橡胶缓冲器

橡胶缓冲器
橡胶缓冲器

压力变送器选型标准

压力变送器选型标准 一、变送器要测量什么样的压力 先确定系统中测量压力的最大值,一般而言需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器。持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,这样做还会使精度下降。于是可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。所以在选择变送器时要充分考虑压力范围、精度与其稳定性。 二、什么样的压力介质 黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送器中与这些介质直接接触的材料。以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。 三、变送器需要多大的精度 决定精度的有,非线性,迟滞性,非重复性,温度、零点偏置刻度,温度的影响。但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。 四、变送器的温度范围 通常一个变送器会标定两个温确段,其中一个温度段是正常工作温度,另外一个是温度补偿范围,正常工作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补偿范围时可能会达不到其应用的性能指标。 温度补偿范围是一个比工作温度范围小的典型范围。在这个范围内工作变送器肯定会达到其应有的性能指标。温度变从两方面影响着其输出,一是零点漂移,二是影响满量程输出。如:满量程的+/-X%/℃,读数的+/-X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。温度影响是了解如何使用变送器时最复杂的一部分。 五、需要得到怎样的输出信号 mV、V、mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号,是否需要放大器,放大器的位置等。对于许多变送器和控制器间距离较短的OEM设备采用mA输出的变送器最为经济而有效的解决方法。 如果需要将输出信号放大,最好采用具有内置放大的变送器。对于远距离传输或存在

减震缓冲技术

减震缓冲技术发展综述 姓名:尚兴超 学号:511011503 指导老师:梁医 一.概述 机械振动、冲击问题广泛存在于工程机械[1]、汽车机械、建筑机械、船舶机械、航空航天、武器领域[2]等,减振器和缓冲器主要是用于减小或削弱振动或冲击对设备与人员影响的一个部件。它起到衰减和吸收振动的作用。使得某些设备及人员免受不良振动的影响,起到保护设备及人员正常工作与安全的作用,因此它广泛应用于各种机床、汽车、摩托车、火车、轮船、飞机及坦克等装备上。 振动问题的基本方程为: ()e sin n t d x A t ζωωφ-=+ 从方程中可以看出,系统振动幅值的衰减与阻尼系数大小ζ有关[3],也就是说,震动产生的能量将会被阻尼所吸收。减震器和缓冲器就是基于此原理而设计的。 二.发展历史 世界上第一个有记载、比较简单的减震器是1897年由两个姓吉明的人发明的。他们把橡胶块与叶片弹簧的端部相连,当悬架被完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓, 产生止动。1898年,第一个实用的减震器 由一个法国人特鲁芬特研制成功并被安装到摩托赛车上。他将前叉悬置于弹簧上,同时与一个摩擦阻尼件相连,以防止摩托车的振颤。1899年,美国汽车爱好者爱德华特·哈德福特将前者应用于汽车上。后来,又经历了加布里埃尔减震器、平衡弹簧式减震器和1909年发明的空气弹簧减震器。空气弹簧减震器类似于充气轮胎的工作原理,它的主要缺点是常常产生漏气。 1908年法国人霍迪立设计了第一个实用的液压减震器。其原理是液流通过小孔时产生的阻尼现象。20世纪60年代,通用公司麦迪逊工程师研制了把螺旋弹簧、液压减震器和上悬架臂杆组成的麦迪逊减震器,其体积比较小,得到了广泛的应用[4]。 三.研究现状 液压缓冲器是目前应用最为广泛的减震缓冲装置,其结构简单,运行平稳。

