九年级数学上册综合测试题
九年级数学上册期末复习综合测试题(含答案)

(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
九年级数学(上册)期末综合测试题(四)

九年级数学期末综合测试(四)一、选择题(每小题2分,共30分)1x 的取值范围是( ) (A )x ≤1 (B )x ≤1且2x ≠- (C )2x ≠- (D )x <1且2x ≠-2.有两棵树,高度分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米( )(A )41 (B )41 (C )3 (D )93.关于x 的方程2320ax x -+=是一元二次方程,则( )(A )0a > (B )0a ≠ (C )1a = (D )a ≥04.如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB =10cm ,CD =6cm ,则AC 长为( )(A )0.5 cm (B )1 cm (C )1.5 cm (D )2 cm 5.下列图形中,是中心对称图形的共有( ) (A )1个 (B )2个 (C )3个 (D )4个6.如图,B 、C 、D 在⊙O 上,∠BOD =1000,则∠BCD 为( ) (A )1300 (B )1000 (C )800 (D )500 7.下列说法正确的是( ) (A )长度相等的两条弧是等弧 (B )优弧一定大于劣弧(C )不同的圆中不可能有相等的弦 (D )直径是弦且同一个圆中最长的弦8.⊙O 1和⊙O 2的半径分别为8和5,两圆没有公共点,则圆心距O 1O 2的取值范围是( )(A )O 1O 2>13 (B )O 1O 2<3 (C )3<O 1O 2<13 (D )O 1O 2>13或O 1O 2<39.一个多边形有9条对角线,则这个多边形有多少条边( )(A )6 (B )7 (C )8 (D )910.已知⊙O 的半径是5cm ,弦AB ∥CD,AB=6cm ,CD=8cm ,则AB 与CD 的距离是( )(A )1cm (B )7cm (C )1cm 或7cm (D )无法判断11.已知关于x 的一元二次方程x 2-(R +r )x +14d 2=0没有实数根,其中R ,r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系是( )(A )外离 (B )相切 (C )相交 (D )内含12.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )(A )20种 (B )8种 (C )5种 (D )13种13.小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是((A )154 (B )31 (C )51 (D )152 (第4题) (第6题)14.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
九年级数学上册第一学期期末综合测试卷(北师版 2024年秋)

九年级数学上册第一学期期末综合测试卷(北师版2024年秋)一、选择题(每题3分,共30分)1.(教材P57复习题T13变式)关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1B.-1C.1或-1 D.122.先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是()3.如图,要使▱ABCD成为矩形,则可添加的一个条件是()A.AB=AD B.OA=OC C.AD=BC D.AC=BD(第3题)(k≠0)的图象经过点P(1,-2),则这个函数的图象位于4.已知反比例函数y=kx()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限5.(2023山东省实验中学月考)如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.12(第5题)(第6题)6.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD BD =53,CF =6,则DE 的长为()A .6B .8C .10D .127.如图,△ADC 是由等腰直角三角形EOG 经过位似变换得到的,位似中心在x轴的正半轴上,位似比为12,已知EO =1,D 点坐标为(2,0),则这两个三角形的位似中心的坐标是()B .(1,0)C .(0,0)(第7题)(第8题)8.(2023合肥一模)如图,Rt △BOC 的一条直角边OC 在x 轴的正半轴上,双曲线y =kx 过△BOC 的斜边OB 的中点A ,与另一直角边BC 相交于点D.若△BOD的面积是6,则k 的值是()A .-6B .-4C .4D .69.如图,△ABC 中,∠C =90°,AB =10,AC =8,线段DE 的两个端点D ,E 分别在边AC ,BC 上滑动,且DE =4,若点M ,N 分别是DE ,AB 的中点,则MN 的最小值为()A .2B .3C .3.5D .4(第9题)(第10题)10.(2023东营)如图,正方形ABCD的边长为4,点E,F分别在边DC,BC上,且BF=CE,AE平分∠CAD,连接DF,分别交AE,AC于点G,M,P是线段AG上的一个动点,过点P作PN⊥AC,垂足为点N,连接PM,有下列四个结论:①AE垂直平分DM;②PM+PN的最小值为32;③CF2=GE·AE;④S△ADM=62.其中正确的是()A.①②B.②③④C.①③④D.①③二、填空题(每题3分,共24分)11.如图,已知ADAE=ACAB,AD=3cm,AC=6cm,BC=8cm,则DE=________.(第11题)(第13题) 12.已知点A(-2,y1),B(a,y2),C(3,y3)在反比例函数y=-4x的图象上,且-2<a<0,则y1,y2,y3的大小关系是________.13.如图所示的是一个几何体的三视图,则这个几何体的侧面积为________.14.(2023营口二模)某水果销售网络平台以2.6元/kg的成本价购进20000kg沃柑.如下表是平台销售部通过随机取样,得到的“沃柑损坏率”统计表的一部分,从而可大约估计每千克沃柑的实际售价定为________元时(精确到0.1元),可获得13000元利润.