水平位移监测
水平位移监测方案

水平位移监测方案引言水平位移监测是一种重要的工程监测方法,可以用于监测土地、结构物和地质体的水平位移变化,为工程施工和地质探测提供支持和指导。
本文将介绍一种常用的水平位移监测方案,包括仪器设备的选择、监测方法的设计和数据分析的处理。
仪器设备选择选择合适的仪器设备是水平位移监测的关键。
常用的水平位移监测仪器包括全站仪、测距仪和GNSS接收机。
全站仪全站仪可以用于测量目标点的水平位移,具有精度高、操作简便等特点。
在实际监测中,可以选用高精度的全站仪进行水平位移测量,以确保监测数据的准确性。
测距仪测距仪可以用于测量目标点之间的距离差,从而计算出水平位移的变化。
在实际监测中,可选择激光测距仪或电子测距仪等设备,根据监测的具体要求来选择合适的测距仪。
GNSS接收机GNSS接收机可以通过接收卫星信号来测量目标点的经纬度坐标,从而计算出水平位移的变化。
在实际监测中,可以选择高精度的GNSS接收机进行测量,以获得高精度的水平位移数据。
监测方法设计设计合理的监测方法可以提高水平位移监测的精度和效率。
监测方法的设计应考虑以下几个方面:监测点布设监测点的布设要根据工程地质条件和监测要求确定。
通常情况下,监测点应选择在结构物或地质体的关键位置,以确保监测到变形较大的区域。
监测频率监测频率的选择应根据工程施工进度和变形速率来确定。
对于施工工程,监测频率可以较高;对于地质体的监测,监测频率可以较低。
数据采集方式数据采集方式可以选择实时采集或定期采集两种方式。
实时采集可以实时监测到水平位移的变化,但需要相应的数据传输设备;定期采集可以通过定期测量来获得水平位移的变化,适用于较大时间尺度的监测。
数据处理监测数据的处理包括数据清理、数据对齐和数据分析等步骤。
数据清理可以去除异常值和噪音数据;数据对齐可以将监测数据与时间对齐,以便进行后续的数据分析;数据分析可以采用统计方法或数学建模方法进行。
数据分析处理水平位移监测数据分析的目的是根据监测数据得出结论,并进行预测或评价。
水平位移监测名词解释

水平位移监测名词解释1. 概述水平位移监测是一种用于测量地表或结构物水平方向的位移变化的技术。
它能够提供关于地质灾害、地下工程和结构物稳定性等方面的重要信息,帮助人们及时发现和预测潜在的风险,并采取相应的措施来保障人员和财产的安全。
本文将对水平位移监测相关的基本概念、常用方法和技术、应用领域以及未来发展进行详细阐述。
2. 基本概念2.1 水平位移水平位移是指物体在水平方向上相对于参考点或参考线的位置变化。
在地理学和工程学中,水平位移通常是指地表或结构物在水平方向上的偏移量。
2.2 监测监测是指通过使用特定的技术手段来观察、记录和评估目标对象的状态或变化。
在水平位移监测中,监测包括对地表或结构物水平位移变化进行实时或定期观测,并获取相关数据进行分析和评估。
3. 常用方法和技术3.1 全站仪法全站仪法是一种常用的水平位移监测方法。
它通过在目标对象上设置多个监测点,利用全站仪进行定位和测量,从而获取各个监测点的坐标数据。
通过对比不同时间点的坐标数据,可以计算出水平位移的变化量。
3.2 GPS技术GPS(全球定位系统)技术也可以用于水平位移监测。
通过在目标对象上安装GPS接收器,可以实时获取该位置的经纬度坐标信息。
通过对比不同时间点的坐标数据,可以计算出水平位移的变化量。
3.3 雷达干涉测量雷达干涉测量是一种基于合成孔径雷达(SAR)图像处理的水平位移监测技术。
它利用雷达波束对地表或结构物进行连续观测,并记录下不同时间点的SAR图像。
通过对比不同时间点的图像,可以检测出地表或结构物在水平方向上的位移变化。