为高速ADC选择最佳的缓冲放大器

为高速ADC选择最佳的缓冲放大器 现代通信系统创新设计主要表现在直接变频和高中频架构,全数字接收机的设计目标要求模数转换器(ADC)以更高的采样率提供更高的分辨率(扩大系统的动态范围)。在新兴的3G 和4G数字无线通信系统中,无杂散动态范围(SFDR)和线性度都需要高性能的ADC来保证。幸运的是,在接收信号链路中,ADC的前级增益电路—缓冲放大器的性能在最近几年得到了极大提高,有助于ADC确保满足现代无线通信系统的带宽和失真要求。但是,缓冲放大器和ADC之间的匹配要求非常严格,深刻理解缓冲放大器对ADC性能指标的影响非常重要。 长期以来,得到无线通信系统设计工程师认可的理想数字接收机的信号链路是:天线、滤波器、低噪声放大器(LNA)、ADC、数字解调和信号处理电路。虽然实现这个理想的数字接收机架构还要若干年的时间,但用于射频前端的ADC的性能越来越高,通信接收机正逐渐消除频率变换电路。从发展趋势看,接收机的一些中间处理级会被逐步消除掉,但ADC前端的缓冲放大级却是接收机中相当重要的环节,它是保证ADC达到预期指标的关键。信号链路的缓冲放大器是包括混频器、滤波器及其它放大器的功能模块的一部分,它必须作为一个独 立器件考察其噪声系数、增益和截点指标。给一个既定的ADC选择合适的缓冲放大器,可以在不牺牲总的无杂散动态范围的前提下改善接收机的灵敏度。 定义动态范围 接收灵敏度是系统动态范围的一部分,它定义为能够使接收机成功恢复发射信息的最小接收信号电平,动态范围的上限是系统可以处理的最大信号,通常由三阶截点(IP3)决定,对应于接收机前端出现过载或饱和而进入限幅状态的工作点。当然,动态范围也需要折衷考虑,较高的灵敏度要求低噪声系数和高增益。然而,具有30dB或者更高增益、噪声系数低于2dB 的LNA其三阶截点会受到限制,常常只有+10到+15dBm。由此可见,高灵敏度的放大器有可能在接收前端信号处理链路中成为阻塞强信号的瓶颈。在接收机的前端加入ADC后,对动态范围的折衷处理变得更加复杂。引入具有数字控制的新型线性放大器作为缓冲器,能够在扩展动态范围的同时提高接收机的整体性能。 为了理解缓冲放大器在高速ADC中的作用,我们需要了解一下每个部件的基本参数及其对接收机性能的影响。传统的接收机前端一般采用多级变频,将来自天线的高频信号解调到中频,然后再作进一步处理。通常,信号链路会将射频输入转换到第一中频的70MHz或140MHz,然后再转换到第二中频的10MHz,甚至进一步转换至第三中频的455kHz。这种多级变频的超外差接收机架构的应用仍然很广泛,但考虑到现代通信系统所面临的降低成本、缩小尺寸的压力,设计工程师不得不尽一切可能去除中间变频电路。长期以来,军品设计工程师也一直都在探索实现全数字化接收机的解决方案,用ADC直接数字化来自天线和滤波器组的射频信号。 近几年,ADC的性能指标得到了飞速提高,但还没有达到可以支持全数字化军用接收机的水平。尽管如此,商用接收机的设计已经从三级或更多级的变频架构简化到一次变频架构。减少频率变换级意味着ADC输入将是较高中频的信号,需要ADC和缓冲放大器具有更宽的频带。对ADC分辨率的要求取决于具体的接收机,对于一些军用设备,例如有源接收机,10位分辨率即可满足要求。对于当前和正在兴起的商用通信接收机,比如3G、4G蜂窝系统,为了降低经过复杂的相位和幅度调制的波形的量化误差,需要ADC具有更高的分辨率。对于多载波接收机,通常需要14位甚至更高的分辨率,同时也要足够的带宽来处理整个中频频带的信号。 如果一个接收机架构已具备高速、高分辨率ADC,那么关系到灵敏度和动态范围的其它关键参数是什么呢?ADC常用SFDR作为其关键指标,SFDR定义为输入信号的基波幅度与指定

缓冲器

缓冲器 是否提供加工定制:是品牌:缓冲器 型号:橡胶缓冲器聚氨 酯 起重机类型:起重机缓冲器 操作形式:无结构形式:国标 跨度:无(米)悬臂长度:无(米) 有效起升高度:无(米)适用范围:配合各种机械设备. 广泛使用 大车运行速度:无(m/min)额定起重力矩:无(kN.m)最大回转速度:无(r/min)

