九年级(上)数学期中考试卷(含答案)

合集下载

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。

四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)

四川省眉山市仁寿县2024届九年级上学期11月期中考试数学试卷(含答案)

A.∠D=∠B B.∠
10.学校图书馆去年年底有图书
平均增长率为x,则列出下列方程正确的是(
A.2:5B.2:3
12.如图,在菱形ABCD中,∠
一点(不与端点重合),连接线段
A.①②③B.①④
二、填空题(每小题4分,共
13.若3
x+是二次根式,则
17.若将一条线段AB 分割成长、短两条线段即PB AP AP AB =,则可得出这一比值等于段AB 的黄金分割点,黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.一芭蕾舞演员的身高为18.如图,过线段34A A 、……1-n n A A 31n B B -=.
三、计算题(19题、20题各8分,19.(1)计算:()012132222
--++--()
(1)求证:2
=
CD AD
AC=,AB=
(2)若4
24.电商平台某服装销售商家在销售中发现某品牌童装平均每天可售出
了迎接“双11”,电商决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4
(1)求证:PBE QAB ∽△△.
(2)你认为PBE △和BAE 相似吗?如果相似,给出证明,如果不相似,请说明理由.
(3)如图(3),沿AG 折叠,使点E 落在AD 上为点H ,连结HG 交的中线等于斜边的一半)

1
2
OQ AB OB
==,OB=
∴OQ OB BQ
==,
∴BOQ
△是等边三角形,。

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024--2025学年上期九年级期中考试数学试题考试范围:九年级上册考试时间:100分钟试卷满分:120分一、选择题(共10小题,每小题3分,共30分)1. 公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x 的方程中,是一元二次方程的为( )A. x2+1xB.x²-xy=0C.x²+2x=1D.ax²+bx=0(a、b为常数)2.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图()3. 已知线段a 、b 、c, 作线段x, 使b:a=x:c, 则正确的作法是( )A B C D4.将标有“最”“美”“河”“南”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出一个球,放回后再随机摸出一个球,则摸到的球上的汉字可以组成“河南”的概率是( )A. B. C. D5. 若把方程x²-4x-1=0 化为(x+m)²=n 的形式,则n的值是( )A.5B.2C.-2D.-56. 如图,已知矩形ABCD中,E 为BC 边上一点,DF⊥AE 于点F, 且AB=6,AD=12, AE=10, 则DF的长为( )A.5B.113 C.365D.8数学试卷第1页(共6页)7.如图是某地下停车场的平面示意图,停车场的长为40 m,宽 为22m. 停车场内车道的 宽都相等,若停车位的占地面积为520m ².求车道的宽度(单位:m). 设停车场内车道 的宽度为xm, 根据题意所列方程为( )A.(40-2x)(22-x)=520B.(40-x)(22-x)=520C.(40-x)(22-2x)=520D.(40x)(22+x)=520 8.下列给出的条件不能得出△ABD O △ACB 的是( )A.ADAB =BDBC B.∠ADB=∠ACB C.AB 2=AD.AC D.∠ADB=∠ABC9.如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比13, 点A 、B 、E 在x 轴上,若正方形BEFG 的边长为6,则点D 的坐标为( )A. (12,2) B. (13,1) C. (14,2)D.(1,2)图一 图二第9题 第10题10.如图(1).正方形ABCD 的对角线相交于点O. 点 P 为OC 的中点,点M 为边BC 上的一个动点,连接OM,过 点O 作OM 的亚线交CD 于点N, 点 M 从点B 出发匀速 运动到点C, 设BM=x.PN=y.y 随 x 变化的图象如图(2)所示,图中m 的值为( )A.22B.1C.2D.2数学试卷第2页(共6页)二、填空题(共5小题,每小题3分,共15分)11.已 知x=1 是关于x 的一元二次方程x+kx-6=0 的一个根,则k 的值为12.工人师傅做铝合金窗框分下面三个步骤进行:先截出两对符合规格的铝合金窗料(如 图①),使AB=CD 、EF=GH:然后摆放成如图②四边形;将直角尺紧靠窗框的一 个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是 形,根据的数学原理是:13.如图,四边形ABCD 是菱形,∠DAB=46°, 对角线AC,BD 于点O ,DH ⊥AB 于H, 连接OH, 则∠DHO= 度.14.如图,在平行四边形ABCD 中 ,E 是线段AB 上一点,连接AC,DE,A C 与 DE 相交于点F,若AE EB=23则S △ADFS△AEF=15.如图,在矩形纸片ABCD 中,AD=22,AB=2, 点P 是AB 的中点,点Q 是BC边上的一个动点,将△PBQ 沿PQ 所在直线翻折,得到△PE Q,连 接DE,CE, 则当 △DEC 是以DE 为腰的等腰三角形时,BQ 的长是 三、解答题(共8小题,共75分) 16. (8分)解方程:(1)x ²-6x+3=0; (2)3x ²-2x-1=0.数学试卷第3页(共6页)17. (8分)在一个不透明的袋子里装了只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n1002003005008001000摸到黑球的次数m65118189310482602摸到黑球的频m0.590.630.620.6030.602n a(1)当n 很大时,摸到黑球的频率将会趋近(精确到0.1);(2)某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.18. (9分)一张矩形纸ABCD, 将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E. 将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F, 折叠出四边形AECF.(1)求证;AF//CE;(2)当∠BAC= _度时,四边形AECF是菱形.数学试卷第4页(共6页)19 . (9分)已知关于x 的一元二次方程x²-ax+a-1=0.(1)求证:该方程总有两个实数根;(2)若方程的两个实数根x1、x₂满足| x1-x₂|=3, 求a 的值;20 . (8分)2024年巴黎奥运会顺利闭幕,吉祥物“弗里热”深受奥运迷的喜爱,一商场以20元的进价进一批“弗里热”纪念品,以30元每个的价格售出,每周可以卖出500 个,经过市场调查发现,价格每涨10元,就少卖100个.若商场计划一周的利润达到 8000元,并且更大优惠让利消费者,售价应定为多少钱?21. (11分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC 及线段A'B',∠A'(∠A'=∠A), 以线段A'B'为一边,在给出的图形上用尺规作出△AB'C, 使得△A'B'C'心△ABC, 不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线(不用尺规作图),并据此写出已知、求证和证明过程.数学试卷第5页(共6页)22. (10分)一数学兴趣小组为了测量校园内灯柱AB 的高度,设计了以下三个方案:方案一:在操场上点C 处放一面平面镜,从点C 处后退1m 到点D 处,恰好在平面镜中看到灯柱的顶部A 点的像;再将平面镜向后移动4m ( 即FC=4m)放 在F 处 . 从 点 F 处向后退1.8m 到 点H 处,恰好再次在平面镜中看到灯柱的顶部A 点的像,测得 的眼睛距地面的高度ED 、GH 为1.5m, 已 知 点B,C,D,F,H 在同一水平线上,且GH ⊥FH,ED ⊥CD,AB ⊥BH. (平面镜的大小忽略不计)方案二:利用标杆CD 测量灯柱的高度,已知标杆CD 高1.5m, 测 得DE=2m,CE= 2.5m.方案三:利用自制三角板的边CE 保持水平,并且边CE 与点M 在同一直线上,已知 两条边CE=0.4m,EF=0.2m,测得边CE 离地面距离DC=0.3m.三种方案中,方案 不可行,请根据可行的方案求出灯柱的高度.23 . (12分)在△ABC 中 ,AB=AC,∠BAC=α,点 D 为线段CA 延长线上一动点,连接 DB, 将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE, 连 接 BE,CE.(1)如图1,当α=60°时, ADCE 的值是 ;∠DCE 的度数为 ;(2)如图2,当α=90°时,请写出 ADCE的值和∠DCE 的度数,并就图2的情形说明 理由;(3)如图3,当α=120°时,若AB=8,BD=7,请直接写出点E 到 CD 的距离.数学试卷第6页(共6页)参考答案1--10DCBDCBACB11.5 12.矩形 有一个角是90度的平行四边形是矩形 13.23度 14.5/2 15.1或216.x1=3+ 6 x2=3-617. (1)0.25 (2)略18.(1)【证明】∵四边形ABCD为矩形,∴AD//BC,∴∠DAC=∠BCA.由翻折知,, ∠BCE =∴∠HAF=∠MCE,∴AF//CE.(2)【解】当∠BAC=30° 时,四边形 A E CF 为菱形.理由如下:∵四边形AB CD是矩形,∴∠D=∠BAD=90°,AB// CD,由(1)得AF//CE,∴四边形A ECF 是平行四边形.∵当四边形AECF 是菱形时,CF=AF,∴∠FCA=∠FAC.∵FC//AE, ∴∠FCA=∠CAB.又∵∠DAF=∠FAC,∴∠DAF=∠FAC=∠CAB.∵∠DAB=90°,∴∠BAC=30° .(2)30度19.(1)证明:∵△=(-a)²-4(a- 1)=a²-4a+4=(a-2)²≥0,∴该方程总有两个实数根;……………(2)解:由根与系数的关系得x₁+x₂=a,x₁x₂= a-1,∵Ix₁-x₂I=√(x₁-x₂)²=√a²-4(a-1)=√(a-2)²=3, ∴a-2=3 或a-2=-3,解得a=5 或a=-1.20.(1)设售价应定为x元,由题意可得:c²-100x+2400=0,解得:x₁=40,X₂=60,更大优惠让利消费者,∴x=40,答:售价应定为40元;(2)设这两周的平均增长率为y,由题意:解得:y₁=0.1=10%,y2=-2.1 (不合题意舍去),答:这两周的平均增长率为10%.21.(1)如图所示,△A'B'C '即为所求;(2)已知,如图,△A B C∽△A'B'C',D 是AB 的中点,D'是A'B'的中点,求证:证明:∵·D是A B的中点,D'是A'B'的中点,△ABC∽△A'B'C',△A'C'D'△ACD,22. 方案二、三不可行选方案一,∵∠ECD=∠ACB,∠EDC=∠ABC, ∴△ABC∽△EDC,设BC=xm,则AB=1.5xm,同理可得△ABF∽△GHF,·AB=1.5cm,BF=BC+CF=(4+x)m,GH=1.5m ,FH=1.5m,解得:x=8,∴AB=1.5x=12(m).23.∴△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC,同理可得:△BDE 是等边三角形,∴∠BDE=60°,BD=BE, ∴∠BDE=∠ABC,∴∠BDA=∠EBC,∴△ABD≌△CBE(SAS), ∴AD=CE,∠BCE=∠BAD=180°—∠BAC=120°,∠DCE=∠BCE一∠ACB=60°,故答案为:1,60;(2))∵AB=AC,∠BAC=90°, ∴∠ACB=∠ABC=45°,同理可得:∠BDE=40°,∴∠BDA=∠EBC, ∴△ABD∽△CBE,∠BCE=∠BAD=180°-∠BAC=90°, ∴∠DCE=∠BCE-∠ACB=45°;(3)如图1,图1作BF⊥CD于F,作EG⊥CD于G,作DHLCE, 交CE 的延长线于H,在Rt△AEF 中,AB=8,∠EAF=180°—∠BAC=60°, ∴AF=8·cos 60°=4,BF=8 sin 60°=4√3,在Rt△BDF 中,BD=7,BF=4√3,∵DF=√7²-(4√3)²=1,∴AD=AF 一DF=3, ∴CD=AD+AC=11,同理(2)可得:∠BCE=∠BAD=60°, ∴CE=√3AD=3√3,∠DCE=∠BCE—∠ACB=30°,在Rt△CDH 中,CD=11,∠DCE=30°,如图2,图2由上知:DF=1, AF=4,∴CD=13,AD=5,CE=√3AD=5√3,综上所述:点E 到CD 的距离为:。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

