最新浙教版九年级数学综合试卷
浙教版九年级下册数学全册综合检测试卷(二)含答案

浙教版九年级下册数学全册综合检测试卷(二)含答案九年级下册数学全册综合检测二姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.若α为锐角,sinα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°2.如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60°,线段PA=10,那么弦AB的长是()A. 10B. 12C. 5D. 103.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形4.如图,AC是旗杆AB的一根拉线,测得BC=6米,∠ACB=50°,则拉线AC的长为()A. 6sin50°B. 6cos50°C.D.5.如图,⊙O内切于△ABC,切点D,E,F分别在BC,AB,AC上.已知∠B=50°,∠C=60°,连结OE,OF,DE,DF,那么∠EDF等于()A. 40°B. 55°C. 65°D. 70°6. 下列所给的几何体中,主视图是三角形的是()A. B. C. D.7. 如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A. B. C. D.8.已知⊙O1和⊙O2的半径分别为3、5,⊙O1上一点A与⊙O2的圆心O2的距离等于6,那么下列关于⊙O1和⊙O2的位置关系的结论一定错误的是()A. 两圆内含;B. 两圆内切;C. 两圆相交;D. 两圆外离.9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A. 6B. 16C. 18D. 2410.一个不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同,从袋子中随机地摸出2个球,这2个球都是白球的概率为()A. B. C. D.11.如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A的值为()A. B. C. D.12.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A. 60°B. 90°C. 120°D. 150°二、填空题(共9题;共27分)13.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________ .14.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=________.15.利用计算器求sin20°tan35°的值时,按键顺序是________16.学习概率有关知识时,全班同学一起做摸球实验.布袋里装有红球和白球共5个,它们除了颜色不同其他都一样.每次从袋中摸出一个球,记下颜色后放回摇匀,一共摸了100次,其中63次摸出红球,由此可以估计布袋中红球的个数是________17.某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:则该玉米种子发芽的概率估计值为________ (结果精确到0.1).18.如图,在边长为2的正六边形ABCDEF中,点P是其对角线BE上一动点,连接PC、PD,则△PCD的周长的最小值是________19.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为________.20.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________ .21.如图,在Rt△AOB中,OA=OB=4 ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值为________.三、解答题(共4题;共37分)22.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.23. 如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)24.如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan∠CPO=,求PO的长.25.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?参考答案一、选择题C AD D B B A B B B B C二、填空题13.11 14.1 15.sin20DMS×tan35DMS16.3 17.0.9 18.6 19.20.绿色21.三、解答题22.解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.23. 解:(1)如图线段AC是小敏的影子;(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ,在Rt△PDQ中,∠PQD=55°,DQ=EQ﹣ED=4.5﹣1.5=3(米),∵tan55°=,∴PD=3tan55°≈4.3(米),∵DF=QB=1.6米,∴PF=PD+DF=4.3+1.6=5.9(米)答:照明灯到地面的距离为5.9米.24.解:(1)不同类型的正确结论有:①PC=PD,②∠CPO=∠DP,③ACD⊥BA,④∠CEP=90°,⑤PC2=PA•PB;(2)连接OC∵PC、PD分别切⊙O于点C、D∴PC=PD,∠CPO=∠DPA∴CD⊥AB∵CD=12∴DE=CE=CD=6.∵tan∠CPO=,∴在Rt△EPC中,PE=12∴由勾股定理得CP=6∵PC切⊙O于点C∴∠OCP=90°在Rt △OPC 中, ∵tan ∠CPO=, ∴ ∴OC=3,∴OP==15.25. (1)解:方法一:列表格如下:方法二:画树状图如下:所有可能出现的结果AD ,AE ,AF ,BD ,BE ,BF ,CD ,CE ,CF(2)解:从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次,所以P (M )=。
浙教版数学九年级上第3章综合达标测试卷(有答案)

第3章综合达标测试卷(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.如图,∠BAC=25°,∠DEC=30°,则圆心角∠BOD的度数为(B)A.55°B.110°C.125°D.150°2.如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8,AB=10,OD⊥BC于点D,则BD的长为(A)A.3 B.4C.5 D.63.过⊙O内一点M的最长弦长为10 cm,最短弦长为8 cm,那么OM的长为(A)A.3 cm B.6 cmC.41 cm D.9 cm4.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段OM的长的取值范围是(B)A.3≤OM≤5 B.4≤OM≤5C.3<OM<5 D.4<OM<55.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是(C)A.4 B.6C.8 D.106.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于( B )A .π2B .π3C .π4D .π67.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点A 旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了( B )A .5π cmB .3π cmC .2π cmD .π cm8.若四边形ABCD 是⊙O 的内接四边形,且∠A ∶∠B ∶∠C =1∶3∶8,则∠D 的度数是( D ) A .10° B .30° C .80°D .120°9.如图,在正六边形ABCDEF 中,四边形BCEF 的面积为30,则正六边形ABCDEF 的面积为( D )A .20 3B .40C .20 5D .4510.