起重机用聚氨酯缓冲器不但可以吸收大量的冲击力,还具有良好的抗恢复性,较高的机械强度,良好的绝缘防腐蚀耐寒耐老化等优异性能。 聚氨酯材料还具有高硬度下仍有弹性的特点,所以聚氨酯缓冲器比橡胶缓冲器缓冲范围宽,硬度调节余地大,更容易满足不同设施要求,与金属缓冲器相比具有比重小,结构简单安装维修方便缓冲平稳耐冲击等优点。 起重机用聚氨酯缓冲器不但可以吸收大量的冲击力,还具有良好的抗恢复性,较高的机械强度,良好的绝缘防腐蚀耐寒耐老化等优异性能。

聚氨酯材料还具有高硬度下仍有弹性的特点,所以聚氨酯缓冲器比橡胶缓冲器缓冲范围宽,硬度调节余地大,更容易满足不同设施要求,与金属缓冲器相比具有比重小,结构简单安装维修方便缓冲平稳耐冲击等优点 重量轻,价格便宜,维修、更换方便,反弹小,耐冲击,抗压性能好,化学稳定性好,耐腐蚀性好,在缓冲过程中无噪音,无火花,特别适合防爆场合。泡沫化聚氨酯0.60千克/立方分米。螺纹销钉45#。六角螺母45#。 使用说明:这种缓冲器其变形体是用聚氨酯材料经过适当配方处理制成的,重量轻,价格便宜;在缓冲过程中可消耗约40%的能量,反弹小;可压缩性和回弹性好,可压缩到50%以上,卸载5分钟后回复率不小于95%,该材料的微孔构造使其中作过程类同于一个带有空气阻尼的弹簧,因而其缓冲容量可随碰撞速度的提高而加大。与橡胶缓冲器一样,这种缓冲器构造简单,工作中是软碰撞,无噪声,无火花,特别适用于防爆场所。温度适用范围为-20℃~+60℃。 工作原理:聚氨酯缓冲器是利用聚氨酯材料特殊的微孔,泡结构来吸能缓冲,在受冲击的过程中相当于一个带有多气囊阻尼的弹簧。

缓冲区分析

1、空间缓冲区分析。 (1)为点状、线状、面状要素建立缓冲区。 1)打开菜单“自定义”下的“自定义模式”,在对话框中选择“命令”,在“类别” 中选择“工具”,在右边的框中选择“缓冲向导”(如图 1 所示),拖动其放置 到工具栏上的空处。 图1提出“缓冲向导” 2)利用选择工具选择要进行分析的点状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图2及图3所示。 图2 线状缓冲区信息设置1

图3线状缓冲区信息设置2 3)利用选择工具选择要进行分析的线状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息。 4)利用选择工具选择要进行分析的面状要素,然后点击,在“缓冲向导” 对话框设置缓冲区信息,如图4所示。 图4 面状缓冲区信息设置 2、学校选址。 要求: (1) 新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 (2) 各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势 位置因素各占0.125。 (3) 实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部 分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完 成。 (4) 最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。

具体操作: (1)打开加载地图文档对话框,选择E:\Chp8\Ex1\school.mxd。 (2)从DEM 数据提取坡度数据集: 打开工具箱→“Spatial Analyst 工具”→“表面分析”→“坡度”工具;在打开对话框中设置,如图5所示;生成坡度图,如图6所示。 图5 “坡度”对话框设置 图6 坡度图 (3)从娱乐场所数据“Rec_sites”提取娱乐场所欧氏距离数据集: 打开工具箱→“Spatial Analyst 工具”→“距离分析”→“欧氏距离”工具;在打开对话框中设置,如图7所示;生成欧氏距离数据集,如图8所示。