3.4 基线测量法基线测量法是一种通过在目标对象上设置多个基准点,并使用测距仪等工具进行距离测量,从而获取基线长度的方法。
通过对比不同时间点的基线长度,可以计算出水平位移的变化量。
4. 应用领域4.1 地质灾害监测水平位移监测在地质灾害监测中起到了重要的作用。
在山体滑坡和地面塌陷等地质灾害的预警和监测中,可以通过对地表水平位移的实时观测,及早发现潜在的危险信号,并采取相应的措施来减少灾害损失。
水平位移监测

某大桥的水平位移监测
监测目的
01
确保大桥结构安全,预防因位移过大导致的结构损坏或坍塌。
监测方法
02
采用全站仪、GPS等高精度测量设备,定期对大桥各部位进行
位移测量。
监测结果
03
经过长期监测,发现大桥在风、水流等自然因素影响下,存在
微小水平位移,但位移量在安全范围内。
某大型水库的水平位移监测
监测目的
在建筑基础、关键楼层等部位设 置沉降和位移观测点,利用高精 度测量设备进行实时监测。
监测结果
通过实时数据分析和定期沉降、 位移测量,及时发现并处理潜在 的结构问题,确保高层建筑的安 全运营。
05
水平位移监测的未来发展与挑战
新技术与新方法的研发
01
自动化监测技术
利用无人机、卫星遥感等技术, 实现自动化、高精度的水平位移 监测。
跨江跨海大桥
对于跨江跨海大桥,水平 位移监测有助于评估水流、 风力等自然因素对桥墩的 影响。
矿山水工工程
尾矿库监测
对尾矿库的坝体进行水平位移监测,确保尾矿库安全运行,防止 溃坝事故发生。
水利水电工程
在水利水电工程中,对大坝、闸门等关键部位的水平位移进行监测, 确保工程安全。
地下工程
在地下工程施工过程中,对周边土体的水平位移进行实时监测,预 防因土体位移导致的工程事故。
评估水库大坝稳定性,预防因位移过大导致的 溃坝风险。
监测方法
在大坝关键部位埋设测点,通过精密水准仪和 GPS进行定期监测。
监测结果
经过多年监测,发现大坝水平位移量较小,整体结构稳定。
某高层建筑的沉降与水平位移监测
监测目的
确保高层建筑在施工和运营过程 中的安全,预防因沉降和位移导 致的结构问题。
水平位移监测方案

水平位移监测方案一、监测目标和背景地质灾害和土地变形是城市建设过程中常见的问题,造成的损失经常是巨大的。
因此,为了及时发现和预防这些问题,监测土地的水平位移变化变得非常重要。
本监测方案旨在利用现代化的监测技术,对土地的水平位移进行监测和预警,为相关单位提供科学的决策依据。
二、监测原理水平位移监测是通过测量地表或建筑物的水平位移变化,来判断土地的稳定性。
常用的监测方法包括全站仪、GPS技术和遥感技术等。
全站仪可用于测量地表或建筑物的水平位移,GPS技术可以快速准确地获取多个采样点的坐标,而遥感技术则可通过对卫星影像的分析,来获取目标地区的水平位移信息。
三、监测方案(一)监测区域划定根据实际需要,选择合适的监测区域。
通常情况下,应优先考虑土质松散、坡度陡峭、植被覆盖不良等地段,因为这些地段容易出现土地滑坡等问题。
(二)监测点布设根据监测区域的特点和监测要求,决定监测点的布设数量和位置。
监测点的密度应根据实际需要进行调整,通常情况下,应在监测区域内均匀地布设监测点,以保证监测结果的准确性和可靠性。
(三)监测设备选择根据监测点的位置和监测要求,选择合适的监测设备。
如果监测点位于室内或条件较为良好的地方,可以选择全站仪作为监测设备;如果监测点位于户外或条件较为恶劣的地方,可以选择GPS技术或遥感技术作为监测设备。
(四)监测周期和频次根据实际需要,确定监测周期和频次。
监测周期一般为一个月或三个月,监测频次一般为每天或每周一次,具体周期和频次可根据实际情况进行调整。