如图,将△ABC 绕点C 顺时针旋转60°得到△A ′B ′C ,已知AC =6,BC =4,则线段AB 扫过的图形的面积为( D )A .23πB .83πC .6πD .103π二、填空题(每小题3分,共24分)11.如图,在圆内接△ABC 中,点D 、E 、F 分别是BC 、AB 、CA 的中点,连结DE 、DF ,要使四边形AEDF 是菱形,应补充的一个条件为__AB =AC (答案不唯一)__.12.如图,△ABC 是⊙O 的内接三角形,点D 是BC ︵的中点.已知∠AOB =98°,∠COB =120°,则∠ABD 的度数为__101°__.13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C =15°,AB =6 cm ,则⊙O 半径为__6__cm.14.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =__6__cm.15.已知⊙O 的半径OA =6,以点A 为圆心,OA 为半径的弧交⊙O 于B 、C 两点,则BC 16.如图,四边形ABCD 是⊙O 的内接四边形,点E 在AB 的延长线上,BF 是∠CBE 的平分线,∠ADC =110°,则∠FBE =__55°__ .17.如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以点A 为圆心,AC 为半径画弧,交AB 于点D ,则扇形CAD 的周长是π3+2 .(结果保留π)18.如图,四边形ABCD 是菱形,∠A =60°,AB =6,扇形BEF 的半径为6,圆心角为60°,则图中阴三、解答题(共56分)19.(8分)如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,且BC =2,连结CD ,求BD 的长.第19题解:∵∠A 和∠D 所对的弧都是BC ︵,∴∠D =∠A =45°.∵BD 是直径,∴∠DCB =90°,∴∠D =∠DBC =45°,∴CB =CD =2. 在Rt △BCD 中,由勾股定理,得BD =2 2. 20.(8分)阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖,如图1中的三角形被一个圆所覆盖,图2中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,求r 的最小值并说明理由; (2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,求r 的最小值并说明理由; (3)长为2 cm ,宽为1 cm 的矩形被两个半径都为r 的圆所覆盖,求r 的最小值并说明理由.第20题解:(1)当正方形的中心就是圆心时,r 有最小值,最小值为1+12=22(cm ). (2)当正三角形的中心就是圆心时,r 有最小值,最小值为23×32=33(cm ). (3)当两圆相交于矩形长边中点时,r 有最小值,最小值为22cm . 21.(9分)如图所示,⊙O 是△ABC 的外接圆,∠BAC 与∠ABC 的平分线相交于点I ,延长AI 交⊙O 于点D ,连结BD 、DC .(1)求证:BD =DC =DI ;(2)若⊙O 的半径为10,∠BAC =120°,求△BDC 的面积.第21题(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∴BD ︵ =DC ︵,∴BD =DC .∵BI 平分∠ABC ,∴∠ABI =∠CBI .∵∠BAD =∠DAC ,∠DBC =∠DAC ,∴∠BAD =∠DBC .又∵∠DBI =∠DBC +∠CBI ,∠DIB =∠ABI +∠BAD ,∴∠DBI =∠DIB ,∴BD =ID ,∴BD =DC =DI .(2)解:∵∠BAC =120°,四边形ABDC 为圆内接四边形,∴∠BDC =60°.∵BD =DC ,∴△BDC 为等边三角形.连结CO 并延长交BD 于点E ,则OE ⊥BD ,连结OB 、OD ,∴BE =12BD .又∵OB =10,OE =12OC=5,∴BE =OB 2-OE 2=53,∴BD =2BE =10 3.又∵CE =OE +OC =15,∴S △BDC =12BD ·CE =12×103×15=75 3.22.(9分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,点C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE =23,∠DP A =45°.求:(1)⊙O 的半径;(2)图中阴影部分的面积.第22题解:(1)∵弦DE 垂直平分半径OA ,∴CD =12DE =3,CO =12AO =12OE .又∵∠OCE =90°,∴∠CEO =30°,∴OA =2.即⊙O 的半径为2.(2)连结OF .在Rt △DCP 中,∵∠DPC =45°,∴∠D =90°-45°=45°,∴∠EOF =2∠D =90°.∵S 扇形OEF=90360×π×22=π,S △OEF =12·OE ·OF =12×2×2=2,∴S 阴影=S 扇形OEF -S △OEF =π-2. 23.(10分)如图,A 、B 、C 为⊙O 上的点,PC 过点O ,交⊙O 于点D ,PD =OD ,若OB ⊥AC 于点E . (1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长.第23题解:(1)A 是PB 的中点.理由:连结AD .∵CD 是⊙O 的直径,∴AD ⊥AC .∵OB ⊥AC ,∴AD ∥OB .∵PD =OD ,∴P A =AB ,∴A 是PB 的中点.(2)∵AD ∥OB ,∴△APD ∽△BPO ,∴AD OB =PD OP =12.∵⊙O 半径为8,∴OB =8,∴AD =4,∴AC =CD 2-AD 2=415.∵OB ⊥AC ,∴AE =CE =215.∵OE =12AD =2,∴BE =6,∴BC =BE 2+CE 2=4 6.24.(12分)如图,已知△ABC 是⊙O 的内接正三角形,P 为弧BC 上一点(与点B 、C 不重合). (1)如果点P 是弧BC 的中点,求证:PB +PC =P A ;(2)如果点P 在弧BC 上移动,(1)的结论还成立吗?请说明理由.第24题(1)证明:连结OB 、OC .∵点P 是弧BC 的中点,△ABC 是⊙O 的内接正三角形,∴AP 为⊙O 的直径,∴∠BPO =∠ACB ,∠APC =∠ABC .∵△ABC 是⊙O 的内接正三角形,∴∠ACB =∠ABC =60°,∴∠BPO =∠APC =60°,∴△OBP 和△OPC 都是等边三角形,∴PB =PC =OP =OA ,∴PB +PC =P A .(2)解:(1)中的结论还成立.理由如下:在P A 上截取PE =PC ,连结CE .∵∠APC =60°,∴△PEC 为等边三角形,∴CE =CP ,∠PCE =60°.∵∠ACB =60°,∴∠ACE =∠BCP .又∵CA =CB ,∴△CAE ≌△CBP ,∴AE =PB ,∴PB +PC =P A .。
初三数学全册浙教版试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()。
A. √2B. πC. -3/5D. 0.1010010001…2. 已知函数f(x) = 2x - 3,若f(2) = 1,则x的值为()。
A. 1B. 2C. 3D. 43. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠B的度数为()。
A. 40°B. 50°C. 60°D. 70°4. 下列关于二元一次方程组的解法,正确的是()。
A. 用代入法解二元一次方程组时,可以将其中一个方程中的未知数表示为另一个方程中的未知数。
B. 用消元法解二元一次方程组时,可以将其中一个方程中的未知数消去。
C. 上述两种方法都可以。
D. 上述两种方法都不正确。
5. 已知一元二次方程x² - 5x + 6 = 0,则方程的解为()。