缓冲器疑难解答

缓冲器疑难解答 一、机械行业中的缓冲器指什么? 答:机械行业中的缓冲器是指 二、缓冲器最普遍的名称是什么? 减振器、缓冲垫、阻尼器、缓冲器和隔振器 三、缓冲器的主要类型? 1、实体式缓冲器:这类缓冲器主要有木块式、橡胶和聚氨脂塑料缓冲器。 2、弹簧缓冲器 3、液压缓冲器 4、阻尼缓冲器 四、缓冲器的应用领域? 缓冲器主要应用于冶金、起重、铁路、港口、电梯、汽车等行业 五、缓冲器选择标准 实际应用中主要根据缓冲容量、缓冲力和缓冲行程三个要素来具体选择机械适用的缓冲器类别 六、缓冲器产品业内排名以及生厂商优势 目前国内主要的缓冲设备生产厂家有沈阳祺盛机械有限公司,该公司是生产各类缓冲器的综合性的股份有限公司,其生产工艺先进,检测设备齐全,产品质量可靠,售后服务完善,深受好评。北京金自天和以及捷瑞特是生产弹性胶泥的主要厂家,另有辽宁清原缓冲器有限公司。 七、聚氨酯缓冲器的优势 1. 机器的长寿命化–使用缓冲器能够大大减少对机器所造成的冲击和震动,避免机械损坏,减少因机器故障导致的停工时间、维修费,延长机器的使用寿命。 2. 运转速度高速化–由于缓冲器可以控制各种各样的运动,使运动的物体平稳停下来。因此,机器可以在高速情况下作业,这样就可望提高生产率。 3. 生产线质量提高–由于缓冲器可以清除对机器造成负面影响的因素,例如噪音、振动、破坏性的冲击,产品的质量也自然能够得到提高,同时还有助于正确的定位。 4. 机械运转的更安全化–缓冲器在保护机械设备的同时,可以实现操纵者可预见的、可靠的减速。另外,如果有必要可以将缓冲器设计成符合国际安全标准的设备。 5. 提高产品竞争能力的附加价值–通过使用缓冲器,机器设备将会变得对用户有更大的价值,因为生产力提高,设备使用寿命延长,维修费用降低,并且运转安全可靠。 八、液压压缓冲器与其他类型缓冲器区别? 油压缓冲器和其他缓冲器装置如弹簧、PU胶、阻尼器等相较,在停止同一运动工作件所需要的作用力方面会因缓冲装置的不同,而有所不同。 弹簧、PU胶或其他橡胶类的材料只消耗一小部份的动能,而将大部份的能量以弹性位能的形式储存,因此在行程的末端,无可避免地会产生非常大的抗力及反弹力。而阻尼器如果缺乏精心设计的油孔系统,也可能会在缓冲行程的开始时产生很大的冲击力。而液压缓冲器就

提升系统选型计算

提升系统选型及验算方法 一、提升井架 井筒利用矿建用凿井井架施工,凿井井架必须能承载井筒装备安装施工荷载,且其天轮平台满足提升悬吊天轮布置的要求。必要时可采用永久井架施工。 二、提升机 井筒装备安装用的提升机,应根据井筒安装的提升方式及提升量进行选择。必要时可采用矿永久提升机施工。列出提升机技术参数表(表3.4.3)。 三、提升系统选型验算 根据矿建所用提升机或矿永久提升机进行提升能力验算。 (1)、提升绞车凿井提升计算 ①滚筒直径(D) D≥60ds D≥900δ 式中:ds—钢丝绳直径,mm;δ—钢丝绳最粗钢丝直径,mm; ②选定提升机型号 DT≥D DT—所选提升机的滚筒直径,Mm; ③校验滚筒宽度 B={[(H0+30)/3.14DT]+3}(ds+ε)≤BT 式中:30—钢丝绳试验长度,m; DT—提升机名义直径,mm ; 3—摩擦圈数; BT—提升机滚筒宽度,mm; ε—钢丝绳绳圈间隙,取2~3mm ; ④计算提升高度H0=H1+H2+H3+H4,m。 其中:H1—井筒深度,m H2—井架高度,m H3—提升天轮半径,m H4—提升天轮梁高度,取0.75m ⑤设计选用多层股不旋转钢丝绳作为提升绳,绳重Ps= kg/m,钢丝绳最小破断拉力Q断为kg,配提升钩头,提升钩头应与提升荷载配套。