(销售总金额-损耗总金额-销售部分成本=销售总利润)沃柑总质量n/kg (100200300400500)损坏沃柑质量m/kg…10.4419.6330.6239.5450.67沃柑损坏的频率mn(精确到0.001)…0.1040.0980.1020.0990.10115.若关于x的方程x2-3x+m=0有两个不相等的实数根,且m≥-3,则从满足条件的所有整数m中随机选取一个,恰好是负数的概率是________.16.【新趋势学科内综合】若矩形ABCD的两邻边长分别为一元二次方程x2-7x +12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,已知点A是一次函数y=13x图象上y轴右侧的一点,过点A作x轴的垂线l,B是l上一点(点B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=kx(x>0)的图象过点B,C,若△OAB的面积为12,则△ABC的面积是________.18.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在x轴上,AB=2,A(1,0),∠DAB=60°,将菱形ABCD绕点A旋转90°后,得到菱形AB1C1D1,则点C1的坐标是________.三、解答题(19~20题每题8分,21~25题每题10分,共66分)19.解下列方程:(1)(x+1)2-4=0;(2)x(x-2)=x-2.20.(2023鄂州)如图,点E是矩形ABCD的边BC上的一点,且AE=A D. (1)尺规作图:作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.21.画出如图所示的几何体的三视图.22.(新考向传统文化)藏毯作为青海省非物质文化遗产项目之一,与波斯毯、东方毯并称为世界三大名毯.西宁作为藏毯之都,生产的藏毯已成为青海名副其实的特色产品,更是一张通往世界的“金名片”.(1)为了调查一批藏毯的质量,质检人员从中随机抽取了100件产品进行检测.本次抽样调查的样本容量是________;(2)6月10日是我国文化和自然遗产日.某校举办非遗文化进校园活动,决定从A,B,C,D四名同学中随机抽取两人作为“小小宣传员”,为大家介绍青海藏毯文化.请用画树状图或列表的方法求出A,B两人同时被选中的概率.23.【新考向传统文化】正月十五是中华民族的传统节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.某手工汤圆店计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳口感,汤圆店计划把这21天生产的汤圆放在近10天内销售.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?24.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若BO:OA=2:1,BC=3A C.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.25.【新视角动点探究题】如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC =8cm,动点P从点B出发,在BA边上以5cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.B 2.B3.D4.C5.C6.C7.A8.C 点拨:过点A 作AE ⊥OC 于点E ,则AE ∥BC ,∠OEA =∠OCB =90°.∴∠OAE =∠OBC .∴△OAE ∽△OBC .∴S △OAE S △OBC==14.∵S △OAE =k2,∴S △OBC =4S △OAE =2k .∴S △OBC =S △OCD +S △BOD =k2+6=2k ,解得k =4.9.B10.D 点拨:∵四边形ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°.∵BF =CE ,∴DE =FC .∴△ADE ≌△DCF (SAS ).∴∠DAE =∠FDC .∵∠ADE =90°,∴∠ADG +∠FDC =90°.∴∠ADG +∠DAE =90°.∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .又∵AG =AG ,∴△ADG ≌△AMG (ASA ).∴DG =GM ,∴AE 垂直平分DM .故①正确.易知∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE =AE DE.∴DE 2=GE ·AE .又∵DE =CF ,∴CF 2=GE ·AE .故③正确.∵正方形ABCD 的边长为4,∴在Rt △ABC 中,AC =AB 2+BC 2=42+42=4 2.∵△ADG ≌△AMG ,∴AM =AD =4.由图可知△ADM 中AM 边上的高与△ADC 中AC 边上的高相等,设△ADM 中边AM 上的高为h ,则△ADC 中AC 边上的高为h .∵12×AC ×h =12×AD ×DC ,∴h =AD ×DC AC=2 2.∴S △ADM =12·AM ·h =12×4×22=42.故④不正确.∵DM ⊥AG ,DG =GM ,∴点M 关于线段AG 的对称点为点D .过点D 作DN ′⊥AC 于点N ′,连接PD ,如图所示.则PD =PM .∴PM +PN =PD +PN ≥DN ′.∴PM +PN 的最小值即为DN ′.又∵DN ′=h =22,∴PM +PN 的最小值为2 2.故②不正确.综上所述,正确的是①③.二、11.4cm 12.y 3<y 1<y 213.16πcm 214.3.615.1216.517.8点拨:过点C 作CD ⊥y 轴于点D ,交AB 于点E .∵AB ⊥x 轴,∴CD ⊥AB .又∵△ABC 是等腰直角三角形,∴BE =AE =CE .设AB =2a ,则BE =AE =CE =a .设,13x ,13x +2+a ,13x +∵点B ,C 均在反比例函数y =kx(x >0)的图象上,∴+2(x +a +解得x =32a .