A. x = 2 或 x = 3B. x = 2 或 x = -3C. x = -2 或 x = 3D. x = -2 或 x = -36. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为()。
A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)7. 若等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10的值为()。
A. 27B. 30C. 33D. 368. 下列函数中,是反比例函数的是()。
A. y = x²B. y = 2x + 3C. y = 3/xD. y = 2x³9. 已知圆的半径为r,则圆的直径为()。
A. 2rB. r/2C. r²D. √r10. 在三角形ABC中,若AB = AC,且∠B = 45°,则∠C的度数为()。
A. 45°B. 90°C. 135°D. 180°二、填空题(每题5分,共50分)11. 若a > b,则a - b的符号为()。
浙教版九年级数学上册期末综合复习检测试卷(有答案)

浙教版九年级数学上册期末综合复习检测试卷(有答案)期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分) 1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100° B. 110° C. 120° D. 130° 2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( ) A. B. C. D. 3.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为() A. 1:20 B. 1:20000 C. 1:200000 D. 1:2000000 4.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cm B. 5cm C. 3cm D. 2cm 5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a�b+c>0;④(a+c)2<b2 .其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④ 6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是,则原来盒子中有白色棋子()A. 4颗 B. 6颗 C. 8颗 D. 12颗 7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是() A. 得到的数字之和必然是4 B. 得到的数字之和可能是3 C. 得到的数字之和不可能是2 D. 得到的数字之和有可能是1 8.函数的图象如图所示,则下列结论中正确的是().A. B. C. D. 当时, 9.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是() A. (-1.4,-1.4) B. (1.4,1.4) C. (- ,- )D. (,) 10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=�1,点B的坐标为(1,0),则下列结论:①AB=4;②b2�4ac>0;③ab<0;④a2�ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________. 12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在中,,,点D在边AB上,且,点E在边AC上,当 ________时,以A、D、E为顶点的三角形与相似. 15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________. 16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t�1.5t2 ,那么飞机着陆后滑行________ 米才能停止. 17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________. 18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 ,则另一直角边AE的长为________.三、解答题(共8题;共60分) 21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度的长,他过两点画两条相交于点的射线,在射线上取两点,使,若测得米,他能求出之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案. 23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM 的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨・千米”表示每吨水泥运送1千米所需要人民币). 路程(千米)运费(元/吨・千米)甲库乙库甲库乙库 A地 20 15 12 12 B地 25 20 10 8 设甲库运往A地水泥x吨,总运费W元. (1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】 12.【答案】55 13.【答案】108° 14.【答案】 , 15.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】19.【答案】2 20.【答案】10 三、解答题 21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】解: ∵ ,(对顶角相等),∴ ,∴ ,∴ ,解得米.所以,可以求出之间的距离为111.6米 23.【答案】解:图中的弧为 24.【答案】解:∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为=;②指针指向绿色的概率为;③指针指向黄色的概率为=;④指针不指向黄色为,(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④,故答案为:②<③<①<④. 25.【答案】解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:甲乙丙丁甲 / (乙,甲)(丙,甲)(丁,甲)乙(甲,乙) / (丙,乙)(丁,乙)丙(甲,丙)(乙,丙) / (丁,丙)丁(甲,丁)(乙,丁)(丙,丁) / 共有12种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为 26.【答案】解:连CO ∵DC⊥AD,CE⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC与半径为6的⊙O相切于点B,且AB为⊙O的直径,∴AB⊥BC,又∵MC⊥BC,∴AB∥MC,∴∠BMC=∠ABM,∵AB是⊙O的直径,∴∠AMB=90°,∴∠BCM=∠AMB=90°,∴△BCM∽△AMB,∴,∴BM2=AB•MC=12×9=108,∴BM=6,∵BC2+MC2=BM2 ,∴BC==3∴S△ABM=AB•BC=×12×3=18;(2)解:过O作OE⊥MC,垂足为E,∵MD是⊙O的弦,OE⊥MD,∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°,∴四边形OBCE为矩形,∴CE=OB=6,又∵MC=x,∴ME=ED=MC�CE=x�6,MD=2(x�6),∴CD=MC�MD=x�2(x�6)=12�x,∴MD•DC=2(x�6)•(12�x)=�2x2+36x�144=�2(x�9)2+18 ∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x) =-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0 ∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40. 又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