⑥提升容器自重: 吊桶:Q Z=G1+ G2+ G3+ G4; 其中:G1—吊桶重量,kg G2—钩头重量,kg G3—滑架重量,kg G4—滑架缓冲器重量,kg ⑦提升载荷: Q=最大提升重量,kg; Q绳:提升钢丝绳重:提升高度绳重,kg ⑧提升钢丝绳静张力: Q总= Q + Q绳,kg; 其中: Q—最大提升重量,kg Q绳—提升高度的钢丝绳重量,kg 提升人员时:Q 人总 = Q Z +n Q人+ Q绳,kg 其中:Q1—提升容器总重量,kg Q人—吊桶乘人总重量,取75kg/人 Q绳—提升高度的钢丝绳重量,kg n—吊桶乘人数,根据吊桶容积确定 以上计算的钢丝绳静张力Q 总 应小于绞车最大静张力差,可以满足使用。 ⑨以最大静张力验算提升绳安全系数Ma: 提料:Ma=Q 断/Q 总 >7.5,提人:Ma= Q 断 / Q 人总 >9,满足要求。 ⑩电机功率验算: P o=Q o V=Q o WπD/(102×η×60×i)<绞车电机额定功率 结论:该提升绞车挂吊桶、重物提升到合理位置;实际施工时,绞车实际电流不得超过额定电流,确保提升安全。 (11)提升偏角验算 滚筒中心与天轮中心距离L(不超过60m),钢丝绳距提升中心线的最大偏移量为B。 钢丝绳最大偏角α=arctg(B/L)= °<1.5°,满足要求。 (12)提升过卷高度验算(以最大长度的吊物为例) 绞车最大绳速为m/s。 h4=H-(h1+h2+h3+0.5R) m, 式中:H—为井架高度即井口水平到天轮平台的距离,m

计量泵的选型参数

计量泵的选型参数 恰当地选择计量泵都需要哪些信息? 1. 被计量液体的流量。 2. 被计量液体的主要特性,例如化学腐蚀性、黏度和比重等。 3. 系统的背压。 4. 合适的吸升高度。 5. 需要的其他选项,如模拟量控制、脉冲量控制、流量监视和定时器。 电磁驱动计量泵有哪些主要优势? 电磁驱动计量泵只有一个运动部件—电枢轴。通常来讲,运动部件越少则计量泵工作越可靠。计量泵非常适合于低流量、低压力工作场合,并且在供电电压波动时有良好的补偿作用。 与固定频率、改变冲程长度的计量泵相比较,固定冲程长度、改变频率的计量泵有哪些优势? 通过校正,每一个冲程的投加量是已知的。因此总的投加量可以通过计算得出(投加量=每冲程投加量*频率)。总投加量与频率成线性关系(50 % 频率 = 50 % 投加量) 。通过外部的脉冲或模拟量控制,投加量可以在一秒钟之内从最小调到最大。另外它比电机驱动的冲程长度调节成本要低的多。 如何使用计量泵的性能曲线图? 1. 找到与所选用的计量泵相应的性能曲线图。 2. 在下面的图表中标示出当前的背压。 3. 确定修正因数,取以bar为单位的背压值,向上延伸至曲线,在交叉点垂直向左读取修正因数值。 4. 用需要的投加量值除以修正因数值,得出以 ml/min.或 L/h为单位的值。 5. 把计算结果放在投加量刻度的中间。 6. 当把这个值放在投加量刻度上时,可以使用一把直尺,查找出冲程长度设定和冲程频率设定。