(五)数据处理和分析对监测数据进行处理和分析,包括数据的收集、整理、存储和分析。
监测数据应按照一定的格式进行存储,以便于后续的分析和应用。
(六)监测结果报告根据监测结果,编写监测结果报告。
报告应包括监测数据的分析结果、水平位移变化的趋势等内容,同时还可以提出相关的建议和预警信息。
四、监测保障措施(一)设立监测保障团队组建专业的监测保障团队,包括技术人员、仪器设备维护人员等,负责监测设备的维护和检修工作。
高层建筑水平位移变形监测

高层建筑水平位移变形监测高层建筑在现代城市中占据着重要的地位,然而,由于种种原因,如自然地质条件、地震等,高层建筑在使用过程中的水平位移变形问题一直备受关注。
为了确保高层建筑的安全和稳定,相关部门需要进行水平位移变形监测。
本文将探讨高层建筑水平位移变形监测的重要性、监测方法及其在实践中的应用。
一、水平位移变形监测的重要性高层建筑的水平位移变形问题是导致建筑物结构破坏的主要原因之一。
当建筑物发生水平位移变形时,不仅会影响建筑的安全性,还会对周围环境和居民的生活造成威胁。
因此,对高层建筑的水平位移变形进行准确的监测是至关重要的。
二、水平位移变形监测的方法1. 全站仪监测法全站仪是一种精密的测量仪器,广泛应用于工程测量。
在高层建筑水平位移变形监测中,全站仪可以通过测量建筑物不同位置的横截面坐标,实时监测建筑物的水平位移变形。
这种方法可通过激光技术等精确测量手段实现高精度监测,准确度较高。
2. GPS监测法GPS(全球定位系统)技术已被广泛应用于地理定位与导航领域。
在高层建筑水平位移变形监测中,通过在建筑物上设置GPS接收装置,可以实时获取建筑物的位置信息,从而实现对水平位移变形的监测。
GPS监测法具有无需建立测量控制点、操作简单、实时性好等优点。
3. 基于传感器的监测法基于传感器的监测方法是一种常用的高层建筑水平位移变形监测手段。
通过在建筑物的关键部位安装压力传感器、位移传感器等仪器,可以实时采集建筑物的位移、变形等数据,并通过监测系统进行分析和处理。
这种方法操作简单,监测精度较高。
三、水平位移变形监测的实践应用高层建筑水平位移变形监测在实践中得到了广泛的应用,并取得了显著的效果。
首先,水平位移变形监测可以为高层建筑的设计和施工提供重要的参考数据。
通过对建筑物水平位移变形进行长期监测,可以获取实际数据,并结合结构设计理论进行分析和验证,从而提高建筑物的结构安全性。
其次,水平位移变形监测可以及时发现建筑物水平位移变形情况,对于预测建筑物的失稳、滑移等问题具有重要意义。
基坑水平位移监测

基坑水平位移监测基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行各种观察及分析工作,并将监测结果及时反馈,预测进-一步挖t施工后将导致的变形及稳定状态的发展,根据预测判定施工对周围环境造成影响的程度,来指导设计与施工,实现所谓信息化施工。
水平位移监测是指用观测仪器和设备对水工建筑物及地基有代表性的点位进行的水平方向位移量的量测。
中国规定水平位移的方向向下游为正,向上游为负;向左岸为正,向右岸为负。
混凝土建筑物的水平位移通常是由于水和温度荷载的作用、坝基不均匀沉降、坝体和坝基的徐变变形、混凝土材料的自身体积增长和其他变化因素等引起。
土石建筑物的水平位移主要是由于水荷载的作用、坝体土料的压缩(或固结)、坝基不均匀沉降、土料的冰冻消融等引起。
水平位移变化有一定规律性。
监测并分析水平位移的规律性,目的在于了解水工建筑物在内、外荷载和地基变形等因素作用下的状态是否正常,为工程安全运行提供依据水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。
宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5mm。
基本要求1.基坑监测应由委托方委托具备相应资质的第三方承担。
2.基坑围护设计单位及相关单位应提出监测技术要求。
3.监测单位监测前应在现场踏勘和收集相关资料基础上,依据委托方和相关单位提出的监测要求和规范、规程规定编制详细的基坑监测方案,监测方案须在本单位审批的基础上报委托方及相关单位认可后方可实施。
4.基坑工程在开挖和支撑施工过程中的力学效应是从各个侧面同时展现出来的,在诸如围护结构变形和内力、地层移动和地表沉降等物理量之间存在着内在的紧密联系,因此监测方案设计时应充分考虑各项监测内容间监测结果的互相印证、互相检验,从而对监测结果有全面正确的把握。
边坡水平位移监测方案

边坡水平位移监测方案一、工程概述在进行边坡水平位移监测之前,首先需要对监测的边坡工程进行详细的概述。
包括边坡的地理位置、周边环境、边坡的类型(如自然边坡、人工边坡)、边坡的高度、坡度、岩土体性质等基本信息。
同时,还需了解边坡的使用情况,例如是否有建筑物、道路、管道等设施位于边坡上方或附近,以及边坡的历史变形情况和可能的影响因素。
二、监测目的边坡水平位移监测的主要目的是及时掌握边坡在施工和使用过程中的变形情况,预测可能的滑坡或坍塌风险,为工程的安全施工和运营提供可靠的数据支持。
具体包括:1、评估边坡的稳定性,判断其是否处于安全状态。
2、为边坡的设计和施工提供反馈,优化设计和施工方案。
3、及时发现边坡变形的异常情况,采取相应的应急措施,避免灾害的发生。
三、监测依据监测工作应依据相关的国家规范、行业标准和工程设计文件进行。
例如《建筑边坡工程技术规范》(GB 50330-2013)、《工程测量规范》(GB 50026-2020)等。
四、监测内容1、水平位移监测点的布设在边坡顶部、中部和底部等关键位置设置监测点,监测点应具有代表性和稳定性。
监测点的间距应根据边坡的高度、坡度和地质条件等因素确定,一般在 10 20 米之间。
监测点应采用牢固的标志,如混凝土标石或钢钉,并进行编号和保护。
2、监测方法的选择常用的水平位移监测方法有全站仪测量法、GPS 测量法和激光测量法等。
全站仪测量法精度较高,但需要通视条件良好;GPS 测量法不受通视条件限制,但精度相对较低;激光测量法适用于短距离、高精度的监测。
根据工程实际情况选择合适的监测方法,也可以采用多种方法相结合的方式进行监测。
3、监测频率的确定在边坡施工期间,监测频率应较高,一般每天或每周进行一次监测。
在边坡使用期间,监测频率可以适当降低,根据边坡的稳定性情况,每月或每季度进行一次监测。
在遇到暴雨、地震等特殊情况时,应加密监测频率。
4、数据采集与处理每次监测时,应认真记录监测数据,包括监测点的坐标、位移量等。
水平位移监测方法

水平位移监测方法1.全站仪监测法全站仪是一种精密的光学测量仪器,具有高精度和远距离测量能力。
它可以通过测量目标物体上的三个参考点来计算目标物体在水平方向上的位移。
全站仪监测法适用于测量较大的建筑物或工程结构的水平位移。
该方法具有精度高、测量范围大、操作简单等优点,但需要专业人员进行操作和数据处理。
2.遥感监测法遥感技术利用卫星、航空器或无人机等遥感平台获取目标物体的图像或数据,通过对比不同时间点的图像或数据来测量水平位移变化。
遥感监测法适用于大范围、连续的水平位移监测,可以实现对较大区域的位移变化进行快速检测和分析。
该方法具有覆盖面广、操作灵活等优点,但受到天气、光照等因素的限制。