浙江省杭州市杭州公益中学2022-2023学年第一学期九年级数学第三次月考综合测试题(附答案)一、选择题(共40分)1.已知圆的半径为5cm,圆心到直线l的距离为5cm,那么直线l和这个圆的公共点有()A.0个B.1个C.2个D.1个或2个2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.对于抛物线y=(x﹣1)2+2,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2)D.与x轴有两个交点4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为()A.80件B.100件C.150件D.200件5.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5 m B.2m C.4m D.m6.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB于点D,则CD的长为()A.1B.2C.1.5D.2.58.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于()A.35°B.70°C.145°D.107.5°9.如图,已知:45°<∠A<90°,则下列各式成立的是()A.sin A=cos A B.sin A>cos A C.sin A>tan A D.sin A<cos A 10.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3二、填空题(共30分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为.12.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点,为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿AB的长应设计为cm(结果精确到0.1cm)13.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你认为其中正确的信息是.(只填序号)15.如图,半径为5个单位的⊙A与x轴、y轴都相切;现将⊙A沿y轴向下平移个单位后圆与x轴交于点(2,0).16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B 的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=2,则BN的长为,sin∠AFE的值为.三、解答题(共80分)17.计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.18.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.19.如图,已知四边形ABCD内接于圆O,且∠A=105°,BD=CD(1)求∠DBC的度数(2)若⊙O的半径为3,求的长.20.(10分)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.21.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.22.如图所示,在△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线.(2)若点E是BC上一点,已知BE=6,cos∠ABC=,tan∠AEC=,求圆的直径.23.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.24.如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.参考答案一、选择题(共40分)1.解:∵圆的半径为5cm,圆心到直线l的距离为5cm,∴d=r,∴直线与圆相切,∴直线l和这个圆的公共点有1个,故选:B.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、a=1>0,抛物线开口向上,所以A选项错误;B、y=(x﹣1)2+2,抛物线顶点坐标为(1,2),B选项错正确.C、抛物线与y轴的交点坐标为(0,3),所以C选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则抛物线与x轴没有交点,所以D选项错误;故选:B.4.解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.5.解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选:B.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE=AB=4,∵BO=5,∴EO==3,∵AC=6,∴BC=EC=2,∵CD⊥BE,OE⊥AB,∴CD∥EO,且CD是△BEO的中位线,∴CD=EO=1.5.故选:C.8.解:∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=145°,∵⊙I是△ABC的内切圆,点I是内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=72.5°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣72.5°=107.5°,故选:D.9.解:∵45°<A<90°,∴根据sin45°=cos45°,sin A随角度的增大而增大,cos A随角度的增大而减小,当∠A>45°时,sin A>cos A.故选:B.10.解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QP.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.二、填空题(共30分)11.解:从箱中随机取出一个球,这个球是白球的概率为,故答案为:.12.解:连接BD.由题意,OA=OB=OC=OD.∵∠DOB=100°,∴∠ADO=50°,∠OAD=∠ODB=40°,∴∠ADB=90°.又∵BD=32,∴AB=32÷sin50°≈41.8(cm).13.解:如图,过点A1作A1H⊥AB于H,∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴A1H=A1B=2,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.14.解:∵开口向上,∴a>0,∵对称轴为x=>0,∴b<0,﹣=,∴2a=﹣3b,∴2a﹣3b=﹣6b<0,故④错误,不符合题意;∵函数图象与y轴的交点在y轴负半轴上,∴c<0,故①正确,符合题意;∴abc>0,故②正确,符合题意;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故③正确,符合题意;∵3b=﹣2a,∴c﹣4b=c﹣3b﹣b=c﹣(﹣2a)﹣b=a﹣b+c+a>0,故⑤正确,符合题意,故答案为:①②③⑤.15.解:设点A向下平移x个单位后经过(2,0),则(5﹣x)2+32=52,解得x=1或9,∴将⊙A沿y轴向下平移1或9个单位后圆与x轴交于点(2,0),故答案为:1或9.16.解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴MG=GC=2,∵G为CD中点,∴CD=AB=4.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=4.