重庆市南开中学校2024-2025学年九年级上学期期中数学试题(解析版)

重庆市南开中学校2024-2025学年九年级上学期期中数学试题(解析版)

重庆南开中学2024-2025学年度上学期期中考试初2025届数学试题(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.17−的相反数是( ).A.17− B.17C. −7D. 7【答案】B【解析】【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数, 0的相反数是0.【详解】解:17−的相反数是17,故选:B.2. 下列化学仪器示意图中,是轴对称图形的是()A. 蒸馏烧瓶B. 烧杯C. 圆底烧瓶D. 分液漏斗【答案】C【解析】【分析】本题考查了轴对称图形的定义,熟练掌握轴对称图形的定义是解答本题的关键.根据轴对称图形的定义逐项分析即可.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选C .3. 二次函数()20y ax bx c a ++≠的图象如图所示,则下列选项正确的是( )A. 0a >B. 0b >C. 240b ac −<D. 0c >【答案】A【解析】 【分析】本题考查根据二次函数图象判断各项系数和式子的符号,熟练掌握二次函数图象与系数的关系是解题的关键.根据抛物线的开口方向和对称轴的位置确定a 、b 的符号,由抛物线与x 轴的交点个数确定∆的符号,由抛物线与y 轴的交点位置确定c 的符号,即可得出答案.【详解】解:A 、∵抛物线的开口向上,∴0a >,故此选项符合题意;B 、∵抛物线的对称轴在y 轴右侧,∴02b a−>, ∵0a >,∴0b <,故此选项不符合题意;C 、∵抛物线与x 轴的两个交点,∴240b ac ∆=−>,故此选项不符合题意;D 、∵抛物线与y 轴的交点在负半轴上,∴0c <,故此选项不符合题意;故选:A .4. 将ABC 沿BC 方向平移至DEF ,点A ,B ,C 的对应点分别是D ,E ,F ,使得:5:3BC EC =,则ABC 与GEC 的周长之比为( )A. 2:3B. 2:5C. 5:3D. 3:5【答案】C【解析】 【分析】本题考查平移的性质,相似三角形的判定与性质,熟练掌握平移的性质、相似三角形的判定与性质是解题的关键.根据平移的性质得到AB GE ∥,从而可得到ABC GEC △∽△,利用相似三角形周长于相似比可得答案. 【详解】解:∵ABC 沿BC 方向平移至DEF ,∴AB DE ∥,即AB GE ∥,∴A EGC ∠=∠,B GEC ∠=∠,∴ABC GEC △∽△,∴ABC 与GEC 的周长之比:5:3BCEC =, 故选:C .5. 中国选手郑钦文顺利入围2024年WTA 年终总决赛女子单打项目,该项目第一阶段采用组内循环赛制,即每两名选手之间比赛一场.现计划安排28场组内循环赛,共有几名选手参加组内循环赛?设一共有x 名选手参加组内循环赛,根据题意可列方程为( )A. ()128x x −=B. ()128x x +=C. ()11282x x +=D. ()11282x x −= 【答案】D【解析】【分析】此题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.设一共有x 名选手参加组内循环赛,则每个队参加()1x −场比赛,则共有()112x x −场比赛,可以列出一个一元二次方程. 【详解】解:由题意可列方程为:()11282x x −=, 故选:D .6. 估计+)A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间【答案】D【解析】【分析】本题考查二次根式的混合运算,无理数的估算,解题的关键是熟练掌握二次根式的运算法则.先利用二次根式的运算法则将原式化简,再对无理数进行估算.【详解】解:++,3<<∵67∴9310+<故选:D.7. 南南用相同的小圆圈按照一定的规律摆成了“中”字,第①个图形中有10个小圆圈,第②个图形中有16个小圆圈,第③个图形中有22个小圆圈,…,按照此规律排列下去,则第⑧个图形中小圆圈的个数是()A. 42B. 52C. 46D. 58【答案】B【解析】【分析】考查了图形的变化类问题,解题的关键是仔细观察图形并找到进一步解题的规律,难度不大.仔细观察图形变化,找到图形变化规律,利用规律求解.×+=个小圆圈,【详解】第①个图形中一共有16410×+=个小圆圈,第②个图形中一共有26416×+=个小圆圈,第③个图形中一共有36422…,∴第n 个图形中一共有()64n +个小圆圈,∴第⑧个图形中小圆圈的个数是86452×+=,故选:B .8. 如图,AB 是O 的直径,AE 、CE 、CB 为O 的弦,132AO =,12AE =,则sin BCE ∠=( )A. 512B. 1312C. 513D. 125【答案】C【解析】【分析】本题考查了圆周角定理,求一个角的正弦值,勾股定理;根据AB 是O 的直径,得出90AEB ∠=°,再运用勾股定理算出5BE ,再结合 EBEB =,则BCE BAE ∠=∠,所以5sin sin 13BE BCE BAE AB ∠=∠==,即可作答. 【详解】解:连接BE ,如图:∵AB 是O 的直径,∴90AEB ∠=°, ∵132AO =, ∴13AB =,在Rt ABE △中,5BE ,∵ EBEB =,∴BCE BAE ∠=∠, ∴5sin sin 13BE BCE BAE AB ∠=∠==, 故选:C . 9. 如图,在正方形ABCD 中,O 是对角线BD 的中点,E 为正方形内的一点,连接BE ,CE ,使得CB CE =,延长BE 与ECD ∠的角平分线交于点F .若BEC α∠=,连接OF ,则FOD ∠的度数为( )A. 290α−°B. 1452α°+C. 1902α°−D. 245α−°【答案】A【解析】 【分析】连接DF ,先证明∴()SAS CEF CDF ≌,得到CEF CDF ∠=∠,从而得180CDF CEF α∠=∠=°−,继而90BFD ∠=°,然后利用直角 三角形的性质,得出OF OB =,从而有45OFB OBF α∠=∠=−°,然后由三角形外角的性质可求解.【详解】解:连接DF ,如图,∵正方形ABCD∴BC CD =,45CBD CDB ∠=∠=°,∵CB CE =∴CE CD =,CBE BEC α∠=∠=, ∴45DBE α∠=−°,∵CF 是ECD ∠角平分线∴ECF DCF ∠=∠ ∵CF CF =,ECF DCF ∠=∠,CE CD =, ∴()SAS CEF CDF ≌∴CEF CDF ∠=∠,∴180CDF CEF α∠=∠=°−∴18045135BDFCDF CDB αα∠=∠−∠=°−−°=°− ∴1354590BDF DBE αα∠+∠=°−+−°=° ∴90BFD ∠=°∵O 是对角线BD 的中点,∴OF OB =∴45OFB OBF α∠=∠=−° ∴4545290FOD OFB OBF ααα∠=∠+∠=−°+−°=−° 故选:A .【点睛】本题考查正方形的性质,直角三角形的性质,等腰三角形的性质,三角形外角的性质,全等三角形的判定与性质,证明90BFD ∠=°是解题的关键.10. 给定三个互不相等的代数式,先将任意两个代数式作差(相同的两个代数式只作一次差),再将这些差“绝佳操作”.例如:对于m ,n ,p 作“绝佳操作”,得到m n m p n p −+−+−.下列说法:①对2,4−,5作“绝佳操作”结果是18;②对m ,n ,p 作“绝佳操作”的结果一共有8种;③对22a ,66a −,42a 作“绝佳操作”的结果为28,则a的值为1−或1−;其中正确的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查新定义和绝对值化简,解一元二次方程,理解万岁新定义是解题的关键,注意分类讨论. 利用绝对值的性质进行逐个计算判断即可. 【详解】解:①()242545−−+−+−−的的18=,故①正确;②当m n p >>时,则22m n m p n p m n m p n p m p −+−+−=−+−+−=−,当m p n >>时,则22m n m p n p m n m p n p m n −+−+−=−+−−+=−,当n m p >>时,则22m n m p n p m n m p n p n p −+−+−=−++−+−=−, 当n p m >>时,则22m n m p n p m n m p n p n m −+−+−=−+−++−=− 当p m n >>时,则22m n m p n p m n m p n p p n −+−+−=−−+−+=−当p n m >>时,则22m n m p n p m n m p n p p m −+−+−=−+−+−+=− ∴对m ,n ,p 作“绝佳操作”的结果一共有6种,故②错误;③当226642a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=,化简得:2260a a −−=,解得:1a =+1a =−; 当224266a a a >−>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:2340a a −−=,解得:4a =(舍去)或1a =−;当266242a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:6828a −=,解得:6a =(舍去); 当266422a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:23100a a −+=,∵()234110310∆=−−××=−<∴无解;当242266a a a −>>−时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:8a −=,解得:8a =−(舍去), 当242662a a a −>−>时,则()()()22266242664228a a a a a a −−+−−+−−−=, 化简得:4828a −+=,解得:5a =−(舍去),综上,a 的值为11−,故③错误;∴只有①正确,共1个,二、填空题:(本题共8个小题,每小题4分,共32分)请将每个小题的答案直接填在答题..卡.中对应的横线上. 11. 计算:()01tan3012−°−−=________. 