3.GPS监测法全球定位系统(GPS)是一种通过卫星信号定位的导航系统,具有高精度和实时性的特点。
GPS监测法通过将多个GPS接收器安装在目标物体上,测量接收器之间的距离变化来计算目标物体的水平位移。
GPS监测法适用于需要实时监测和高精度定位的水平位移监测。
该方法具有精度高、实时性好等优点,但需要开放区域接收卫星信号。
4.激光测距仪监测法激光测距仪是一种利用激光束测量目标物体距离的仪器。
激光测距仪监测法通过将多个激光测距仪放置在目标物体的不同位置,测量目标物体上的多个点之间的距离变化来计算目标物体的水平位移。
激光测距仪监测法适用于对局部区域进行高精度位移监测。
该方法具有精度高、测量范围大等优点,但需要设备配合和专业人员进行操作。
5.弹性测量法弹性测量法利用测力计、应变计等传感器测量目标物体受力后产生的变形量,通过解析力学原理来计算目标物体的位移变化。
弹性测量法适用于对局部区域进行小范围位移监测。
该方法具有测量精度高、适应性强等优点,但需要事先安装传感器并进行定期校准。
以上介绍的水平位移监测方法各有其适用范围和特点,具体选择时可根据监测对象的大小、形状、精度要求等因素进行综合考虑。
在实际应用中,可以采用多种方法结合进行水平位移监测,以提高测量精度和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
2020/4/14
16
2020/4/14
17
2020/4/14
18
2020/4/14
19
2020/4/14
20
2020/4/14
21
2020/4/14
3.激光准直测量
•激光准直测量按照其测量原理可分为直接测量和衍射法准 直测量两种,按照其测量环境可分为大气激光准直和真空激 光准直。 •在大气条件下,激光准直的精度一般为 10-5~10-6,影 响其精度的主要原因是大气折光的影响。在真空条件下,激 光准直的精度可达10-7~10-8 ,其精度较大气激光准直有明 显的提高,但其工程的造价和系统的维护费用也相应的提高。 •目前,在水利工程的变形监测中,主要采用衍射法激光准 直测量。
引张线法:通过拉直的钢丝的竖直面作为基准面来测定坝 体偏离值。
该方法特别适用于直线形建筑物的水平位移监测,其类型主 要包括:视准线法、引张线法、激光准直法和垂线法等。
7
2020/4/14
1.视准线法
•视准线法是基准线法测量的方法之一,它是利用经纬仪或视准 仪的视准轴构成基准线,通过该基准线的铅垂面作为基准面, 并以此铅垂面为标准,测定其他观测点相对于该铅垂面的水平 位移量的一种方法。 •为保证基准线的稳定,必须在视准线的两端设置基准点或工作 基点。 •视准线法所用设备普通,操作简便,费用少,是一种应用较广 的观测方法。 •该方法同样受多种因素的影响,如:照准精度、大气折光等, 操作不当时,误差不容易控制,精度会受到明显的影响。
28
2020/4/14
注意事项
•在进行交会法观测时,首先应设置工作基点。工作基点应尽量
选在地质条件良好的基岩上,并尽可能离开承压区,且点联测,校核其是否发生变动。工作基
点上应设强制对中装置,以减小仪器对中误差的影响。
•工作基点到位移监测点的边长不能相差太大,应大致相等,且
工程变形监测技术
韩婷婷 鄂州职业大学建筑工程学院工程测量教研室
项目一 水平变形监测
任务1. 水平变形监测的技术设计书编写 任务2. 水平变形监测控制网的建立 任务3. 水平变形监测方法 任务4:水平变形监测数据处理及技术总结
建筑物的水平位移
• 建筑物的水平位移是指建筑物的整体平面移动。 • 产生水平位移的原因主要是建筑物及其基础受
x Xk X0 y Yk Y0