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=4﹣x,NG=MG﹣NM=2﹣x,∵FM∥GC,∴=,即,解得x=4+2(舍)或x=4﹣,∴EF=BE=4﹣x=,∴sin∠AFE===2﹣1.故答案为:4;2﹣1.三、解答题(共80分)17.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.18.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.19.解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.20.解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.21.(1)证明:由D是劣弧的中点,得⇒∠ABD=∠DAC,又∵∠ADB=∠EDA,∴△ABD∽△EAD,∴,∴AD2=DE•DB;(2)解:由D是劣弧的中点,得AD=DC,则DC2=DE•DB∵CB是直径,∴△BCD是直角三角形.∴BD===由DC2=DE•DB得,DE,解得DE=.22.(1)证明:∵BC是直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACD=∠ABC,∴∠ACD+∠BCD=90°,即∠ACB=90°,∴CA是圆的切线;(2)解:∵cos∠ABC===,tan∠AEC==,∴设CB=3y,AC=5x,则EC=3x,AB=y,由勾股定理得:AC=2y,∴,解得:,∴BC=BE+CE=6+3x=10.23.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.24.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.。
浙教版九年级数学下册 第二章 直线与圆的位置关系 单元综合测试【含答案】

浙教版九年级数学下册第二章直线与圆的位置关系单元综合测试一.选择题1.在平面直角坐标系中,以点P(1,2)为圆心,以P为圆心,以1为半径的圆必与x轴有多少个公共点()A.0B.1C.2D.32.如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆3.如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于()A.110°B.115°C.120°D.125°4.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6B.7C.8D.95.如图所示,在4×4的网格中,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ACD的内心C.△ABC的内心D.△ABC的外心6.如图,直线l与⊙O相切于点A,M是⊙O上的一个动点,MH⊥l,垂足为H.若⊙O的半径为2,则MA﹣MH的最大值为()A.B.C.1D.27.如图,∠MPN=60°,点O是∠MPN的角平分线上的一点,半径为4的⊙O经过点P,将⊙O向左平移,当⊙O与射线PM相切时,⊙O平移的距离是()A.2B.C.D.28.如图,PA,P B与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=()A.B.2C.D.3二.填空题9.如图,在△ABC中,∠ABC=50°,∠ACB=70°,点O是△ABC的内心,则∠BOC=度.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.11.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,BA=PC=2,则PD 的长是.12.已知,如图,AC切⊙O于点A,∠BAC=60°,则∠AOB=度.13.如图,△ABC中,∠ACB=90°,AB=5,AC=3,BC为半圆O的直径,将△ABC沿射线CB方向平移得到△A1B1C1.当A1B1与半圆O相切于点D时,平移的距离的长为.14.如图,△ABC中,∠ACB=90°,sin A=,AC=8,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P 的半径为.15.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点P在边AC上,⊙P的半径为1.如果⊙P 与边B C和边AB都没有公共点,那么线段PC长的取值范围是.16.如图,在矩形ABCD中,CD是⊙O直径,E是BC的中点,P是直线AE上任意一点,AB=4,BC=6,PM、PN相切于点M、N,当∠MPN最大时,PM的长为.三.解答题17.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于E,过B作⊙O的切线,交AC的延长线于D.求证:∠CBD=∠CAB.18.如图,AB是⊙O的一条弦,点C是⊙O外一点,OC⊥OA,OC交AB于点P、交⊙O于点Q,且CP =CB=2.(1)求证:BC是⊙O的切线;(2)若∠A=22.5°,求图中阴影部分的面积.19.如图,点P在⊙O外,M为OP的中点,以点M为圆心,以MO为半径画弧,交⊙O于点A,B,连接PA;(1)判断P A与⊙O的位置关系,并说明理由;(2)连接AB,若OP=9,⊙O的半径为3,求AB的长.20.如图,A B为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.21.已知:如图,在△ABC中,∠ACB=90°,AC=3,BC=4,I1为△ABC内切圆的圆心,⊙I2与BA,BC的延长线及AC边都相切(旁切圆).(1)求⊙I2的半径;(2)求线段I1I2的长.22.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.23.如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,∠DBC=∠BAC,⊙O经过A、B、D三点,连接DO并延长交⊙O于点E,连接AE,DE与AB交于点F.(1)求证:CB是⊙O的切线;(2)求证:AB=EB;(3)若DF=3,EF=7,求BC的长.答案一.选择题1.解:∵P(1,2),即2>1,∴以P为圆心,以1为半径的圆与x轴的位置关系是相离,∴该圆与x轴的交点有0个.故选:A.2.解:∵OD⊥a于D,∴以点O为圆心,OD为半径的圆与直线a相切.故选:D.3.解:如图,连接AC,由弦切角定理知∠ACB=∠BAT=55°,∵AB=BC,∴∠ACB=∠CAB=55°,∴∠B=180°﹣2∠ACB=70°,∴∠D=180°﹣∠B=110°.故选:A.4.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.5.解:由勾股定理可知:OA=OD=OC==,所以点O是△ACD的外心,故选:A.6.解:如图,连接AO并延长交圆O于点C,连接CM,设BH=b,MA=a,∵直线l与⊙O相切于点A,∴连接OA交圆O于点C,则∠CAH=90°,又∵∠MHA=90°,∴AC∥HM,∴∠HMA=∠MAC,∵AC为直径,∴∠CMA=90°.∴△AMH∽△CAM,∴=,CA=4,∴=,∴a2=4b,b=,∴a﹣b=a﹣=﹣(a﹣2)2+1,∴当a=2时,a﹣b的最大值为1.则MA﹣MH的最大值为1.故选:C.7.解:设⊙O'为⊙O向左平移后与PM相切的圆,切点为B,连接O'B交PO于D,过O作OA⊥PM于A,OC⊥O'B于C,如图所示:则OO'即为⊙O平移的距离,O'B=OP=4,O'B⊥PM,∵∠MPN=60°,PO是∠MPN的平分线,∴∠MPO=∠OPN=∠MPN=30°,∵OA⊥OM,∴OA=OP=2,∵OA⊥PM,OC⊥O'B,O'B⊥PM,∴四边形OABC是矩形,∴BC=OA=2,∴O'C=O'B﹣BC=2,由平移的性质得:OO'∥PN,∴∠DOO'=∠OPN=30°,∵O'B⊥PM,∴∠O'BP=90°,∴∠BDP=90°﹣∠MPO=60°,∵∠BDP=∠DOO'+∠DO'O,∴∠DO'O=∠BDP﹣∠DOO'=30°,∴OC=O'C=,OO'=2OC=,即⊙O平移的距离为,故选:B.8.