【答案】12##0.5 【解析】【分析】本题主要考查实数混合运算,零指数幂,负整理指数幂,特殊角的三角函数,解题的关键是掌握分负整数指数幂、零指数幂的规定,熟记特殊锐角的三角函数值.【详解】解:()01tan3012−°−−112 =−−112=− 12=. 故答案为:12. 12. 正八边形每个外角的度数为_____.【答案】45°##45度【解析】【分析】本题主要考查了正多边形外角和定理,根据任何一个多边形的外角和都是360°求解即可.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数是:360845°÷=°.故答案为:45°.13. 为了全面推进素质教育,助力学生健康成长,公能学校开设了多门选修课程.其中南南和开开想从刺绣、糖画、国家疆土、巧匠工坊中选修一门课程,两名同学恰好选修同一门课程的概率为________. 【答案】14【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:用A 、 B 、C 、D 分别表示刺绣、糖画、国家疆土、巧匠工坊,画树状图如图,共有16种等可能的结果,其中他们两人恰好选修同一门课程的结果数为4, 所以他们两人恰好选修同一门课程的概率为:41164=. 14. 如图,点A 在反比例函数()0k yk x=≠图象上,过点A 作AB x ⊥轴于点B ,连接OA ,若ABO 的面积为2,则k =________.【答案】4【解析】【分析】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k .本知识点是中考的重要考点,同学们应高度关注.根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是122k =,再根据反比例函数的图象位于第二象限即可求出k 的值. 【详解】解:根据题意可知:221AOB S k == , 又反比例函数的图象位于第一象限,0k >,则4k =.故答案为:4.15. 若二次函数232y x x =−+过点(),3m ,则代数式2262023m m −+=________. 【答案】2025【解析】【分析】本题考查的是抛物线的性质.掌握“点在抛物线上,则点的坐标满足函数解析式”是解本题的关键.由于抛物线经过点(),3m ,则231m m −=,把2262023m m −+整理后整体代入即可. 【详解】∵二次函数232y x x =−+过点(),3m , ∴2323m m −+=, ∴231m m −=,∴()222620232320232120232025m m m m −+=−+=×+=. 故答案为:2025.16. 关于x 的一元一次不等式组()341221x x x x m − ≤−+≥−+至少有2个整数解,且关于y 的分式方程13222m y y−=−−−的解为非负整数,则符合条件的整数m 的值之和为________. 【答案】2 【解析】【分析】本题考查了分式方程的解,以及解一元一次不等式组,掌握相应的计算方法是关键. 先解不等式组,确定m 的取值范围25<≤m ,再把分式方程去分母转化为整式方程,解得22m y −=,由分式方程有非负整数解,确定出的值,即可解答.【详解】解:()341221x x x x m − ≤−+≥−+①② 解①得:2x ≤, 解②得:23m x −≥, ∴223m x −≤≤, ∵不等式组至少有2个整数解, ∴213m −≤, 解得:5m ≤;13222m y y−=−−−, 去分母得:1243m y −=−+, 解得:2my =, ∵分式方程的解为非负整数,且2y ≠ ∴0m ≥且4m ≠的偶数, 又∵5m ≤ ∴2m =,0∴符合条件的整数m 的值之和为202+=. 故答案:2.17. 如图,在矩形ABCD 中,4=AD ,点E 为AB 中点,将矩形沿着EF 所在的直线翻折至矩形ABCD 所在的平面,点B ,C 的对应点分别是B ′,C ′,B E ′与CD 交于点G ,使得CF GF =,连接AB ′,B F ′,AF ,若25B G GF ′=,则GF =________;AB F S ′= ________.【答案】 ①. 5 ②. 985【解析】【分析】过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形,根据矩形的性质,结合折叠的性质可得4GH B C ′′==,GF GE =,令5GF CF a ==,则2B G C H a ′′==,5CF C F a ′==,可知3HF C F C H a ′′=−=,根据勾股定理即可求解,则2B G ′=,7BE B E ′==,令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,再证明B OG B AE ′′△∽△,DOA MOB ′△∽△,结合相似三角形的性质求得2855B M AD ′==,由1122AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅△△△,即可求解. 【详解】解:在矩形ABCD 中,4AD BC ==,AB CD =,90B C D ∠==∠=°,AB CD ∥,则BEF DFE ∠=∠,由折叠可知,BE B E ′=,CF C F ′=,4BC B C ′′==,90C C ′∠=∠=°,90EB C B ′∠=∠=°,BEF B EF ′∠=∠,则B EF DFE ′∠=∠, ∴GF GE =,为过点G 作GH C F ′⊥,则四边形B C HG ′′是矩形, ∴4GHB C ′′==,B G C H ′′=, ∵25B G GF ′=,CF GF =,令5GFCF a ==,则2B G C H a ′′==,5CF C F a ′==, ∴3HF C F C H a ′′=−=,由勾股定理可得:222GH GF HF =−,即:()()222453a a =−,解得:1a =,∴5GF =,则2B G ′=,7BEB E ′==, 令AB ′与CD 交于点O ,过点B ′作B M CD ′⊥,则90D B MO ′∠=∠=°,∵点E 是AB 的中点,∴7AE BE ==,即14ABCD ==, ∵AB CD ∥,∴B OG B AE ′′△∽△,B G B O GF OA ′′==∴OG B GAE B E ′=′,即277OG =, ∴2OG =,∴7OF OG GF =+=,则2OD CD OF CF =−−=, ∵DOA MOB ′∠=∠ ∴DOA MOB ′△∽△,∴25B M B O AD OA ′′==,则2855B M AD ′==, ∴1118987422255AB F AOF B OF S S S OF AD OF B M ′′′=+=⋅+⋅=××+=, 故答案为:5,985. 【点睛】本题考查矩形与折叠问题,勾股定理,相似三角形的判定及性质,平行线分线段成比例等知识点,熟练掌握相关图形的性质是解决问题的关键.18. 一个四位数M 各数位上的数字均不为0,若将M 的千位数字和个位数字对调,百位数字和十位数字对调,得到新的四位数N ,则称N 为M 的“翻折数”,规定()11M NF M +=.例如:1235的“翻折数”为5321,()12355321123559611F +==,则()2678F =________;若()5001200101M x y =+++(M ,y 为整数,59x ≤≤,18y ≤≤),M 的“翻折数”N 能被17整除,则()F M 的最大值为________. 【答案】 ①. 1040 ②. 757 【解析】【分析】根本题主要考查了有理数的混合运算,二元一次方程的解,列代数式,本题是阅读型题目,准确理解题干中的定义和公式并熟练应用是解题的关键.据()11M NF M +=代入求解()2678F 即可;首先表示出s 和t 的“翻折数”,然后求出3153x y ++的取值范围,进而分类讨论求得x ,y 的值,然后代入()11M NF M +=求解即可. 【详解】根据题意可得,()267887622678104011F +==;∵()5001200101M x y =+++(M ,y 为整数59x ≤≤,18y ≤≤), ∴M 的千位数字为6,百位数字为210x −,十位数字为1y +,个位数字为1, ∴M 的“翻折数”N 为()()10001001102106y x +++−+201001006x y =++()175593153x y x y =+++++,∵59x ≤≤,18y ≤≤, ∴333153150x y ≤++≤, ∵M 的“翻折数”N 能被17整除, ∴3153x y ++能被17整除, ∵x ,y 都是整数, ∴3153x y ++是整数,∴431533x y +=+,51,68,85,102,119,136,∴当431533x y +=+时,x ,y 无整数解, 当131535x y +=+时,13x y = = (舍去)或62x y = =,当831536x y +=+时,x ,y 无整数解, 当531538x y +=+时,x ,y 无整数解, 当2315310x y +=+时,36x y == (舍去)或85x y = = ,当9315311x y +=+时,x ,y 无整数解, 当6315313x y +=+时,x ,y 无整数解,∴当62x y = =时,()5001200610216231M =+×+×+=,1326N =,()6231132668711F M +==, 当85x y = =时,()5001200810516661M =+×+×+=,1666N =,()6661166675711F M +==, ∴()F M 的最大值为757, 故答案为:1040,757.三、解答题:(本大题共8个小题,第19题8分,其余每题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()22()m m n m n +−+(2)2214123a a a a −+÷ +【答案】(1)2n −; (2)321a a +−. 【解析】【分析】本题考查了整式的运算和分式的混合运算.解题的关键是掌握整式和分式混合运算顺序和运算法则.(1)利用完全平方公式和单项式乘多项式展开,再合并即可;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果即可. 