口诀
药理学是研究药物与生物体相互作用的科学领域,而受体则是药物在生物体内发挥作用的目标分子。
为了帮助药理学学习者记忆不同的受体类型和其特征,可以使用一些记忆口诀来帮助记忆。
1. G蛋白偶联受体(G protein-coupled receptors, GPCR):这是最常见的受体类型之一,在细胞膜上。
记忆口诀:Gieco宠物乘坐火车。
这个口诀可以帮助记忆G蛋白偶联受体(Gieco)位于细胞膜上(火车)。
2. 离子通道受体(Ion channel receptors):这种受体由蛋白质组成,形成离子通道,控制离子的进出。
记忆口诀:我会享受冰淇淋。
这个口诀可以帮助记忆离子通道受体(我会)控制离子的进出(享受冰淇淋)。
3. 酪氨酸激酶受体(Tyrosine kinase receptors):这种受体在细胞膜上,可以触发细胞内的信号传导通路。
记忆口诀:夜空中燃烧的星星。
这个口诀可以帮助记忆酪氨酸激酶受体(夜空中)可以触发信号传导通路(燃烧的星星)。
4. 核受体(Nuclear receptors):这种受体位于细胞核内,可以与DNA结合,调控基因的转录。
记忆口诀:学温柔的浪漫吉他。
这个口
诀可以帮助记忆核受体(学温柔的)位于细胞核内(浪漫吉他)。
通过这些简单的记忆口诀,药理学学习者可以更轻松地记忆不同类型的药理学受体及其特征。
这将有助于他们在学习和理解药物作用机制以及药物治疗方面取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药理学中一系列受体(肾上腺素受体α1、α2,β1、β2 、β3 ,胆碱受体M1、M2、M3……;N1(NN)、N2(NM)),被激动时,什么时候什么地方哪些收缩哪些舒张,一直没有没搞清楚,也一直没贯通的去总结过,困惑了我五年,问过同学问过度娘,没有一个满意的答案。
现在纵览各受体,突然发现了一点大体的规律,有少数特殊的不符合这个
典型药物:
M激动-毛果芸香碱
N激动-烟碱
M、N激动-卡巴胆碱
抗胆碱酯酶-溴新斯的明、有机磷酸酯类
M 拮抗-阿托品
N1 拮抗-美卡拉明
N2 拮抗-筒箭毒碱、琥珀胆碱
胆碱酯酶复活-氯解磷定
α、β 激动-肾上腺素
再反观药理学口诀中相应片段,已经比较好理解肾上腺素
α、β受体兴奋药,肾上腺素是代表;
血管收缩血压升,局麻用它延时间,
局部止血效明显,过敏休克当首选,
心脏兴奋气管扩,哮喘持续它能缓,
心跳骤停用“三联”,应用注意心血管,
α受体被阻断,升压作用能翻转。
去甲肾上腺素
去甲强烈缩血管,升压作用不翻转,
只能静滴要缓慢,引起肾衰很常见,
用药期间看尿量,休克早用间羟胺。
异丙肾上腺素
异丙扩张支气管,哮喘急发它能缓,
扩张血管治“感染”,血容补足效才显。
兴奋心脏复心跳,加速传导律不乱,
哮喘耐受防猝死,甲亢冠心切莫选。
α受体阻断药
α受体阻断药,酚妥拉明酚苄明,
扩张血管治栓塞,血压下降诊治瘤,
NA释放心力增,治疗休克及心衰。
β受体阻断药
β受体阻断药,普萘洛尔是代表,
临床治疗高血压,心律失常心绞痛。
三条禁忌记心间,哮喘、心衰、心动缓。
传出神经药在休克治疗中的应用
(一)药物的种类
抗休克药分二类,舒缩血管有区分;
正肾副肾间羟胺,收缩血管为一类;
莨菪碱类异丙肾,加上α受体阻断剂;
还有一类多巴胺,扩张血管促循环。
(二)常见休克的药物选用:
过敏休克选副肾,配合激素疗效增;
感染用药分阶段,扩容纠酸抗感染,
早期需要扩血管,山莨菪碱为首选;
后期治疗缩血管,间羟胺替代正肾。
心源休克须慎重,选用“二胺”方能行。
说明:“二胺”指多巴胺和间羟胺
如有侵权请联系告知删除,感谢你们的配合!。