∵S △OAB =12AB ·DE =12·2a ·x =12,∴ax =12.∴32a 2=12.∴a 2=8.∴S △ABC =12AB ·CE =12·2a ·a =a 2=8.18.(1-3,3)或(1+3,-3)点拨:当菱形ABCD 绕点A 顺时针旋转90°时,如图①,延长C 1D 1交x 轴于点E .易得C 1D 1=AD 1=AD =AB =2.∵∠DAB =60°,∠D 1AD =90°,∴∠D 1AB =30°.∵在菱形ABCD 中,AB ∥CD ,∴∠ADC =120°.∴∠AD 1C 1=∠ADC =120°.∴∠AD 1E =60°.∴∠AED 1=90°.∴ED 1=12AD 1=1.∴C 1E =2+1=3,AE =22-12=3,∴OE =1+3,∴C 1(1+3,-3).当菱形ABCD 绕点A 逆时针旋转90°时,如图②,延长C 1D 1交x 轴于点F .同理可得OF =3-1,C 1F =3.∴C 1(1-3,3).综上所述,C1的坐标为(1-3,3)或(1+3,-3).三、19.解:(1)移项,得(x+1)2=4,两边开平方,得x+1=±2,即x+1=2或x+1=-2.∴x1=1,x2=-3.(2)移项,得x(x-2)-(x-2)=0.提取公因式,得(x-1)(x-2)=0,∴x-1=0或x-2=0,∴x1=1,x2=2. 20.解:(1)作图如图所示.(2)四边形AEFD是菱形.理由如下:∵在矩形ABCD中,AD∥BC,∴∠DAF=∠AFE.∵AF平分∠DAE,∴∠DAF=∠EAF.∴∠AFE=∠EAF.∴AE=EF.∵AE=AD,∴AD=EF.又∵AD∥EF,∴四边形AEFD是平行四边形.又∵AE=AD,∴平行四边形AEFD是菱形.21.解:如图所示.22.解:(1)100(2)根据题意列表如下:第一人A B C D 第二人A—BA CA DA B AB —CB DB C AC BC —DC DADBDCD—由表格可知,共有12种等可能的结果,其中A ,B 两人同时被选中的结果共有2种,即AB ,BA ,所以P (A ,B 两人同时被选中)=16.23.解:(1)设总共生产了a 袋手工汤圆,依题意得0.3a 450+0.5a300=21,解得a =9000.答:总共生产了9000袋手工汤圆.(2)设促销时每袋应降价x 元,若刚好10天全部卖完,则依题意得225×2×(25-13)+8×(25-13-x )(225+752x )=40500,整理得x 2-6x +45=0,∵Δ=(-6)2-4×45<0,∴方程无解.∴10天不能全部卖完.∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为(15-13)[9000-2×225-+752x=13500-600x (元).依题意得225×2×(25-13)+8×(25-13-x +752x13500-600x =40500,整理得,x 2-4x =0,解得x 1=0,x 2=4.∵要促销,∴x =4.即促销时每袋应降价4元.24.解:(1)∵A (4,0),∴OA =4.又∵BO :OA =2:1,∴OB =8.∴B (0,8).∵A ,B 两点在直线y =ax +b 上,a +b =0,=8,=-2,=8.∴一次函数的表达式为y =-2x +8.如图,过点C 作CE ⊥OA 于点E .∵BC =3AC ,∴AB =4AC .易知CE ∥OB ,∴△ACE ∽△ABO .∴CE OB =AE OA =AC AB =14.∴CE =2,AE =1.∴OE =3.∴C (3,2).∵点C 在反比例函数y =kx(x >0)的图象上,∴k =3×2=6.∴反比例函数的表达式为y =6x.(2)由(1)=-2x +8,=6x .1=1,1=6.2=3,2=2.∴D (1,6).如图,过点D 作DF ⊥y 轴于点F ,则DF =1.∴S △OCD =S △AOB -S △BOD -S △COA =12·OA ·OB -12·OB ·DF -12·OA ·CE =12×4×8-12×8×1-12×4×2=8.25.解:(1)由题易知AB =10cm ,BP =5t cm ,CQ =4t cm ,∴BQ =(8-4t )cm .当△PBQ ∽△ABC 时,有BP BA =BQ BC ,即5t 10=8-4t8,∴t =1.当△QBP ∽△ABC 时,有BQ BA =BP BC,即8-4t 10=5t 8,∴t =3241.∴若△BPQ 和△ABC 相似,则t =1或t =3241.(2)如图,过点P 作PD ⊥BC 于点D ,则PD ∥AC .易得△PBD ∽△ABC .∴BP AB =PD AC =BD BC.由(1)知AB =10cm ,BP =5t cm ,可求得PD =3t cm ,BD =4t cm ,∴CD =(8-4t )cm.∵AQ ⊥CP ,∠ACB =90°,∴∠CAQ +∠ACP =90°,∠DCP +∠ACP =90°.∴∠CAQ =∠DCP .又∵∠CDP =∠ACQ =90°,∴△CPD ∽△AQC .∴CD AC =PD QC ,即8-4t 6=3t 4t =34.∴t =78.点易错:解答动态问题时,要注意分类讨论思想的应用.相似三角形对应边的位置不同,解出来的t 值也不同,应充分考虑所有可能出现的情况,避免漏解.。
精品 九年级数学上册 期末综合测试题

九年级数学上册 期末综合测试题一、选择题:1. 下列一元二次方程中,没有实数根的是( )A.0122=-+x xB.02222=++x xC.0122=++x xD.022=++-x x 2. 若a-b=3,b+c=5,则ac-bc+a 2-ab 的值是( )A. -15B. -2C. -6D. 6 3.已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是 ( ) A.51<<x B.135<<x C.513<<x D.155<<x4.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )A .20B .22C .24D .265. 如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,点C 在圆O 上,如果∠P=500,那么∠ACB 等于( )A. 400B. 500C. 650D. 13006. 