【小问1详解】解:()22()m m n m n +−+2222(2)m mn m mn n =+−++22222m mn m mn n =+−−− 2n =−;【小问2详解】解:2214123a a a a −+÷ + 2221413a a a a a+−÷+ ()()()321·2121a a a a a a ++=+− 321a a +=−. 20. 为了全面了解学生对校史的掌握情况,公能学校开展了校史知识竞赛.现从七、八年级的学生中各随机抽取20名学生的比赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分为四组:A .90100x <≤;B .8090x <≤;C .7080x <≤;D .6070x <≤;),下面给出了部分信息: 七年级20名学生的竞赛成绩为:68,76,78,79,84,85,86,86,86,86, 88,89,89,91,91,94,94,95,95,100.八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. 七、八年级所抽学生的校史知识竞赛成绩统计表年级 七年级 八年级 平均数8787中位数 87 b众数 a92根据以上信息,解答下列问题:(1)填空:a =________;b =________;m =________;(2)根据以上数据分析,你认为在此次知识竞赛中,该校七、八年级中哪个年级学生对校史的掌握情况更好?请说明理由(写出一条理由即可);(3)公能学校七年级有500名学生、八年级有600名学生参加此次校史知识竞赛,请估计七、八年级参加此次知识竞赛的成绩优秀(90)x >的学生共有多少人? 【答案】(1)86;87;40(2)八年级学生安全知识竞赛成绩较好,理由见解析 (3)415 【解析】【分析】(1)根据众数和中位数定义求a 、b 值,先求出B 组人数占的百分比为35%,即可由%110%15%35%m =−−−求出m 值;(2)根据两个年级成绩的平均数相同,但八年级的中位数高于七年级,可得出结论; (3)用各年级的总人数乘以年级的优秀率,再相加,列式计算即可求解. 【小问1详解】解:在七年级20名学生的竞赛成绩中86出现的次数最多,故众数86a =; ∵八年级20名学生的竞赛成绩在B 组的数据为:80,83,86,87,87,89,89. ∴B 组人数占的百分比为:7100%35%20×=, ∵C 组人数占的百分比为15%,D 组人数占的百分比为10%, ∴A 组人数占的百分比为%110%15%35%40%m =−−−=,即40m =. ∴八年级20名学生竞赛成绩的中位数在B 组,的∴把八年级20名学生的竞赛成绩从小到大排列,排在中间的两个数分别是87,89,故中位数8789872b +=, 故答案:86;87;40. 【小问2详解】解:八年级学生安全知识竞赛成绩较好,理由如下:因为两个年级成绩的平均数相同,但八年级的中位数高于七年级,所以得到八年级学生安全知识竞赛成绩较好(答案不唯一); 【小问3详解】 解:750060040%20×+× 175240+415=(人), 答:估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数大约是415人.【点睛】本题考查众数,中位数,统计表,扇形统计图,用样本估计总体,掌握相关统计量的意义以及计算方法是解答本题的关键.21. 在学习了平行四边形与正方形的相关知识后,智慧小组进行了更深入的探究.他们发现,如图所示的正方形ABCD ,分别取BC ,CD 的中点M ,N ,连接AM ,DN 交于点E ,过B 作AM 的垂线,交AM 于点Q ,交AD 于点P .则四边形BPDN 是平行四边形.(1)用尺规完成以下基本作图:过B 作AM 的垂线,交AM 于点Q ,交AD 于点P (只保留作图痕迹).(2)根据(1)中所作图形,智慧小组发现四边形BPDN 是平行四边形成立,并给出了证明,请补全证明过程.证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥.又∵M ,N 分别为BC ,CD 的中点,∴12DM CD =,12CN BC =,∴ ① ,在ADM 与DCN 中,为AD CD ADM C DM CN =∠=∠ =∴()ADM DCN SAS ≌.∴ ② .又∵90CDN ADN ∠+∠=°,∴90DAM ADN ∠+∠=°,∴90AED ∠=°,又∵BP AE ⊥,∴90AQP AED ∠=∠=°,∴ ③ .又∵DP BN ∥ ∴四边形BPDN 是平行四边形.进一步思考,智慧小组发现任取BC ,CD 的上点N ,M (M 不与C ,D 重合),DM CN =,连接AM ,DN ,过B 作AM 的垂线,交AD 于点P ,则四边形BPDN 是 ④ .【答案】(1)见解析 (2)DM CN =;DAM CDN ∠=∠;∥BP DN ;进一步思考:四边形BPDN 是平行四边形 【解析】【分析】(1)利用尺规基本作图——经过直线外一点作已知直线的第一线作法作出图形即可;(2)先证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠.从而证得90AQP AED ∠=∠=°,即可得到∥BP DN .又由正方形的性质得DP BN ∥,即可得出结论;进一步思考:证明()SAS ADM DCN ≌,得到DAM CDN ∠=∠,再证明∥BP DN ,又由正方形的性质得DP BN ∥,即可得出结论. 【小问1详解】解:如图所示,BP 就是所求作的经过点B 垂直于AM 于Q ,交AD 于P 的直线,【小问2详解】证明:∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 又∵M ,N 分别为BC ,CD 的中点, ∴12DM CD =,12CN BC =, ∴DM CN =,在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 进一步思考:如图,∵四边形ABCD 是正方形,∴AD CD BC ==,90ADC C ∠=∠=°,AD BC ∥. 在ADM 与DCN 中,AD CD ADM C DM CN =∠=∠ =∴()SAS ADM DCN ≌. ∴DAM CDN ∠=∠. 又∵90CDN ADN ∠+∠=°, ∴90DAM ADN ∠+∠=°, ∴90AED ∠=°, 又∵BP AE ⊥,∴90AQP AED ∠=∠=°, ∴∥BP DN . 又∵DP BN ∥∴四边形BPDN 是平行四边形. 故答案为:平行四边形.【点睛】本题考查正方形的性质,全等三角形的判定与性质,尺规基本作图—作垂线,平行四边形的判定.熟练掌握正方形的性质,和平行四边形的判定是解题的关键.22. 重庆金沙天街某家蛋糕店推出了“流沙羊角”和“开心果羊角”两款特色蛋糕.(1)购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,求“流沙羊角”和“开心果羊角”的单价分別为多少元?(2)国庆节当天,蛋糕店进行促销活动,将“流沙羊角”的单价降低了2m 元,“开心果半角”单价降低了m 元,节日当天“流沙羊角”的销量是“开心果羊角”销量的1.2倍,且“流沙羊角”的销售额为960元,“开心果羊角”的销售额为750元,求m 的值.【答案】(1)“流沙羊角”的单价为20元,“开心果羊角”的单价为17元 (2)2 【解析】【分析】本题考查二元一次方程组的应用,分式方程的应用,正确列出方程组或方程是解题的关键. (1)设“流沙羊角”的单价为x “开心果羊角”的单价为y 元,根据购买1个“流沙羊角”和1个“开心果羊角”需要37元,购买1个“流沙羊角”和2个“开心果羊角”需要54元,列出方程组,求解即可. (2)根据销量等于销售额除以销售单价,以“流沙羊角”的销量是“开心果羊角”销量的1.2倍,列出分式方程求解即可. 【小问1详解】解:设“流沙羊角”的单价为x 元,“开心果羊角”的单价为y 元,根据题意,得37254x y x y +=+= , 解得:2017x y = =, 答:“流沙羊角”的单价为20元,“开心果羊角”的单价为17元. 【小问2详解】 解:根据题意,得960750 1.220217m m=×−−, 解得:2m =,经检验,2m =是方程的解且符合题意, ∴m 的值为2.23. 如图1,在菱形ABCD 中,5AB =,8BD =,动点P 从点A 出发,沿着A B C −−的路线运动,到达C 点停止,过点P 作PQ BD ∥交菱形的另一边于点Q .设动点P 行驶的路程为x ,点P 、Q 的距离为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数y 的图象,并写出函数y 的一条性质;(3)函数11y x b 2=+与函数y 只有一个交点,求b 的取值范围. 【答案】(1)()()80558165105x x y x x ≤≤ =−+<≤ ; (2)作图见解析,当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小; (3)50b −≤<或112b =. 【解析】【分析】(1)分点P 在AAAA 上和点P 在BC 上两种情况讨论,利用相似三角形的判定及性质构造等量关系,即可得到答案;(2)根据(1)所得函数关系式,利用描点法画图,再写出该函数的性质即可;(3)结合函数图象,将()5,8、()0,0和()10,0代入11y x b 2=+,分别求出b 的值,即可得出b 的取值范围.【小问1详解】解:如图,点P 在AAAA 上时,05x ≤≤,∵PQ BD ∥, ∴APQ ABD ∽,∴AP PQ AB BD =即58x y=, ∴85y x =, ∵5AB =,如图,点P 在BC 上时,∵四边形ABCD 是菱形, ∴5BC AB ==, ∴10PC x =−,当点P 在BC 上时,510x <≤, ∵PQ BD ∥, ∴CPQ CBD ∽,∴CP PQ CB BD =即1058x y −=, ∴8165y x =−+,综上可知,y 关于x 的函数表达式为()()80558165105x x y x x ≤≤ =−+<≤ 【小问2详解】解:由(1)所得关系式可知,x0 5 8 10 y83.2函数图象如下:性质:当05x ≤≤时,y 随x 的增大而增大;当510x <≤时,y 随x 的增大而减小;(答案不唯一) 【小问3详解】解:如图,由图象可知,函数11y x b 2=+的图象在3l 和2l 之间时,与函数y 只有一个交点, 将()5,8代入11y x b 2=+,得:1852b =×+,解得:112b =, 将()0,0代入11y x b 2=+,得:0b =, 将()10,0代入11y x b 2=+,得:5b =−, ∴b 的取值范围为50b −≤<或112b =.