最新电磁炉工作原理及电磁炉电路图分析学习资料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁炉工作原理及电磁炉电路图分析

电磁炉工作原理及电磁炉电路图分析(一)

一.电磁加热原理

电磁炉是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流电路将50/60Hz 的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20-40KHz 的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿( 导磁又导电材料) 底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的东西。

二、电磁炉电路工作原理分析

2.1 常用元器件简介

2.1.1 LM339 集成电路

LM339 内置四个翻转电压为6mV 的电压比较器, 当电压比较器输入端电压正向时(+ 输入端电压高于- 入输端电压), 置于LM339 内部控制输出端的三极管截止, 此时输出端相当于开路; 当电压比较器输入端电压反向时(- 输入端电压高于+ 输入端电压), 置于LM339 内部控制输出端的三极管导通, 将比较器外部接入输出端的电压拉低, 此时输出端为0V 。

2.1.2 IGBT

绝缘双栅极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。

IGBT的特点:

1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。

4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。

5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。

目前458 系列因应不同机种采了不同规格的IGBT, 它们的参数如下:

(1) SGW25N120---- 西门子公司出品, 耐压1200V, 电流容量25 ℃时46A,100 ℃时25A, 内部不带阻尼二极管, 所以应用时须配套6A/1200V 以上的快速恢复二极管(D11) 使用, 该IGBT 配套10A/1200/1500V 以上的快速恢复

二极管(D11) 后可代用SKW25N120 。

(2) SKW25N120---- 西门子公司出品, 耐压1200V, 电流容量25 ℃时46A,100 ℃时25A, 内部带阻尼二极管, 该IGBT 可代用SGW25N120, 代用时将原配套SGW25N120 的D11 快速恢复二极管拆除不装。

(3) GT40Q321---- 东芝公司出品, 耐压1200V, 电流容量25 ℃时42A,100 ℃时23A, 内部带阻尼二极管, 该IGBT 可代用SGW25N120 、SKW25N120, 代用SGW25N120 时请将原配套该IGBT 的D11 快速恢复二极管拆除不装。

(4) GT40T101---- 东芝公司出品, 耐压1500V, 电流容量25 ℃时80A,100 ℃时40A, 内部不带阻尼二极管, 所以应用时须配套15A/1500V 以上的快速恢复二极管(D11) 使用, 该IGBT 配套6A/1200V 以上的快速恢复二极管(D11) 后可代用SGW25N120 、SKW25N120 、GT40Q321, 配套15A/1500V 以上的快速恢复二极管(D11) 后可代用GT40T301 。

(5) GT40T301---- 东芝公司出品, 耐压1500V, 电流容量25 ℃时80A,100 ℃时40A, 内部带阻尼二极管, 该IGBT 可代用SGW25N120 、SKW25N120 、GT40Q321 、GT40T101, 代用SGW25N120 和GT40T101 时请将原配套该IGBT 的D11 快速恢复二极管拆除不装。

(6) GT60M303 ---- 东芝公司出品, 耐压900V, 电流容量25 ℃时120A,100 ℃时60A, 内部带阻尼二极管。

(7) GT40Q323---- 东芝公司出品, 耐压1200V, 电流容量25 ℃时40A,100 ℃时20A, 内部带阻尼二极管, 该IGBT 可代用SGW25N120 、SKW25N120, 代用SGW25N120 时请将原配套该IGBT 的D11 快速恢复二极管拆除不装。

(8) FGA25N120---- 美国仙童公司出品, 耐压1200V, 电流容量25 ℃时42A,100 ℃时23A, 内部带阻尼二极管, 该IGBT 可代用SGW25N120 、SKW25N120, 代用SGW25N120 时请将原配套该IGBT 的D11 快速恢复二极管拆除不装。

2.2 电路方框图

2.3 主回路原理分析

时间t1~t2 时当开关脉冲加至IGBTQ1 的G 极时, IGBTQ1 饱和导通, 电流i1 从电源流过L1, 由于线圈感抗不允许电流突变. 所以在t1~t2 时间i1 随线性上升, 在t2 时脉冲结束, IGBTQ1 截止, 同样由于感抗作用,i1 不能立即突变0, 于是向C3 充电, 产生充电电流i2, 在t3 时间,C3 电荷充满, 电流变0, 这时L1 的磁场能量全部转为C3 的电场能量, 在电容两端出现左负右正, 幅度达到峰值电压, 在IGBTQ1 的CE 极间出现的电压实际为逆程脉冲峰压+ 电源电压, 在t3~t4 时间,C3 通过L1 放电完毕,i3 达到最大值, 电容两端电压消失, 这时电容中的电能又全部转化为L1 中的磁能, 因感抗作用,i3 不能立即突变0, 于是L1 两端电动势反向, 即L1 两端电位左正右负, 由于IGBT 内部阻尼管的存在,C3 不能继续反向充电, 而是经过C2 、IGBT 阻尼管回流, 形成电流i4, 在t4 时间, 第二个脉冲开始到来, 但这时IGBTQ1 的UE 为正,UC 为负, 处于反偏状态, 所以IGBTQ1 不能导通, 待i4 减小到0,L1 中的磁能放完, 即到t5 时IGBTQ1 才开始第二次导通, 产生i5 以后又重复i1~i4 过程, 因此在L1 上就产生了和开关脉冲f(20KHz~30KHz) 相同的交流电流。t4~t5 的i4 是IGBT 内部阻尼管的导通电流, 在高频电流一个电流周期里,t2~t3 的i2 是线盘磁能对电容C3 的充电电流,t3~t4 的i3 是逆程脉冲峰压通过L1 放电的电流,t4~t5 的i4 是L1 两端电动势反向时, 因的存在令C3 不能继续反向充电, 而经过C2 、IGBT 阻尼管回流所形成的阻尼电流,IGBTQ1 的导通电流实际上是i1 。

相关文档
最新文档