如图,点P 是弦AB 上一点,连OP,过点P 做PC ⊥OP,PC 交圆O ,若AP=4,PB=2,则PC 的长是( ) A.2 B. 2 C.22 D. 37.二次函数c bx ax y ++=2的图象如图所示,则点),(bca Q 在( )A. 第一象限B. 第二象限C.第三象限D.第四象限8. 如图,在平面直角坐标系中,二次函数)0(2≠+=a mc ax y 的图象经过正方形ABOC 的三个顶点,且ac=-2,则m 的值为( )A. 1B. -1C. 2D. -2二、填空题:1.如图,直线12l l ∥,则三个角的度数x 、y 、z 之间的等量关系是__________2.将点)0,34(A 绕着原点顺时针方向旋转600得到点B,则点B 的坐标是 3.方程43)43(2-=-x x 的根是4.已知:06)()(22222=-+-+b a b a ,则22b a +=5.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a=6.如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程0222=+-n mx x 有实数根的概率为7.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为 cm .8.已知反比例函数x y 1=和x y 2=的图象与正比例函数x y 21=的图象如图所示交于A 、B 两点,则OBOA=9.如图,在平面直角坐标系中,圆M 与y 轴相切与原点O,平行与x 轴的直线交圆M 于P 、Q 两点,点P在点Q 的右侧,若点P 的坐标是(-1,2),则弦PQ 的长是 10.如图:正方形ABCD 中,过点D 作DP 交AC 于点M ,交AB 于点N,交CB 的延长线于点P ,若MN=1,PN=3,则DM 的长为11.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第80秒时,质点所在的位置坐标为12.在Rt △ABC 中,∠C=900,D 为BC 上一点,∠DAC=300,BD=2,AB=32,则AC 的长是 13.如图,在等腰梯形ABCD 中,AD ∥BC,AD=3,BC=5,AC,BD 相交于O 点,且∠BOC=600,顺次连接等腰梯形各边中点所得四边形的周长是14.如图,在33⨯的正方形网格中,已有两个小正方形倍涂黑,再将图中剩余的编号为1-7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是15.在三角形ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,M 为EF 的中点,则AM 的最小值为三、作图题:如图所示,是由若干个相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体。
精品 九年级数学上册 期中综合测试题

九年级数学上册 期中综合测试题时间:45分钟 满分:100分 姓名: 得分:一、选择题:(32分)1.若x 1,x 2是一元二次方程2x 2-3x+1=0的两个根,则x 12+x 22的值是( )A. 54B. 94C. 114D.72.已知a 、b 、c 分别是三角形的三边,则方程(a+b)x 2+2cx +(a+b)=0的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根3.如图,矩形ABCD 的周长是20cm ,以A B A D ,为边向外作正方形A B E F 和正方形A D G H ,若正方形A B E F 和A D G H 的面积之和为268cm ,那么矩形ABCD 的面积是( )A .221cmB .216cmC .224cmD .29cm4.若关于x 的一元二次方程nx 2-2x-1=0无实数根,则一次函数y=(n+1)x-n 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.(A)二次函数26y x x =+-的图象与x 轴交点的横坐标是( )A.2和3-B.2-和3C.2和3D.2-和3-(B)如图,AB 为圆O 的直径,C 、D 两点均在圆上,其中OD 与AC 交于E 点,且OD ⊥AC 。
若OE=4,ED=2,则BC 长度为 ( )A.6B. 7C.8D.96.(A)已知22y x =的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( )A.22(2)2y x =-+B.22(2)2y x =+-C.22(2)2y x =--D.22(2)2y x =++6.(B)如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )A.6.5米B.9米C.13米D.15米7.(A)如图,关于抛物线y=(x-1)2-2,下列说法错误的是( ) A.顶点坐标是(1,-2) B.对称轴是直线x=1C.开口方向向上D.当x >1时,y 随x 的增大而减小7.(B)如下图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A.2cm B.3cmC.32cmD.52cm8.(A)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个8.(B)如图所示,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC的长为( )A .19B .16C .18D .20 二、填空题:(24分)9.把一元二次方程x x x 2)1)(1(=-+化成二次项系数大于零的一般式是 10.若一元二次方程ax 2+bx+c=0一个根是1,且a 、b 满足333+-+-=a a b ,则c= 11.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于12.设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为13.(A)抛物线2245y x x =++的对称轴是x =______.13.(B)如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点, 则∠D =______14.(A)已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .14.(B)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= 三、综合题:(44分)15.(8分)已知关于x 的方程222(2)40x m xm +-++=两根的平方和比两根的积大21,求m 的值。