【点睛】本题考查了菱形的性质,相似三角形的判定及性质,求一次函数解析式,描点法画函数图象,一次函数图象和性质,两直线交点问题等知识,利用数形结合和分类讨论的思想解决问题是关键.24. 如图,M 为沙坪坝区物流中心,N ,P ,Q 为三个菜鸟驿站,N 在M 的正南方向4.3km 处,Q 在M 的正东方向,P 在Q 的南偏西37°方向2.5km 处,N 在P 南偏西64°方向.(sin370.60°≈,cos370.80°≈,tan370.75°≈,sin640.90°≈,cos640.44°≈,tan64 2.05°≈)(1)求驿站P ,驿站N 之间的距离(结果精确到0.1km ); (2)“双11”期间,派送员从沙坪坝区物流中心M 出发,以30km/h 的速度沿着M N P Q ———的路线派送快递到各个驿站,派送员途径N ,P 两个驿站各停留6min 存放快递,请计算说明派送员能否在40min 内到达驿站Q ?【答案】(1)5.2km (2)能,理由见解析 【解析】【分析】本题考查解直角三角形的应用,将实际问题转化成解直角三角形的问题,利用解直角三角形的 知识求解是解题的关键.(1)过点P 作PA MN ⊥于A ,PB MQ ⊥于B ,先解Rt PBQ △,求得2km PB =,再证明2km AM PB ==,从而得出 2.3km AN =,然后解Rt PAN △,即可求解. (2)求出派送员所需总时间,再与40min 比较即可得出答案. 【小问1详解】解:过点P 作PA MN ⊥于A ,PBMQ ⊥于B ,如图,根据题意,得37BPQ PQD ∠=∠=°,64PNA NPC ∠=∠=°, 4.3km MN =, 2.5km PQ =, 在Rt PBQ △中,∵cos PB BPQ PQ∠=, ∴()cos 2.5cos37 2.50.802km PBPQ BPQ =⋅∠=×°≈×=, ∵PA MN ⊥,PBMQ ⊥,90NMQ ∠=°,∴四边形AMBP 是矩形, ∴2km AM PB ==,∴()4.32 2.3km AN MN AM =−=−=,在Rt PAN △中,∵cos PNA ∠∴()2.3 2.3 5.2km cos cos 640.44ANPNPNA ==≈≈∠°,答:驿站P ,驿站N 之间的距离约为5.2km . 【小问2详解】解:∵30km/h 0.5km/min =,∴()()4.3 5.2 2.50.56236min ++÷+×=, ∵36min<40min ,∴派送员能在40min 内到达驿站Q .25. 如图1,在平面直角坐标系中,直线112y x =−+与抛物线()230y ax x a =−+≠交于A ,B 两点,且点A 在x 轴上,直线与y 轴交于点C .(1)求抛物线的表达式;(2)P 是直线AB 上方抛物线上一点,过P 作PQ y ∥轴交直线AB 于点Q ,求PQ AQ 的最大值,并求此时点P 的坐标;(3)在(2)PQ AQ 的最大值的条件下,连接BP ,将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上,M 是新抛物线上一动点,当MAB BPQ ∠=∠时,直接写出所有符合条件的点M 的坐标.【答案】(1)2134y x x =−−+(2)PQ AQ +的最大值为4,()2,4P −(3)点M 的坐标为()2,2或 【解析】【分析】(1)先由一次函数解析式求出点()2,0A ,再把()2,0A 代入23y ax x =−+,求出a 值即可;(2)延长PQ 交y 轴于D ,证明OAC DAQ ∽,得AC OC AQ DQ =1DQ =,求得DQ AQ =,再设21,34P x x x −−+ ,则1,12Q x x−+ ,则211242PQ x x =−−+,112QD x =−+,所以()21244PQ AQ PQ QD PD x +=+==−++,利用二次函数最值即可求解. (3)根据平移的性质求得抛物线平移后的解析式为2114y x x =−++,再分两种情况:当点M 在直线AB 上方时,当点M 在直线AB 下方时,分别求解即可. 【小问1详解】解:对于直线112y x =−+, 令0y =,则1102x −+=,解得:2x =, ∴()2,0A ,把()2,0A 代入23y ax x =−+,得0423a −+, 解得:14a =−, ∴抛物线的表达式2134y x x =−−+. 【小问2详解】解:延长PQ 交y 轴于D ,对于直线112y x =−+, 令0x =,则1y =, ∴CC (0,1), ∵()2,0A∴AC ==∵PQ y ∥轴,即QD OC ∥, ∴OAC DAQ ∽∴AC OC AQ DQ =1DQ=,∴DQ AQ =, 设21,34P x x x −−+ ,则1,12Q x x −+,∴2211113124242PQ x x x x x=−−+−−+=−−+,112QD x =−+∴()221132444PQ AQ PQ QD PD x x x =+==−−+=−++ ∵104−< ∴当2x =−时,PQ AQ +的最大值为4; ∴()2,4P −. 【小问3详解】解:联立,2134112y x x y x =−−+=−+, 解得:1143x y =− = ,2220x y = = ,∴()4,3B −,由(2)知,在PQ AQ +的最大值的条件下,抛物线的顶点为点()2,4P −,对称为直线PQ , 当2x =−时,则()12122y =−×−+=, ∴()2,2Q −, 则2PQ =,PB QB∴BPQ BQP ∠=∠, ∵将抛物线沿射线BA 方向平移,使得点A 在新抛物线的对称轴上, ∴点Q 平移后与点A 重合, ∵()2,2Q −,()2,0A ,∴抛物线沿射线BA 方向平移,是向下平移了2个单位,向右平移了4个单位,∴抛物线顶点()2,4P −平移后到点()2,2P ′,点()4,3B −平移后到点()0,1B ′,即B ′与C 重合,∴BPQ B P A ′′ ≌,抛物线平移后的解析式为()221122144y x x x =−−+=−++,∴BPQ B P A ′′∠=∠, ∵()0,1B ′,()2,2P ′,∴P B =′=′∵()0,1B ′,()2,0A ,∴AB ′=,∴P B AB ′′′=, ∴B AP B P A ′′′′∠=∠, 当点M 在直线AB 上方时,∵MAB BPQ ∠=∠, ∴MAB B P A ′′∠=∠, ∴点M 与点P ′重合, ∴()2,2M ,当点M 在直线AB 下方时,设21,14M x x x−++, 过点M 作ME PQ ∥,交AB 于E ,交x 轴于N ,则MEA BQP ∠=∠,1,12E x x−+, 则AOC ANE △∽△,∴AC OCAE EN=,则E AE EN AC =⋅=, ∵MAB BPQ ∠=∠, ∴BPQ MAE △∽△,∴BQ PQ ME AE=,则BQ ME PQ AE =,=,整理得:32E M y y =−, 即:231111224x x x −+=−−++,解得:x =(x =,此时,M y =∴M , 综上,符合条件的点M 的坐标为()2,2或. 【点睛】本题属二次函数综合题目,主要去向不明了待定系数法求抛物线解析式,抛物线的性质,抛物线的平移,相似三角形的判定与性质,综合性较强,熟练掌握相关性质是解题的关键.26. 在ABC 中,AC BC =,D 为线段AB 上一点,连接CD .(1)如图1,若30B ∠=°,AC AD =,过A 作AE CD ⊥于O ,交BC 于E ,2CE =,求线段BE 的长;(2)如图2,过点B 作BF CD ⊥交CD 延长线于点F ,以BC 为斜边在ABC 的右侧作等腰直角三角形BCG ,过点G 作GH AB ∥,交DC 的延长线于点H ,HC FB =.猜想线段AD ,BD ,CD 的数量关系,并证明你的猜想;(3)如图3,60ACB ∠=°,过A 作AQ BC ⊥于Q ,作ACB ∠的角平分线交AQ 于M ,取CM 的中点N ,连接QN .点K 为直线BC 上的动点,连接NK ,将QKN 沿着NK 所在直线翻折至ABC 所在平面得到Q KN ′ ,连接MQ ′,取MQ ′中点P ,连接CP .将12CD 绕着点D 顺时针旋转至直线AB 上方DR 处,使得BDR ACD ∠=∠.当CP 取得最小值时,连接AP ,PR ,AR ,当ARP △以AP 为腰的等腰三角形时,请直接写出DR AP的值. 【答案】(1)(2)AD BD =+(3 【解析】【分析】(1)利用等腰三角形的性质得120ACB ∠=°,75ACD ∠=°,得45DCE ∠=°,根据线段垂直平分线性质,得2CE DE ==,得90CED ∠=°,即得BE = (2)过点C 作CI AB ⊥于I ,得AI BI =,根据等腰直角BCG 中,90BG CG BGC =∠=°,,BF CD ⊥,得点G 、C 、F 、B 在以BC 为直径的圆上,得GCH GBF ∠=∠,结合HC FB =,得()SAS GCH GBF ≌,得GF GH BGF CGH =∠=∠,, 得90FGH ∠=°,证明45IDC H ∠=∠=°,得DI =,根据BI BD DI =+,AD AI DI =+,即得AD BD =+;(3)证明当'Q 与C 重合时,点P 与点N 重合,PC 取得最小值,当AP AR =时,设CD 中点为T ,连接RT BR CR ,,,由对称性知,点R 在ABC ∠的平分线上,得CR AR =,由BDR ACD ∠=∠,得60CDR CAD ∠=∠=°,根据RT DT CT ==,得DTR 是等边三角形,得30RCT ∠=°,90CRD ∠=°,得tan DR DCR CR ∠=;②延长CM 交AB 于L ,过B 作BS AC ∥,交DR 延长线于S ,连接CS ,则AL BL =,60CBS ACB ∠=∠=°,得60CBS CDS ∠=∠=°,得B 在过C 、D 、S 三点的圆上,得60CSD CBD ∠=∠=°,得 CDS 是等边三角形,当D 与点B 重合时,T 与Q 重合,点R 在BS 上,根据150NQB NQR ∠=∠=°,BQ RQ NQ NQ ==,,得()SAS BQN RQN ≌,得BN RN =,得AN RN =,设ABC 的边长为2,则1AL =,CL =,根据23CM CL =,N 是CM 中点,得NL =,得AN =DR AP =【小问1详解】解:AC BC = ,30B ∠=°。