解:∵PA,PB与⊙O分别相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=AP=2.故选:B.二.填空题9.解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×70°=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣25°﹣35°=120°.故答案为120.10.解:如图,设D C与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.11.解:∵PAB,PCD是圆的两条割线,∴PA•PB=PC•PD,∵PA=3,BA=PC=2,∴3×5=2PD,∴PD=7.5.故答案为7.5.12.解:∵AC切⊙O于点A,∴∠AOB=2∠BAC=120°.13.解:连接OG,如图,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射线CB方向平移,当A1B1与半圆O相切于点D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1与半圆O相切于点D,∴OD⊥A1B1,∵BC=4,线段BC为半圆O的直径,∴OB=OC=2,∵∠B1=∠B1,∴Rt△B1OD∽Rt△B1A1C1,∴=,即=,解得OB1=,∴BB1=OB1﹣OB=﹣2=;故答案为:.14.解:∵,∴设BC=3x,则AB=5x,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,即:(5x)2=(3x)2+82,∴x=2,∴AB=10,BC=6,∴,①若⊙P与AC相切,如图1,设切点为M,连接PM,则PM⊥AC,且PM⊥PA′,∵PM⊥AC,A′C⊥AC,∴∠B′PM=∠A′,由旋转性质可知∠A′=∠A,∴∠B′PM=∠A,∴,设PM=4x,则PA′=PM=4x,B′P=5x,又∵A′B′=AB,即:4x+5x=10,解得,∴;②若⊙P与AB相切,延长PB′交AB于点N,如图2,∵∠A′+∠B=∠A+∠B=90°,∵∠A′NB=90°,即N为AB与⊙O切点,又∴A′B=BC+AC′=BC+AC=14,∴A′N=A′B•cos∠A′=A′B•cos A,即,∴.综上,⊙P的半径为或,故答案为:或.15.解:在Rt△ABC中,∠ACB=90°,AB=5,BC=3,∴AC=4,当⊙P与A B相切时,设切点为D,如图,连接PD,则PD⊥AB,∴∠C=∠ADP=90°,∵∠A=∠A,∴△ADP∽△ACB,∴,∴=,∴PA=,∴PC=AC﹣PA=,∴线段PC长的取值范围是1<CP<,故答案为:1<CP<.16.解:如图1,∵四边形ABCD是矩形,∴CD=AB=4,连接OP,OM,∵PM,PN是⊙O的切线,∴∠OPM=∠MPN,要∠MPN最大,则∠OPM最大,∵PM是⊙O的切线,∴∠OMP=90°,在Rt△PMO中,OM=OD=CD=2,∴sin∠OPM==,∴要∠OPM最大,则OP最短,即OP⊥AE,如图2,延长DC交直线AE于G,∵四边形ABCD是矩形,∴∠B=90°=∠ECG,AB∥CD,∴∠BAE=∠G,∵点E是BC的中点,∴BE=BC=3,∴△ABE≌△GCE(AAS),∴CG=AB=4,∵CD是⊙O的直径,∴OC=CD=2,∴OG=OC+CE=6,在Rt△ABE中,AB=4,BE=3,∴AE=5,∵∠OPG=90°=∠B,∠G=∠BAE,∴△ABE∽△GPO,∴,∴,∴OP=,在Rt△PMO中,PM===,故答案为:.三.解答题17.证明:连接AE,∵AB是圆的直径,∴AE⊥BC,∵AB=AC,∴AE平分∠BAC,∴∠BAE=∠CAE=∠CAB,∵BD是⊙O的切线,∴∠CBD=∠BAE,∴∠CBD=∠CAB.18.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)解:∵∠A=22.5°,∠AOP=90°,∴∠APO=67.5°,∴∠BPC=∠APO=67.5°,∵PC=CB,∴∠CBP=67.5°,∴∠PCB=180°﹣2∠CBP=45°,∴∠OCB=∠POB=45°,∴OB=BC=2,∴图中阴影部分的面积=S△OBC ﹣S扇形OBD=×2×2﹣=2﹣.19.解:(1)P A是⊙O的切线,理由如下:如图,连接OA,∴OP是⊙M的直径,点A是⊙M上一点,∴∠OAP=90°,即OA⊥PA,∴PA是⊙O的切线;(2)设⊙O与OP的交点为N,AB与OP的交点为E,连接AN,AM,BM,∵MA=MB,OA=OB,∴OP是线段AB的垂直平分线,∴AB⊥OP,AE=BE,∵OP=9,OA=3,∴AP==6,∴S△OAP=OA•AP=AE•OP,∴OA•AP=AE•OP,∴3×6=9AE,∴AE=2,∴AB=4.20.(1)证明:连接OP.∵PA、PC分别与⊙O相切于点A,C,∴PA=PC,OA⊥PA,∵OA=OC,OP=OP,∴△OPA≌△OPC(SSS),∴∠AOP=∠POC,∵QP⊥PA,∴QP∥BA,∴∠QPO=∠AOP,∴∠QOP=∠QPO,∴OQ=PQ.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥QD,∴∠QDC=∠B,∵∠OCB=∠QCD,∴∠QCD=∠QDC,∴QC=QD=6,∵QO=QP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCQ=90°,在Rt△PCQ中,∵PQ2=PC2+QC2,∴(6+r)2=62+(2r)2,r=4或0(舍弃),∴OP==4,∵OB=PD,OB∥PD,∴四边形OBDP是平行四边形,∴BD=OP=4.21.解:(1)如图,过点I2作I2Q⊥AC于点Q,连接I2S,过点I1作I1M⊥BC于点M,I1N⊥AC于点N,交I2S于点H,可得四边形QCSl2,I1MCN均为正方形,I1HSM为矩形,设⊙I2的半径为R,则AQ=AP=3﹣R,CS=CQ=R,又因为BP=BS,所以5+3﹣R=4+R,解得R=2.(2)∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵I1为△ABC内切圆的圆心,∴I1M=I1N=,∴I1H=3,∴I1l2==.22.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===15,==,在Rt△ACE中,S△ACE∵AE=BC=20,∴=CD,解得:CD=12,23.(1)证明:在⊙O中,OB=OD,∠BAC=∠BED,∴∠ODB=∠OBD,∵∠DBC=∠BAC,∴∠DBC=∠BED,∵D E是⊙O的直径,∴∠DBE=90°,∴∠ODB+∠BED=90°,∴∠OBD+∠DBC=90°,∴OB⊥BC,∵OB是⊙O的半径,∴CB是⊙O的切线;(2)证明:在⊙O中,∠ABD=∠AED,由(1)得:∠DBC=∠BED,∴∠ABD+∠DBC=∠AED+∠BED,∴∠ABC=∠BEA,∵DE是⊙O的直径,∴∠EAC=90°,∵∠ACB=90°,∴∠EAC+∠ACB=180°,∴AE∥BC,∴∠ABC=∠BAE,∴∠BEA=∠BAE,∴AB=EB;(3)解:延长BO交AE于H,由∠HAC=∠ACB=∠OBC=90°,得四边形ACBH是矩形,∴OH⊥AE,∴BC=AH=AE,∵DF=3,EF=7,∴直径DE=10,即半径DO=EO=5,∴OF=2,∵OB∥AC,∴=,∴AD=,在Rt△ADE中,AE==,∴BC=AH=AE=.。
2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)