九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。
人教版九年级数学上册第二十五章综合测试卷含答案

人教版九年级数学上册第二十五章综合测试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列事件中,是必然事件的是()A.五个人分成四组,这四组中有一组有两人B.任意买一张电影票,座位号是单号C.掷一次骰子,向上一面的点数是3D.打开手机就有未接电话2.(2023河北)有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是()3.(2023娄底)从367,3.141 592 6,3.3·,4,5,-38,39中随机抽取一个数,此数是无理数的概率是()A.27 B.37 C.47 D.574.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是()A.13 B.12 C.14 D.165.如图,四张卡片除正面标有的数字不同外,其余完全相同,将四张卡片背面朝上,事件“从A,B,C三张卡片中先抽取一张记下数字后放回,洗匀后再抽取一张记下数字,两张卡片数字之和为正数”的概率为P1,事件“从A,B,C,D四张卡片中抽取一张,卡片数字为奇数”的概率为P2,则P1与P2的大小关系为()A.P1>P2B.P1<P2C.P1=P2D.无法确定(第5题)(第6题)6.如图,正方形ABCD是一块绿化带,其中四边形EOFB,四边形GHMN(阴影部分)都是正方形的花圃,已知自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.1732 B.12 C.1736 D.17387.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,“”恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13 B.38 C.12 D.238.(2024成都月考)小明和小亮在一次大量重复试验中,统计了某一结果出现的频率,绘制出如图所示的统计图,符合这一结果的试验可能是()A.掷一枚质地均匀的骰子,朝上的一面是3点B.掷一枚质地均匀的硬币,正面朝上C.从分别标有1,1,2,2,3,3的6张纸条中,随机抽出一张纸条上的数字是偶数D.从一道单项选择题的四个备选答案中随机选一个答案,选中正确答案(第8题)(第10题)9.(2023随州一模)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上、中、下三个等级的三匹马综合指标数如表,每匹马只赛一场,两综合指标数相比,大数为胜,三场两胜则赢,已知齐王的三匹马的出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为() 马匹等级下等马中等马上等马齐王 2 4 6田忌 1 3 5A.13 B.16 C.19 D.11210.向上抛掷质地均匀的骰子(如图),落地时向上的面点数为a(a的可能取值为1,2,3,4,5和6),则关于x的不等式1-ax3-x>2有不大于2的整数解的概率为()A.23 B.12 C.13 D.16二、填空题(本题有5小题,每小题4分,共20分)11.“八月十五云遮月,正月十五雪打灯”是一句谚语,意思是说如果八月十五晚上阴天的话,正月十五晚上就下雪,你认为谚语描述的事件是____________(填“必然事件”“不可能事件”或“随机事件”).12.周末期间,小燕在学习之余与妈妈要玩一次转盘游戏,选项与所占比例如图所示,则小燕不看电视的可能性为________.(第12题)13.(2023济南)围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒中棋子的总个数是________个.14.用图中两个可自由转动的转盘做“配紫色”游戏:转盘A红色区域对应的圆心角度数为120°,转盘B被分成面积相等的四个扇形,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色(若指针停在分割线上,则重新转动转盘),那么可配成紫色的概率是________.15.(2023菏泽)用数字0,1,2,3组成个位数字与十位数字不同的两位数,该两位数是偶数的概率为________.三、解答题(本题有5小题,共70分,各小题都必须写出解答过程)16.(12分)(2024淮安月考)某运动员进行打靶练习,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中打中靶心160枪,请计算出他还需要打大约多少枪?17.(14分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种蔬菜被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.18.(14分)某市今年中考理、化实验操作考试,采用学生抽签决定自己的考试内容的方式.规定:每名考生必须在三个物理实验(用纸签A,B,C表示)和三个化学实验(用纸签D,E,F表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用列表法或画树状图法表示所有可能出现的结果.(2)小刚物理实验B和化学实验F不会做,那么他这两个实验一个也抽不到(记作事件M)的概率是多少?19.(15分)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是-6,-1,5,转盘B上的数字分别是6,-7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是________;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜.请用列表法或画树状图法说明这个游戏是否公平.20.(15分)某校计划成立五个兴趣活动小组(每名学生只能参加一个活动小组):A.音乐;B.美术;C.体育;D.阅读;E.人工智能.为了解学生对以上兴趣活动的参与情况,随机抽取了部分学生进行调查统计,并根据统计结果,绘制成了如图所示的两幅不完整的统计图.根据图中信息,完成下列问题:(1)①补全条形统计图(要求在条形图上方注明人数);②扇形统计图中的圆心角α的度数为________;(2)若该校有3 600名学生,估计该校参加E组(人工智能)的学生人数;(3)该学校从E组中挑选出了表现最好的两名男生和两名女生,计划从这四名同学中随机抽取两名同学参加市青少年人工智能竞赛,请用画树状图或列表的方法求出恰好抽到一名男生和一名女生的概率.答案一、1.A 2.B 3.A 4.A 5.B 6.C7.B8.C9.B点拨:当田忌的三匹马随机出场时,双方马的对阵情况如下表:齐王的马6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 6,4,2 田忌的马5,3,1 5,1,3 3,5,1 3,1,5 1,5,3 1,3,5 共有6种等可能的对阵情况,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.故选B.10.A点思路:将a为1,2,3,4,5和6分别代入不等式中,求出对应不等式的解集,判断是否有不大于2的整数解即可.二、11.随机事件12.85%13.1214.5 1215.59三、16.解:(1)0.8;0.8(2)①150×0.8=120(枪).∴估计他正中靶心的枪数为120枪.②160÷0.8=200(枪),200-150=50(枪).∴他还需要打大约50枪.17.解:(1)画树状图如下.共有9种等可能的结果,分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C).(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=39=13.18.解:(1)画树状图如下.共有9种等可能的结果,分别是AD,AE,AF,BD,BE,BF,CD,CE,CF.(2)从树状图可以看出,共有9种等可能的结果,其中物理实验B和化学实验F一个也抽不到的结果有4种,所以物理实验B和化学实验F一个也抽不到的概率P(M)=4 9.19.解:(1)1 3(2)列表如下.-6 -1 56 0 5 11-7 -13 -8 -24 -2 3 9由表格可知,一共有9种等可能的结果,其中a+b>0的结果有4种,a+b<0的结果有4种,∴P(小聪获胜)=49,P(小明获胜)=49.∴P(小聪获胜)=P(小明获胜).∴这个游戏公平.20.解:(1)①补全条形统计图如图.②120°(2)易知被调查的学生有300名.3 600×60300=720(名).∴估计该校参加E组(人工智能)的学生有720名.(3)画树状图如下.由树状图知,共有12种等可能的结果,其中抽到一名男生和一名女生的结果有8种,所以恰好抽到一名男生和一名女生的概率为812=23.。
(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案

第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B Ð=°,48C Ð=°,如果将ABC △绕顶点A 逆时针方向旋转60°后得到AB C ¢¢△,那么BAC ¢Ð等于( )A .60°B .102°C .120°D .132°2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45°B .旋转中心为点B ,旋转角为45°C .旋转中心为点C ,旋转角为90°D .旋转中心为点B ,旋转角为90°3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30°得到A B C ¢¢△,其中A B ¢¢与AC 交于点D ,若90A DC ¢Ð=°,则A Ð为( )A .90°B .60°C .30°D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为( )A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n °时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是( )A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90°后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD Ð=°,则CAB Ð=________;若35CAE Ð=°,则BAD Ð=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60°得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60°得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF Ð的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90°后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB Ð=°,10CAD Ð=°,求DFE Ð和B Ð的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90°后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B【解析】因为90B Ð=°,48C Ð=°,所以42BAC Ð=°.又CAC ¢Ð是旋转角,所以60CAC ¢Ð=°.所以4260102BAC BAC CAC ¢¢Ð=Ð+Ð=°+°=°.