山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)

山西省大同市平城区三校联考2024届九年级上学期期中考试数学试卷(含答案)

山西省大同市平城区2023-2024(1)初三阶段性测试(数学)试题一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.如图图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程x 2-8x =10化为一元次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A .-8、-10B .-8、10C .8、-10D .8、103.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A .2B .3C .4D .54.已知关于x 的一元二次方程(a -5)x 2-4x -1=0有实数根,则a 的取值范围是()A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠55.将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+36、4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()图(1)图(2)A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张7、如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5°,OC =4,CD 的长为()A.B.4C.D.88.如图,AB,CD是⊙O的两条直径,E是劣弧 BC的中点,连接BC,DE.若∠ABC=22°,则∠CDE 的度数为()A.22°B.32°C.34°D.44°9、如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57010.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1,给出下列结论:①ac<0;②b2-4ac>0;③2a-b=0;④a-b+c=0,其中,正确的结论有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题3分,共15分)11、若x=2是方程x2-mx+2=0的根,则m=.12、某村种的水稻前年平均每公顷产7200kg,今年平均每公顷产8450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.'''的位置,旋转角为α(0°<α<90°).若13、如图,将矩形ABCD绕点A顺时针旋转到矩形AB C D∠1=110°,则α=.14、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x +m解集为.15、如图,点P是等边三角形ABC内一点,且PA6,PB2,PC=2,则这个等边三角形ABC 的边长为.三、解答题(本题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16、(每小题4分,共8分)解下列方程:(1)x2-2x-1=0(2)(x-2)2=2x-417、(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-1,0),B(-4,1),C(-2,2).(1)直接写出点B关于点C对称的点B'的坐标:;A B C;(2)请画出△ABC关于点O成中心对称的△111A B C.(3)画出△ABC绕原点O逆时针旋转90°后得到的△22218、(6分)如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-0.5x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=5米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.=,∠OPB=45°.19、(8分)如图,已知⊙O中,弦AB=8,点P是弦AB上一点,OP32(1)求OB的长;(2)过点P作弦CD与弦AB垂直,求证:AB=CD.20、(10分)如图,AB 为⊙O 的切线,B 为切点,过点B 作BC ⊥OA ,垂足为点E .交于点C ,延长CO 与AB 的延长线交于点D .(1)求证:AC 为⊙O 的切线;(2)若OC =2,OD =5,求线段AD 和AC 的长.21、(10)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当月利润为8750元时,每千克水果售价为多少元?(2)当每千克水果售价为多少元时,获得的月利润最大?22.(12分)在数学兴趣小组活动中,小明进行数学探究活动,如图①所示,已知直角三角形ABC 中,BC =AC ,点E ,D 为AC 、BC 边的中点.操作探究将△ECD 以点C 为旋转中心逆时针旋转,得到△E CD '',连接,AE BD ''.图①图②图③图④(1)如图②,判断线段AE '与BD '的数量关系与位置关系,并说明理由;(2)如图③,当B ,D ',E '三点在同一直线上时,∠E 'AC =20°,求旋转角的度数;(3)如图④,当旋转到某一时刻,CD BD ''⊥,延长BD '与AE '交于点F ,请判断四边形D CE F ''的形状,并说明理由;23、(13分)如图,在平面直角坐标系xOy 中,抛物线y =-x 2+bx +c 与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.2023-2024学年第一学期九年级数学期中考试答案一、选择题12345678910D A B C D AC C A C 二、填空题11.312.7200(1+x )2=845013.20°14.x <11或x >3三、解答题16.(8分)(1)x 2-2x -1=0x 2-2x -1+2=2x 2-2x +1=2(x -1)2=2x -1∴x -1或x -11211x x ==+(2)(x -2)2=2x -4(x -2)2-2x +4=0X 2-4x +4-2x +4=0X 2-6x +8=0(x -2)(x -4)=01224x x ==17.(8分)(1)(4,-1)(2)如图所示,△111A B C 为所求作的图形;(3)如图所示,△222A B C 为所求作的图形.18.(6分)(1)y =-0.5x 2+3x +1a =-12b =3c =1h =331222b a -=-=⎛⎫⨯- ⎪⎝⎭221413429112 5.5142242ac b k a ⎛⎫⨯-⨯- ⎪----⎝⎭=====--⎛⎫⨯- ⎪⎝⎭∴顶点(3,5.5)答:演员弹跳离地面的最大高度为5.5米.(2)当x =4,代入21312y x x =-++2143412y =-⨯+⨯+1161212=-⨯++=-8+12+1=5∵5=5∴这次表演成功了.19.(8分)(1)过O 作OH ⊥AB 90OHB OHA ∠∠∴==142AH BH AB ===45OPB ∠=∴△OHP 为等腰直角三角形设OH =PH =x在Rt △PHO 中OH 2+PH 2=OP 2222x x +=2x 2=18x 2=93x =±1233x x ==-(舍)∴OH =PH =3在Rt △DHB 中OB =5∴OB =5(2)过O 作OE ⊥CD ∴90OEP ∠= 190,2OEP BPC OHP CE DE CD ∠∠∠===== ∴四边形OEPH 为矩形又∵OH =PH∴四边形OEPH 为正方形∴OE =OH =3连接OC∴OC =OB =5在Rt △CEO 中CE ==4∴CD =2CE =8∴AB =CD =820.(10分)(1)连接OB∵OB ,OC 为⊙O 半径∴OB =OC∵CB ⊥OA∴∠OED =∠BEO =90°在Rt △CED 和Rt △BED 中CO BOOE OE=⎧⎨=⎩∴Rt △CED ≌Rt △BED (HL )COE BOE ∠∠∴=在△AOC 和△AOB 中OC OBCOE BOE AO AO∠∠=⎧⎪=⎨⎪=⎩∴△AOC ≌△AOB (SAS )90ACO ABO ∠∠∴== AC OC∴⊥∵OC 为⊙O 半径∴AC 为⊙O 的切线.(2)∵△AOC ≌△AOB∴AB =AC OB =OC =2∵AB 为⊙O 的切线90OBD ∠∴=在Rt △BOD 中BD ===设AB =AC =x ,则AD x+∵AC 为⊙O 的切线90ACD ∠∴=CD =OC +OD =2+5=7在Rt △ACD 中AC 2+CD 2=AD 22227)x x +=+224921x x +=++28=14=x =142121=2213=∴AC =AB 2213=∴AD =AB +BD 22152133==21.(10分)(1)解:设水果涨价了x 元,则少售出10x 千克(500-10x )(50+x -40)=8750(500-10x )(10+x )=87505000+500x -100x -10x 2=8750-10x 2+400x =3750-x 2+40x -375=0x 2-40x +275=0(x -25)(x -15)=0122515x x ==当x =25时,50+x =75当x =15时,50+x =65答:当月利润为8750元时,水果售价为75元或65元.(2)设月利润为WW =(500-10x )(50+x -40)=(500-10x )(10+x )=5000+500x -100x -10x 2=-10x 2+400x +5000a =-10b =400c =50004002022(10)b h a =-=-=⨯-∵a =-10开口向下∴当x =20时,月利润最大售价=50+20=70(元)答:当售价为70元时,获得的月利润最大.22.(12分)(1)AE BD AE BD ''=⊥''∵AB =AC ,E 、D 为AC 、BC 中点E C CD '∴='又∵△ABC 为Rt △∠C =90°90E CD ACB ∠∠'∴=='即1290ACD ACD ∠∠∠∠''+=+=12∠∠∴=在△ACE '与△BCD '中12AC BC E C D C ∠∠⎪'=⎧⎪=⎨'=⎩∴△ACE '≌△BCD '(SAS )AE BD EAC DBC∠∠'∴''∴==∵AC =BC ,∠ACB =90°∴∠CAB =∠CBA =45°反向延长BD ',交AE '于F45CBD ABF ∠∠'+= 45EAC ABF ∠∴∠+= ∴180()AFB EAC ABF CAB ∠∠∠∠'=-+- =180455049=--∴BF ⊥AF(2)由(1)知BD AE '⊥',设BD '交AC 于F 90AE B ∠∴='20E AC ∠'=180902070AFE ∠'∴=--=70CFD ACE ∠∠∴'=='CD CE ''= 90E CD ∠=''45CD E ∠'∴'=180704655ACD ∠'∴=--=90=906525D CB ACD ∠∠''∴=--= ∴旋转角为25°.(3)BD CD ''⊥ 90BD C ∠'∴'= 又90D CE ∠'='90BD C D CE ∠∠∴''=='' //CE BD ''∴由(1)知BD AE '⊥'90BFE ∠'∴=∵//CE BD ''180AE C BFE ∠∠''∴+= 90AE C BFE ∠∠'∴=='又90D CE ∠''=90AE C BFE D CE ∠∠∠''''∴=== 即四边形D CE F ''为矩形又CE CD ''= ∴四边形D CE F ''为正方形.23.(13分)(1)y =-x 2+bx +ca =-1设()()12y a x x x x =--设120,4x x ==代入y =-x (x -4)=-x 2+4x4222(1)24b h a =-=-=-=⨯--∴抛物线表达式:y =-x 2+4x 抛物线对称轴为直线x =2(2)将x =3代入y =-x 2+4x 2343y =-+⨯=-9+12=3∴A 的坐标为(3,3)设OA 的解析式为y =kx将点A (3,3)代入3=3kk =1∴OA 的解析式为y =x设P 的坐标为(x ,-x 2+4x )则Q 的坐标(x ,x )p y QP> P PQ y QP ∴=-=-x 2+4x -x 23PQ y x x=-+a =-1b =33322(1)2h b a =-=-=⨯-2243944(1)4ac b k a --===⨯-∴PQ 长度的最大值为94.(3)存在,N 的坐标为(2,,(2,0),.。