• 某一时间段(t)内变形值的变化用平均变形速度来表示。 例如,在第n和第m观测周期相隔时间内,观测点的平均变形 速度等于:
v均
n
m
t
• 若t时间段以月份或年份数表示时,则v均为月平均变化速 度或年平均变化速度。
4
2020/4/14
任务3. 水平变形监测方法
到水平应力的影响而产生的地基的水平移动。 • 适时监测建筑物的水平位移量,能有效地监控
建筑物的安全状况,并可根据实际情况采取适 当的加固措施。
3
2020/4/14
建筑物水平位移测量的基本原理
• 设建筑物某个点在第k次观测周期所得相应坐标为Xk、Yk, 该点的原始坐标为X0、Y0,则该点的水平位移δ为:
• 该方法具有观测方便、测量费用低、不需要特殊仪器等优 点,特别适用于人难以到达的变形体的监测工作,如:滑 坡体、悬崖、坝坡、塔顶、烟囱等。
• 该方法的主要缺点是测量的精度和可靠性较低,高精度的 变形监测一般不采用此方法。
• 该方法主要包括测角交会、测边交会和后方交会三种方法。
27
2020/4/14
8
9
2020/4/14
活动觇牌
10
11
2020/4/14
活动觇牌法测量
• 活动觇牌法观测时,在A点设置经纬仪,瞄准B点后固定照 准部不动。 • 在欲测点上放置活动觇牌,由A点观测人员指挥,B点操作 员旋动活动觇牌,使觇牌标志中心严格与视准线重合。 • 读取活动觇牌的读数,并与觇牌的零位值相减,就获得待 测点偏离AB基准线的偏移值。 • 转动觇牌微动螺旋重新瞄准,再次读数,如此共进行2~4 次,取其读数的平均值作为上半测回的成果 • 倒转望远镜,按上述方法测下半测回,取上下两半测回读 数的平均值为一测回的成果。
12
活动觇牌法观测的步骤
•视准线端点架设好经纬仪,在另一端点安置固定觇牌,经纬仪严格照准 固定觇牌中心,并固定仪器。 •观测点上架好活动觇牌,经纬仪盘左位置,由观测员指挥点上操作员, 旋动觇牌中心线严格与视准线重合,读取测微器读数。操作员反方向导入 活动觇牌,使其中心线严格与视准线重合,读取测微器读数。以上是半测 回工作。转动经纬仪到盘右位置,重新严格照准B点觇牌,再重复盘左操 作步骤,完成一测回的观测工作。 •第二测回开始,仪器应重新整平。根据需要,每个观测点需测量2~4个 测回。 •一般说来,当用DJ1型经纬仪观测,测距在300m以内时,可测2~3测回, 其测回差不得大于3mm,否则应重测。
22
波带板大气激光准直系统
波带板大气激光准直系统主要由激光器 点光源、波带板和接收靶三部分组成。
23
24
2020/4/14
25
2020/4/14
实例分析
26
2020/4/14
方法二:交会法水平位移监测
• 交会法是利用2个或3个已知坐标的工作基点,测定位移标 点的坐标变化,从而确定其变形情况的一种测量方法。
方法一:基准线法水平位移监测 方法二:交会法水平位移监测 方法三:精密导线法水平位移监测 方法四:全站仪法水平位移监测
5
2020/4/14
方法一:基准线法水平位移监测
一、基准线法的原理: 通过建筑物轴线或平行与建筑物轴线的固定不变的铅值平面为
基准面,根据它来测定建筑物的水平位移。 视准线法:由经纬仪的视准面形成基准面的基准线法。 激光准直法:通过激光经纬仪的激光束形成基准面的基准线法。
13
2.引张线法:
•所谓引张线,就是在两个工作基点间拉紧一根不锈钢 丝而建立的一条基准线。以此基准线对设置在建筑上的 变形监测点进行偏离量的监测,从而可求得各测点水平 位移。 •引张线法是精密基准线测量的主要方法之一,广泛应 用于各种工程测量。 •前苏联较早将其应用于大坝水平位移观测,20世纪60 年代该方法引入国内,并在我国大坝安全监测领域得到 了广泛的应用。