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC Ð=°.3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B【解析】由题意知,旋转角为30ACA ¢Ð=°,所以903060A ¢Ð=°-°=°.由旋转性质得60A A ¢Ð=Ð=°.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120°后可以与原来的图案重合,内部的图案在旋转120°后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120° 35°【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD Ð与CAB Ð是对应角,CAE Ð与BAD Ð是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90° 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90°得到的,则90ACF Ð=°,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB Ð=°,所以18010575ACF Ð=°-°=°.又因为10CAD Ð=°,所以180751095AFC Ð=°-°-°=°.所以95DFE AFC Ð=Ð=°.又ABC ADE △≌△,所以AC AE =,105AED ACB Ð=Ð=°,B D Ð=Ð,所以75AEC ACE Ð=Ð=°.所以1057530DEF AED AEC Ð=Ð-Ð=°-°=°.所以180180953055D DFE DEF Ð=°-Ð-Ð=°-°-°=°.所以55B D Ð=Ð=°.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合测试题一、选择题(每小题3分,共30分)1.【导学号81180835】下面四个手机应用图标中是中心对称图形的是()A B C D2.【导学号81180373】用配方法解方程x2-4x-1=0,方程应变形为()A.(x+2)2=3B.(x+2)2=5C.(x-2)2=3D.(x-2)2=53. 【导学号81180833】如图,点A,B,C均在⊙0上,若∠B =40°,则∠AOC的度数为 ( ) A.40° B.60°C.80° D.90°第3题图第5题图第6题图第7题图4.【导学号81180572】数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. 17B.13C.121D.1105. 【导学号81180837】二次函数y=﹣x2+bx+c的图象如图所示,若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y26. 【导学号81180843】如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC等于()A.3 cm B.4cm C.5cm D.6cm7.【导学号81180637】如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若B′恰好落在线段AB上,AC,A′B′交于O点,则∠COA′的度数是( )A. 50°B. 60°C. 70°D. 80°8.【导学号81180834】某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%9. 【导学号81180849】如图,AP为⊙O的切线,P为切点,若∠A=20°,C,D为圆周上两点,且∠PDC=60°,则∠OBC等于()A.55°B.65° C.70°D.75°第9题图第10题图10.【导学号81180860】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)11.【导学号81180832】二次函数y=2(x﹣3)2﹣4的顶点是.12.【导学号81180856】若一元二次方程x2-2x+k=0有两个不等的实数根,则k的取值范围是________.13.【导学号81180576】一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸出1个小球,不放回,再随机摸出1个小球,两次摸出的小球标号的积小于4的概率是 .14. 【导学号81180537】如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P 点,若∠P=40°,则∠D的度数为.第14题图第15题图第16题图15. 【导学号81180836】如图,在Rt△ABC中,∠C=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE,若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________(结果保留π).16.【导学号81180839】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A,B,C,D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为________.三、解答题(共66分)17. 【导学号81180858】(6分)解方程:(x+4)2=5(x+4).18. 【导学号81180854】如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-4,3),B(-1,2),C(-2,1).(1)画出△ABC关于原点O对称的△A1B1C1,并写出点B1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°得到的△A2B2C2,并写出点A2的坐标.19. 【导学号81180848】已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若x=﹣1是方程的一个根,求m的值和方程的另一根;(2)对于任意实数m,判断方程的根的情况,并说明理由.20. 【导学号81180847】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是_______.