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

广东省韶关市翁源县2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试九年级数学注意事项:1.全卷共6页,满分为120分,考试用时为120分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B 铅笔把对应的号码的标号涂黑.3.在答题卡上完成作答,答案写在试卷上无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.关于的一元二次方程的二次项系数、一次项系数、常数项分别是( )A .1,2,5B .C .D .3.已知和关于原点对称,则的值为( )A .B .1C .D .54.二次函数的图象顶点坐标是( )A .B .C .D .5.将抛物线先向下平移1个单位长度,再向右平移3个单位长度,所得到的抛物线为( )A .B .C .D .6.如图,已知点,将线段绕点按顺时针方向旋转,旋转后点的对应点坐标为( )A .B .C .D .7.如图,已知一菜园为长10米,宽7米的矩形,为了方便浇水和施肥,修建了同样宽的四条互相垂直的“井”x 2250x x -+-=1,2,5--1,2,5-1,2,5-(),2A a ()3,B b a b +5-1-23(1)2y x =-+-()1,2-()1,2-()1,2()1,2--22y x =+2(3)1y x =++2(3)3y x =-+2(3)3y x =++2(3)1y x =-+()1,2P PO O 90︒P ()1,2-()2,1-()2,1-()2,1字形道路,余下的部分种青菜,已知种植青菜的面积为54平方米,设小路的宽为米,则根据题意列出的方程是( )A .B .C .D .8.关于的一元二次方程的一个根是1,则的值为( )A .1或B .C .1D .9.设是抛物线上的三点,则的大小关系为( )A .B .C .D .10.如图,在正方形中,点的坐标分别是,点在抛物线的图象上,则的值是( )A .B.C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.若方程是关于的一元二次方程,则的取值范围是_______.12.若二次函数与轴只有1个交点,则_______.13.数学课堂上,为探究旋转的性质,同学们进行了如下操作:如图所示,将一个三角形硬纸板,放置在一张白纸上,描出硬纸板的形状,并用图钉固定点,将三角形硬纸板绕点顺时针旋转一定角度后,再描出形状得到,经测量,则_______.x ()()1027254x x --=()()10754x x --=()()107254x x --=()()1027254x x +-=x ()22120a x x a -++-=a 2-2-1-()()()1233,,2,,2,A y B y C y --22y x x c =--+123,,y y y 321y y y >>123y y y >>132y y y >>213y y y >>ABCD A C 、()()1,17,3-、D 21y x bx =+-b 32-3212-12()2230a x x -+-=x a 22y x x m =-+x m =ABC △A A ADE △50,15BAC CAD ∠=︒∠=︒CAE ∠=14.设是方程的两个实数根,则的值为_______.15.如图,在中,,将绕点逆时针旋转得到,当点的对应点恰好落在边上时,则的长为_______三、解答题(一):本大题共3小题,每小题7分,共21分.16.(7分)解方程:17.(7分)如图,在平面直角坐标系中,点的坐标分别为.(1)画出关于点的中心对称图形;(2)将绕点顺时针方向旋转后得,画出.18.(7分)如图,是二次函数的图象.12,x x 23210x x --=1212x x x x --ABC △3,1AB AC ==ABC △C 90︒CDE △A D AB AE ()330x x x --+=A B C 、、()()()1,1,2,3,4,2ABC △O 111A B C △111A B C △O 90︒222A B C △222A B C △2y ax bx c =++(1)求二次函数解析式;(2)根据图象直接写出关于的不等式的解集.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)如图,四边形为矩形,,将对角线绕点逆时针旋转得,作交于点.(1)证明:;(2)连接,求的长.20.(9分)乐昌马蹄是广东韶关的特产,韶关乐昌有着“马蹄之乡”的美称.乐昌马蹄以个头大、清甜多汁、爽脆无渣为特点而闻名全国,畅销国内外.某农产品商以每斤5元的价格收购乐昌马蹄,若按每斤10元出售,平均每天可售出100斤.市场调查反映:如果每斤降价1元,每天销售量相应增加50斤.(1)若该农产品商想要日销售利润达到600元,测每斤马蹄应降低多少元?(2)日销售利润能否达到700元?如果能,请计算出每斤马蹄降价多少元;如果不能,请说明理由.21.(9分)为解方程,我们可以将视为一个整体,然后设,则原方程化为,解此方程得.当时,.当时,原方程的解为.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)请用上述方法解方程:.x 20ax bx c ++>ABCD 3,4AB BC ==AC A 90︒AF FE AD ⊥AD E ABC AEF △≌△DF DF ()()22237360x x ---+=23x -23x t -=2760t t -+=121,6t t ==1t =231,2x x -=∴=±6t =236, 3.x x -=∴=±∴12342,2,3,3x x x x ==-==-42540x x -+=(2)已知实数满足,求的值.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.(13分)如图,直线与抛物线相交于和.(1)求抛物线的解析式;(2)点是线段上的动点,过点作轴,交抛物线于点.是否存在这样的点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)轴上是否存在点,使得为等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.23.(14分)【阅读理解】半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过旋转或截长补短,将角的倍分关系转化为角的相等关系,并进一步构成全等三角形,用以解决线段关系、角度、面积等问题,【初步探究】如图1,在正方形中,点分别在边上,连接.若,将绕点顺时针旋转,点与点重合,得到.易证:.(1)根据以上信息,填空:(1)_______°;(2)线段之间满足的数量关系为_______;【迁移探究】(2)如图2,在正方形中,若点在射线上,点在射线上,,猜想线段之间的数量关系,请证明你的结论;【拓展探索】(3)如图3,已知正方形的边长为,连接分别交于点,若点恰好为线段的三等分点,且,求线段的长.,x y ()()2222222222150x y x y +-+-=22x y +2y x =-()220y ax bx a =++≠()1,1A -(),2B m C AB C CD x ⊥D C CD x M ABM △M ABCD ,E F ,BC CD ,,AE AF EF 45EAF ∠=︒ADF △A 90︒D B ABG △AEF AEG △≌△EAG ∠=BE EF DF 、、ABCD E CB F DC 45EAF ∠=︒BE EF DF 、、ABCD 45EAF ∠=︒BD AE AF 、M N 、M BD BM DM <MN2024-2025学年度第一学期期中考试九年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1-5CBADD 6-10CABDB二、填空题:本大题共5小题,每小题3分,共15分.11. 12.1 13. 14. 15三、解答题(一):本大题共3小题,每小题7分,共21分.解答要求写出文字说明、证明过程或演算步骤.16.解:.解得:.(方法不唯一,酌情给分)17.解:(1)如图所示:即为所求.(2)如图所示:即为所求.18.解:(1)设二次函数解析式为:2a ≠35︒1-()()330x x x -+-=()()130x x +-=121,3x x =-=111A B C △111A B C △()()()240y a x x a =+-≠把点代入得:解得:(2).四、解答题(二):本大题共3小题,每小题9分,共27分.解答要求写出文字说明、证明过程或演算步骤.19.(1)证明:四边形为矩形绕点逆时针旋转得,,,在和中.(2)解:四边形为矩形,,,在中,根据勾股定理得:20.解:(1)设每斤马蹄降价元根据题意得解得答:若该农商想要日销售利润达到600元,则每斤马蹄应降低1元或2元.(2)日销售利润不能达到700元.理由如下:设每斤马蹄降价元则化简得方程无实数根日销售利润不能达到700元.()0,484a -=12a =-24x -<< ABCD 90B BAD ∴∠=∠=︒90BAD CAD ∴∠+∠=︒AC A 90︒AF,90BC EF CAF ∴=∠=︒90EAF CAD ∴∠+∠=︒BAD EAF∴∠=∠FE AD ⊥ 90AEF ∴∠=︒B AEF∴∠=∠ABC △AEF △BAD EAF B AEFAC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AEF ∴△≌△ ABCD 4AD BC ∴==ABC AEF △≌△3,4AB AE BC EF ∴====431DE AD AE ∴=-=-=FE AD ⊥ 90DEF ∴∠=︒Rt DEF △DF ===x ()()10510050600x x --+=111,2x x ==a ()()10510050700a a --+=2340a a -+=2(3)4470=--⨯=-<△∴∴21.解:(1)设则原方程化为:解得:当时当时原方程的解为:(2)设则原方程化为:解得:,,.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.解答要求写出文字说明、证明过程或演算步骤.22.解:(1)把代入直线得,,在抛物线上,,解得,抛物线的解析式为.(2)存在.理由如下:设动点的坐标为,则点的坐标为,点是线段上的动点,当时,线段有最大值且为.(3)存在.设点①当时,2y x=2540y y -+=121,4y y ==1y =2,1,1x x =∴=±4y =2,4,2x x =∴=±∴12341,1,2,2x x x x ==-==-2222w x y=+22150w w --=125,3w w ==-22220x y +≥ 22225x y ∴+=2252x y ∴+= (),2B m 2y x =-4m =()4,2B ∴()()1,14,6A B - 、22y ax bx =++2116422a b a b ++=-⎧∴⎨++=⎩14a b =⎧⎨=-⎩∴242y x x =-+C (),2n n -D ()2,42n n n -+()()2242PC n n n ∴=---+254n n =-+-25924n ⎛⎫=--+ ⎪⎝⎭ C AB 14n ∴≤≤∴52n =PC 94(),0M c AB AM =解得:或.②当时,解得:或.③当时,解得:,综上所述,为等腰三角形时,点的坐标为或或或或23.(1)①45 ②.(2)解:.证明如下:如图在上截取,连接,和中,,,,即,,,在和中,,2222(14)(12)(1)(10)c -+--=-+--121,1c c =+=+)1,0M ∴+()1,0M +AB BM =2222(14)(12)(4)(20)c -+--=-+-124,4c c =+=)4,0 M ∴+()4,0M +AM BM =2222(1)(10)(4)(20)c c -+--=-+-3c =()3,0M ∴∴ABM △M )1,0+()1,0+)4,0+()4,0+()3,0BE DF EF +=BE EF DF +=DC DH BE =AH ABE △ADH △,AB AD ABE D BE DH =⎧⎪∠=∠⎨⎪=⎩()SAS ABE ADH ∴△≌△,AE AH BAE DAH ∴=∠=∠90BAE BAH BAH DAH ∴∠+∠=∠+∠=︒90EAH BAD ∠=∠=︒45EAF ∠=︒ 45EAF FAH ∴∠=∠=︒EAF △HAF △AE AH EAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,,,,(3)将绕点顺时针旋转得到,连接,由旋转可得,,又,,,设,则,在中,,,解得,;()SAS EAF HAF ∴△≌△EF HF ∴=DF DH HF =+ DF BE EF ∴=+ADN △A 90︒ABK △KM 90AB AD ADC ==∠=︒6BD ∴==12,43BM BD DM BD BM ∴===-=,90ADN ABK KAN ∠=︒△≌△,,45AK AN BK DN ABK ADB ∴==∠=∠=︒90KBM ABK ABD ∴∠=∠+∠=︒90,45KAN MAN ∠=︒∠=︒45KAM MAN ∴∠=∠=︒AM AM = AMK AMN ∴△≌△KM MN ∴=∴MK MN x ==4BK DN x ==-Rt BMK △222BK BM MK +=222(4)2x x ∴-+=2.5x = 2.5MN ∴=。