2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)一.选择题(共10小题,每题3分,满分30分)1.若=,则的值为()A.B.C.D.2.已知一个扇形的弧长为π,半径是3,则这个扇形的面积为()A.πB.C.D.3π3.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则三角形ADE 周长与三角形ABC的周长比是()A.1:B.1:2C.1:3D.1:44.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径5.如图,在正五边形ABCDE中,记∠BCD=x°,∠ACB=y°,则等于()A.B.2C.3D.46.若点A(﹣1,y1),B(2,y2),C(3,y3)在二次函数y=(x﹣2)2+3的图象上,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y3<y2D.y1<y2<y3 7.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为()cm.A.﹣1B.2﹣2C.5﹣5D.10﹣10 8.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根9.如图,由边长为1的正方形组成的6×5网格中,一块含45°的三角板ABC的斜边AB 始终经过格点N,AC始终经过格点M,点A在MN下方运动,格点P到A的距离最小值为()A.1B.C.﹣1D.2﹣210.如图,△ABC中,点D为边BC上的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.m>1,n>1,则2S△AEF>S△ABD B.m<1,n<1,则2S△AEF>S△ABDC.m>1,n<1,则2S△AEF<S△ABD D.m<1,n>1,则2S△AEF<S△ABD二.填空题。
浙教版九年级下册数学全册综合检测试卷(一)含答案

九年级下册数学全册综合检测一姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A. 0.22B. 0.42C. 0.50D. 0.582.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A. 美B. 丽C. 肇D. 庆3.如图,Rt△ABC中,∠C=90°,若AB=5,sinA= ,则AC的长是()A. 3B. 4C. 5D. 64.在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值()A. 都扩大1倍B. 都缩小为原来的一半C. 都没有变化D. 不能确定5.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.6.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A. 20B. 30C. 40D. 507.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB. cmC. cmD. 1cm8.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是()A. 7.5cmB. 10cmC. 15cmD. 12.5cm9.如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为()A. 1B. 2C. 1.5D. 2.510.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A. B. C. D.11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.12.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A. 米B. 米C. 米D. 米二、填空题(共10题;共30分)13.如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是________14.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.15. 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 ________m(结果保留根号).16.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于________.17.大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为________ .18.如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为 ________.19.随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是________ .20.若sin28°=cosα,则α=________.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近________ ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=________ ;(3)试验估算这个不透明的盒子里黑球有________ 只?22.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x轴的位置关系是 ________.三、解答题(共3题;共34分)23. 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)24.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)25.已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.(1)求证:PA是⊙O的切线;(2)若AF=3,BC=8,求AE的长.参考答案一、选择题D D B C B C A C B A A B二、填空题13. 9 14.15. 10 16. 60°或120° 17. 哥哥比弟弟更靠近灯18. 12 19.20. 62° 21. 0.6;0.6;16 22. 相切三、解答题23. 解:设BD=x 米,则BC=x 米,BE=(x+2)米,在Rt △BDE 中,tan ∠EDB=,即 , 解得,x≈6.06,∵sin ∠EDB=,即0.8=, 解得,ED≈10即钢线ED 的长度约为10米24. 解:过B 作BD ⊥AC ,∵∠BAC=75°﹣30°=45°,∴在Rt △ABD 中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD= ×20=10 (海里), 在Rt △BCD 中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10 ×3.732=52.77048,则AC=AD+DC=10 +10 ×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.25.(1)证明:连接AB,OA,OF;∵F是BE的中点,∴FE=BF.∵OB=OC,∴OF∥EC.∴∠C=∠POF.∴∠AOF=∠CAO.∵∠C=∠CAO,∴∠POF=∠AOF.∵BO=AO,OF=OF,∴∠OAP=∠EBC=90°.∴PA是⊙O的切线(2)解:∵BE是⊙O的切线,PA是⊙O的切线,∴BF=AF=3,∴BE=6.∵BC=8,∠CBE=90°,∴CE=10.∵BE是⊙O的切线,∴EB2=AE•EC.∴AE=3.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学综合试卷 一. 选择题(本题共10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)
1、-3的倒数是 ( )
A. 31
B. -3
C. -3
1 D. 3 2、 去年我省经济稳定增长,人民生活逐步提高。
2009年浙江省国民生产总值达21486 亿元 ,人均42214元。
21486 亿元 用科学记数法(保留3个有效数字)表示应为 ( )
A. 2.14×104亿元
B. 2.15×105亿元
C. 2.15×104亿元
D. 21.5×103亿元
3、下列运算正确的是 ( )
A. a 2·a 3= a 6
B. (a 3)3= a 9
C.(2 a 2)2 =2 a 4
D. a 8÷a 2= a 4
4、 图中几何体的主视图是 ( )