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.21. 【导学号81180840】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.22.【导学号81180850】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数解析式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?23. 【导学号81180857】如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC 于点F.将∠EDF以点D为旋转中心旋转,其两边DE′,DF′分别与直线AB,BC相交于点G,P,连接GP,当△DGP的面积等于33时,求旋转角的大小并指明旋转方向.第23题图24. 【导学号81180634】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.⑴若直线y =mx+n经过B,C两点,求直线BC和抛物线的解析式;⑵在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;⑶设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.第24题图上册综合测试题参考答案一、1. B 2. D 3. C 4. A 5. B 6.B 7. B 8. A 9. B 10. C二、11. (3,-4) 12. k <1 13.13 14. 115º 15.2π 16. 3+3 三、17. x 1=﹣4,x 2=1.18. 解:(1)△A 1B 1C 1如图所示,B 1(1,-2).(2)△A 2B 2C 2如图所示,A 2(3,4).19. 解:(1)因为x=﹣1是方程的一个根,所以1+m ﹣2=0,解得m=1.所以方程为x 2﹣x ﹣2=0,解得x 1=﹣1,x 2=2.所以方程的另一根为x=2.(2)因为∆=(-m)2+4×1×(-2)=m 2+8>0,所以对于任意的实数m ,方程总有两个不等的实数根.20. 解:(1)13; (2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,画树状图如下:由树状图可知,所有可能出现的结果共有9种,并且它们出现的可能性相等,小明顺利通关的结果只有1种,所以小明顺利通关的概率为19. 21.(1)解:∵AB 是⊙O 的直径,C 在⊙O 上,∴∠ACB=90°,又∵BC=3,AB=5,∴在Rt △ABC 中,AC=22AB BC -=2253-=4;(2)证明:∵A C 是∠DAB 的平分线,∴∠DAC=∠OAC .∵OA=OC,∴∠OCA=∠OAC .∴∠OCA=∠DAC .∴OC ∥AD.∵AD⊥CD, ∴OC ⊥CD .又点C 在圆周上,∴CD 是⊙O 的切线.22. 解:(1)y=-2x+80;(2)根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150,解得x 1=25,x 2=35(不合题意舍去).答:每本纪念册的销售单价是25元.(3)由题意可得w=(x-20)(-2x+80)=-2x 2+120x-1600=-2(x-30)2+200.∵-2<0,∴x<30时,y 随x 的增大而增大.又∵售价不低于20元且不高于28元,∴当x=28时,w 最大=-2(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.23. 解:∵AB∥DC,∠BAD=60°,∴∠ADC=120°.又∠ADE=∠CDF=30°,∴∠EDF=60°.当∠EDF 顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°.在Rt△ADE 中,∠ADE=30°,AE=12AD=1. ∴22AD AE 3.同理,3在△DEG 和△DFP 中,∠EDG=∠FDP,DE =DF ,∠DEG=∠DFP=90°,∴△DEG≌△DFP.∴DG=DP.∴△DGP 为等边三角形.易得S △DGP =43DG 2. 3DG 23DG >0,解得3在Rt△DE G 中,DG DE =12, ∴∠DGE=30°.∴∠EDG=60°.∴当顺时针旋转60°时,△DGP 的面积等于33.同理可得,当逆时针旋转60°时,△DGP 的面积也等于33.综上所述,当∠EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于33.24. 解:(1)依题意,得1,20,3.b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线的解析式为322+--=x x y .∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0).把B (-3,0)、C (0,3)分别代入y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解得1,3.m n =⎧⎨=⎩∴直线BC 的解析式为3+=x y .(2)∵MA =MB ,∴MA +MC =MB +MC . ∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入3+=x y ,得y =2.∴M (-1,2).(3)设P (-1,t ),结合B (-3,0),C (0, 3),得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解得t =-2.② 若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2.解得t =4.③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即 4+t 2+t 2-6t +10=18.解得t 1=2173+,t 2=2173-. 综上所述,满足条件的点P 共有四个,分别为(-1,-2), 或(-1,4),或(-1,2173+) ,或(-1,2173-).第24题。