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考期中考试试卷数学科(内容:21章-23章)题号 一 二 三 四五 总 分 19 20 21 22 23 24 得分说明:1、考试时间:100分钟;2、全卷 满分:150分。

一、选择题(本大题共8小题,每小题4分,共32分) 1. 下列各式中,是最简二次根式的是( ) A .18 B .b a 2 C .22b a + D .32 2. 下列方程有两个不相等实数根的是( )A .012=--x xB . 022=+xC .012=+-x xD .0122=+-x x3. 下列图形中,是中心对称图形,但不是轴对称图形的是 ( )A. 正方形B. 矩形C. 菱形D. 平行四边形 4. 若代数式6432+-x x 的值为9,则6342+-x x 的值为( ) A .7 B .18C .12D .95. 如果点P (3-m ,1-2m )关于原点O 的对称点P 1在第二象限,那么当m 取偶数时,点P 关于x 轴对称的点P 2的坐标为( )A .(1,-3)B .(1,3)C .(2,-1)D .(2,1) 6.已知(x -1)2+2y +=0,则(x +y )2的算术平方根是( )A .1B .±1 C.-1 D .07.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 落在A '位置,若B A AC ''⊥,则BAC ∠的度数是( ) A .50° B .60° C .70° D .80° 8. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m - C .m -- D .m -学校:班级:姓名:座号D EC AB二、填空题(每题4分,共20分)(请将正确答案填在每题后面的横线上) 9、函数32-+=x x y 中自变量x 的取值范围是 。

10、在实数范围内因式分解:44_____________________x -=。

11、在直角坐标平面内,点M (-4,0)绕原点O 逆时针旋转1200后得到的点的坐标是 。

12、若3的整数部分是a ,小数部分是b ,则=-b a 3 。

13、如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。

三、解答下列各题(每小题7分,共35分) 14. 计算:0)15(282218-+--15. 解方程: 3(x-2)+x 2-2x=016. 某商场今年2月份的营业额为300万元,3月份的营业额比二月份增加了10%,5月份的营业额达到475.2万元,求3月份到5月份营业额的平均月增长率。

17.已知:x +y=5,xy=1,求x y18. 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为. (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针方向旋转所得的△A 2B 2C 2。

(1,0)90四、解答下列各题(每小题9分,共27分)19.某商厦服装柜在销售中发现:“乐乐”牌童装平均每天可售出20件,每件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。

经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?20. 已知关于x的k x2+2x-1=0有实数根。

(1)求k的取值范围;(2)当k=1时,请用配方法解此方程。

21.观察下图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形。

S 1,S 2,S 3,……S n 依次表示正方形的面积,每个正方形边长与它左边相邻的直角三角形斜边相等),再回答下列问题。

(1)填表: 直角边 A 1B 1 A 2B 2 A 3B 3 A 4B 4 … A n B n 长度1…(2)当s 1+s 2+s 3+s 4+……+s n =495时,求n 。

……A 1 A 2A 3A 4S 1 S 2 S 3 S 4 B 1 C 1B 2 B 3 B 4C 2 C 3 C 4 1 11 1 1 学校:班级:姓名:座号:五、解答下列各题(每小题12分,共36分)22.已知,如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC。

(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由。

F EC BA23. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。

(1)要使这两个正方形的面积之和等于172cm ,那么这段铁丝剪成两段后的长度分别是多少?(6分)(2)两个正方形的面积之和可能等于102cm 吗?若可能,求出两段铁丝的长度,若不可能,请说明理由。

(6分)24.如图,在等腰直角三角形ABC 中,O 是斜边AC 的中点,P 是斜边AC 上的一个动点,D 为BC 上的一点,且PE=BO ,DE AC ,垂足为点E . (1)求证: PB=PD;(2)设AC=8,AP=x ,四边形PBDE 的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围。

OPAEDB参考答案一、选择题:1、C ;2、A ; 3、D ; 4、A ;5、B;6、A;7、C ;8. C. 二、填空题:9、x ≥-2且x ≠3; 10. )2)(2)(2(2-++x x x ; 11、)32,2(-; 12、1; 13、5. 三、解答下列各题:14.解:原式=23-2-2+1 =2+115.解:)2(3-x +)2(-x x =0 0)3)(2(=+-x x0)3(0)2(=+=-x x 或 ∴3221-==x x , 16.解:设3月份到5月份营业额的平均月增长率x,依题意得300(1+10%2.475)1)(2=+x解得不合题意舍去)(2.2,2.021-==x x 答:3月份到5月份营业额的平均月增长率为20%.17.解:∵x +y=5>0, xy=1>0 ∴x 与y 必同号,即x >0, y >0∴原式=xy y x xy y xy x )(+=+=5×51=18.解:(1)如图所示; (2)如图所示。

19.解:设每件童装应降价x 元,依题意得 (40-x)(20+2x)=1200 整理,得x 2-30x+200=0,解得x 1=10 x 2=20因要尽量减少库存,故x 应取20。

答:每件童装应降价20元。

20.解:(1)① 当k ≠0时,∵一元二次方程有实数根, ∴b 2-4ac ≥0 即:4+4k ≥0 解得,k ≥-1又∵k ≠0,∴k ≥-1且k ≠0②当k=0时,方程可化为:2x -1=0,有一个实根。

综合上述可得,k 的取值范围 为k ≥-1。

(2)当k =1时,方程可化为x 2+2x=1 移项,得 x 2+x=1配方x 2+2x+1=-1+1 (x+1)2=2由此可得 x+1=±2 ∴ x 1=12-, x 2=-12- 21. 解:(1)填表:(2)∵s 1=,2)2(2= s 2=4)4(,3)3(232===s …1)1(,)(221+=+===-n n s n n s n n∴当s 1+s 2+s 3+s 4+……+s n =495时,2+3+4+…+n+n+1=495整理得4962)1(=++n n n解得不合题意舍去)(33,3021-==n n∴n=30.22.解:(1)AE=BF理由如下:∵△ABC 绕点C 顺时针旋转180°得到△FEC 。

∴△AB C ≌△FEC ∴ AC=FC,BC=EC∴四边形ABFE 是平行四边形 ∴AE=BF(2)由(1)知: BC=EC,△ABC 与△ACE 等底同高 ∴△ACE 的面积为3 cm 2 ∴四边形ABFE 的面积为4×3=12 cm 2(3)当∠ACB=60°时,四边形ABFE 为矩形. 理由如下:∵∠ACB=60°,AB=AC∴△ABC 为等边三角形,∠ABC=60° ∴AC= BC又AC=FC ∴BC= FC ∴∠CB F=∠C F B=21∠ACB=30° ∴∠AB F=∠CB F+∠ABC=30°+60°=90°由(1)知:四边形ABFE 是平行四边形 ∴四边形ABFE 为矩形.当∠ACB=60°时,四边形ABFE 为矩形23. 解:(1)设这段铁丝剪成一段铁丝的长度是xcm ,则另每一段铁丝的长度为(20-x )cm,依题意得17)420()4(22=-+x x 整理得064202=+-x x解得x 1=4,x 2=16当x 1=4时,20-x=16;当x 2=16时,20-x=4。

答:这段铁丝剪成两段后的长度分别是4cm ,16cm 。

(2)设这段铁丝剪成一段铁丝的长度是ycm ,则另每一段铁丝的长度为(20-y )cm,依题意得 10)420()4(22=-+y y 整理得0120202=+-y y∵120142)20(42⨯⨯--=-ac b=400-480<0∴该方程没有实数解。

∴不可能剪成两个正方形的面积之和等于102cm 。

24.解:证明:(1)∵点O 是等腰直角△ABC 斜边AC 的中点∴BO=OC=21AC, B O ⊥AC ∴∠C=∠OBC=45°∵DE AC ⊥ ∴∠BOP=∠PED=90°∵PE=BO,PE=PO+OE,OC=OE+EC∴PO=EC在Rt △DEC 中,DE=EC∴PO=DE∴△PBO ≌△DPE∴PB=PD解:(2) ∵AC=8,AP= x ∴AO=BO=PE=4 DE=PO=EC=4- x, EO= x∴四边形PBDE 的面积y=BDEO PBO s s 梯形三角形+ =x x x )8(21)4(421-+-⨯=82212++-x x 自变量x 的取值范围是0<x <4.。

相关文档
最新文档