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 计量泵配件的基本知识

桥式起重机缓冲器作用及类型

桥式起重机缓冲器作用及类型 来源:新乡市中原起重机有限公司 https://www.360docs.net/doc/6017136133.html, 当运行机械桥式起重机的位置限制器或制动装置发生故障时,由于惯性的原因,运行到终点的桥式起重机或小车,将在运行终点与设置的止挡体相撞。设置缓冲器的目的就是吸收起重机或起重小车的运行功能,以减缓冲击。缓冲器设置在起重机或者起重小车与止挡体相碰撞的位置。在同一轨道上运行的起重机之间以及在同一桥架上的双小车之间也应该设置缓冲器。 一、实体缓冲器。 1、橡胶缓冲器:这种缓冲器结构简单,但它所能吸收的能量较小,一般用于起重机运行速度不超过50/min的场合,主要起到阻挡作用。 2、聚氨酯缓冲器:聚氨酯泡沫塑料缓冲器吸收能量大,缓冲性能好,耐油、耐老化、耐酸、耐腐蚀、耐高温低温,绝缘又防爆,相对密度小儿而轻,机构简单、价格低、无噪音、无火花、安装维修方便、使用寿命长等特点。所以在国际上已经普遍采用,在一般起重机上,可替代橡胶和弹簧缓冲器,在防爆场所更值得推广。 二、弹簧缓冲器。弹簧缓冲器主要由碰头、弹簧和壳体组成。其特点是机构比较简单,使用可靠。当起重机撞到弹簧缓冲时,其能量主要转变为弹簧的压缩能。经过改进的带止弹机构的弹簧缓冲器,可以防止反弹力。 三、液压缓冲器。当缓冲器受到碰撞压力时,动能经塞头和加速弹簧转给活塞,使其向右运动。原来缓冲器工作腔内装有一

个复位弹簧、顶杆以及油液。活塞的运动挤压工作腔内的油液,使其复位弹簧压缩,同时使油液从活塞与顶杆之间的环形间隙挤压出来,进入贮油腔。在活塞开始运动时,由于与顶杆之间的环形间隙较大,油液容易被挤出;在活塞继续运动时中,这一环形间隙变得越来越小,即活塞阻力不断增大,到顶杆的圆柱形阶段后,环形间隙为为难能告知,阻力也稳定于最大值。缓冲器被压缩的过程是通过活塞挤压油液做功的过程。这一过程消耗了大量动能,起到缓冲作用。当工作完毕,活塞被复位弹簧推至原始位置,完成一个工作循环。

三态缓冲器 74系列芯片的型号区别与功能略表

三态缓冲器 74系列芯片的型号区别与功能略表 74系列集成电路大致可分为6大类: .74××(法式型); .74LS××(低功耗肖特基); .74S××(肖特基); .74ALS××(进步前辈低功耗肖特基); .74AS××(进步前辈肖特基); .74F××(高速)。 近年来还出现了高速CMOS电路的74系列,事实上芯片。该系列可分为3大类: .HC为COMS电平; .HCT为TTL电平,可与74LS系列互换行使; .HCU适用于无缓冲级的CMOS电路。 这9种74系列产品,只消后边的标号雷同,其逻辑功效和管脚摆列就雷同。依据不同的条件和不同类型的74系列产 品,例如电路的供电电压为3V就应拣选74HC系列的产品 系列电平典型传输耽误ns 最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功效上是一样的。 74LSxx的行使证据倘使找不到的话,可参阅74xx或74HCxx的行使证据。 有些原料里蕴涵了几种芯片,如74HC161原料里蕴涵了74HC160、74HC161、74HC162、74HC163四种芯片的原料。找不到某种芯 片的原料时,可试着观察一下临近型号的芯片原料。 74HC的速度比4000系列快,引脚与法式74系列兼容 4000系列的优点是有的型号可就业在+15V 。新产品最好不消LS。 功效略表 74HC01 2输入四与非门 (oc) 74HC02 2输入四或非门 74HC03 2输入四与非门 (oc) 74HC04 六倒相器