A. B. C. D.
5、分式方程1x-2 —1 = 12-x
的解是 ( ) A .0 B .2 C .4 D .无解
6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,﹣1)处,则此平移可以是( )
A . 先向右平移5个单位,再向下平移1个单位
B . 先向右平移5个单位,再向下平移3个单位
C . 先向右平移4个单位,再向下平移1个单位
D . 先向右平移4个单位,再向下平移3个单位
7、以下四个图案中,既是轴对称图形又是中心对称图形的有 ( )
A.4个 B.3个 C.2个 D.1个
8、将半径为30cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )
A .10cm
B .20cm
C .30cm
D .60cm
9、在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位: )与铁块被提起的高度x (单
正面
位:cm )之间的函数关系的图象大致是
( )
10、如图,直角三角形纸片ABC 中,AB =3,AC =4,D 为斜边BC 中点,第1次将纸片折叠,使点A
与点D 重合,折痕与AD 交与点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD
交于点P 3;…;设P n ﹣1D n ﹣2的中点为D n ﹣1,第n 次将纸片折叠,使点A 与点D n ﹣1重合,折痕与AD
交于点P n (n >2),则AP 6的长为( )
A .5
12532⨯ B .69352⨯ C .614532⨯ D .711352⨯
二、填空题 (本大题共6小题,每小题4分,共24分)
11、因式分解:2x 2-8= .
12、在一次校园朗诵比赛中,八位评委给小丽打分的成绩如下:8.6,9.7,8.5,8.8,
8.9,9.6,8.6,7.2,则这组数据的中位数是 。
13、不等式2x-5>0的最小整数解是 。
14、如图,在直角坐标系xoy 中,点A 是反比例函数x
k y =图象上一点,过A 作AB ⊥y 轴于点B ,OB=2,tan ∠AOB=2
3,则反比例函数的解析式为 。
15、将一张长9cm 宽3cm 的矩形纸片沿对角线折叠,则重叠部分的面积为 。
y
x B A
O
(第14题) (第15题) (第16题)
M Q P D
C
B A O y x O y x O y x O y
x
A. B. C. D. (第9题)
__________________________________________________
16、如图,矩形ABCD中,AB=12cm,BC=18cm,直线PQ从AB出发,以1cm/s的速度向CD匀速平移,与AD,BC分别交于P,Q两点;点M从点C出发,以3cm/s的速度沿C→D→A→B→C方向逆时针运动,点M与直线PQ同时出发,当点M与点Q相遇时,点M与直线PQ都停止运动. 设△PQM的面积为S(cm2),那么当t=▲ s时,S=60cm2.
三、解答题(17、18、19题每题6分,20、21题每题8分,22、23每题10分,24题12分)
17、(本题6分)
计算:
(1)丨﹣5|+﹣32 (2)(x+1)2﹣x(x+2)
18、(本题6分)
ABCD中,E、F分别是BC、AD的中点。
(1)求证:△ABE≌△CDF
(2)连AC,当四边形AECF是菱形时,△ABC应满足条件(只需填一个条件即可)
19、(本题6分)
小明手中有4张背面相同的扑克牌:红桃A、红桃2、黑桃A、黑桃2。
先将4张牌背面朝上洗匀,再让小刚抽牌。
(1)小刚从中任意抽取一张扑克牌,抽到红桃的概率为。
(2)小刚从中任意抽取两张扑克牌。
游戏规则规定:小刚抽到的两张牌是一红、一黑,则小刚胜,否则小明胜,问该游戏对双方是否公平。
(利用树状图或列表说明)
20、(本题8分)
如图,在网格中建立直角坐标系,Rt△ABC的顶
点A、B、C都是网格的格点(即为小正方形顶点)
(1)在网格中分别画出将△ABC向右平移2格的
△A′B′C′,和再将△A′B′C′绕原点O按顺时针
方向旋转90º后的△A′′B′′C′′。
(2)设小正方形边长为1,求A在两次变换中所经过的路径总长。
O
A
B
F
x
y
B C
A
B D
F
E
21、(本题8分)
保护地球,人人有则。
为妥善应对气候变化, 中国作为负责任的发展中国家,主张通过切实有效的国际合作,共同应对气候变化。
中学生作为全社会的一员,要加快形成低碳绿色的生活方式和消费模式,为应对气候变化做出自己的努力。
在今年世界气候大会上,中国国家总理温家宝郑重向全世界公布了中国的碳减排目标,到2020年,我国单位国内生产总值二氧化碳排放比2005年下降40%-45%。
风能是一种清洁能源,近几年我国风电装机容量迅速增长。
下图是2003年---2009年中国风力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题。
2003年---2009年中国风力发电装机容量统计图(单位:万千瓦)
(1) 2007年,我国风力发电装机容量已达 ;
(2)从2003年到2009年,我国风力发电装机容量平均每年增长 万千瓦;
(3)设2007年到2010年我国风力发电装机容量年平均增长率相同,求2010年我国风力发电装机容量。
(结果精确到1万千瓦,参考数据:32.24.5≈)
22、(本题10)
某工厂计划为某山区学校生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往该学校,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
23.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。
【思考题】如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B 将向外移动x 米,即BB 1=x ,
则B 1C =x +0.7,A 1C =AC ﹣AA 1=222.50.70.42--=
而A 1B 1=2.5,在Rt △A 1B 1C 中,由2221111B C A C A B +=得方
程 ,
解方程得x 1= ,x 2= ,
∴点B 将向外移动 米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题。
24.在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如图1,当m=时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.。