车钩缓冲器常见故障分析及处理

车钩缓冲器常见故障分析及处理 缓冲器在运行和调车作业过程中经常受到变化的压缩力和冲击力,致使各部分零件产生磨耗、变形、裂损等故障,导致缓冲器作用不良,从而使车辆间的冲撞加剧,以致造成车体和货物的损坏。因此,对缓冲器的故障应该及时进行分析与处理。目前,我国货车上使用的缓冲器大部分为二号和MX-1型缓冲器,随着列车载重和列车质量的增加,以上缓冲器的强度和容量逐渐达不到要求,大容量的新式ST型、MT-3型缓冲器正逐步推广使用,因此,以下主要针对二号缓冲器、MX-1缓冲器、ST型缓冲器、MT-3缓冲器常见故障进行分析。 一、缓冲器的故障分析 1、二号缓冲器的故障分析 ①弹簧盒裂纹原因 弹簧盒裂纹多数发生在弹簧盒的尾端和弹簧盒端部弯角处。弹簧盒底部与后从板相接触,运行中相互发生摩擦造成弹簧盒底部边沿磨耗和裂损,尤其是当缓冲器作用失灵而处于压死状态时,弹簧盒在列车运行和调车作业时直接受到过大的冲击力而开裂,也有因施修时截换工艺不良,使弹簧盒受力不均而折损的。 ②环弹簧裂纹、折损原因 在环弹簧的裂纹和折损中,以内环弹簧(尤其是半内环弹簧)为最多,约占故障的12%左右。因其相对来说受力较大,当负担力不均匀后,在长期使用中材质容易产生疲劳裂纹,裂纹大多在锥面上,而破损者往往碎成许多小块,而由此影响到其他环簧。 ③环弹簧咬合一起 环弹簧咬合一起,致使缓冲器成为一体而失去缓冲作用。产生环弹簧咬合的主要原因是由于给油不良,油质差、油量不足或者是摩擦面把油膜切断所致。列检作业中,如果发现缓冲器两端与前后从板间有间隙时,即可判断为环弹簧互相咬合的故障。 ④缓冲器自由高度不合规定尺寸 缓冲器自由高度不合规定尺寸的产生原因是由于弹簧的刚度过低,容易产生弹簧塑性变形而导致缓冲器自由高度不合规定尺寸。另外,当缓冲器各零件产生磨耗,环弹簧衰弱也会导致缓冲器自由高度不合规定尺寸。 2、MX-I型摩擦橡胶缓冲器故障分析 ①箱口部开裂原因 箱口部开裂,裂口位置位于水平面,其原因是水平面薄于其他面(21 mm),楔块靠近箱间隔爪一侧(即楔块装扁),使楔块与箱口斜面形成空间,造成楔块与箱口摩擦面为线接触,反复压缩和复原,逐渐磨成沟槽,强度减弱,当运用中受到较大冲击时,使箱口胀开。 ②箱体底端面辗堆 箱体底端面辗堆的原因是箱体底部水平面厚度为21 mm,而十三号车钩的钩尾框后堵弯角圆根高18 mm,当列车牵引时,钩尾框后堵圆根斜坡向箱底端面摩擦辗堆,直至与钩尾框后堵圆根相似为止。这样,使缓冲器底板在箱体内(设计时为底板露出底端1mm),造成分解时底板取不出来,需用扁铲将辗堆边铲掉后方能分解。 ③压块、楔块压人箱体上口内卡住,底板、底隔板、橡胶片脱出箱体。

车辆缓冲器环簧强度分析

2006年用户年会论文 车辆缓冲器环簧强度分析 田建广 揭长安 [天津机车车辆厂] [ 摘 要 ]:本文通过对货车二号缓冲器的内、外环弹簧进行有限元分析,明确了内、外环弹簧承载状态下的应力分布和变形,较好地验证了极限载荷下该缓冲器环弹簧产生塑性变形的情况。特别是首次探明了内、外环弹簧接触表面的接触应力状态,为改进环弹簧的设计提供了依据。 1. 引言 为了提高铁路货车运输能力,适应目前高速重载的需要,作为主要承载零件的缓冲器的工作状况正在越来越受到重视。 为了我厂缓冲器产品的研究和新品的开发,我们对铁路货车装用量最大的二号缓冲器环簧进行了分析和验证。 2. 模型的建立 图1为二号缓冲器内、 外环弹簧接触状态简图,承载状态下由于受到轴向压力的作用,使外环的上端面与内环的上端面处在同一水平面内,即内环受压而缩小,外环受拉而涨大。由于环簧是一个轴对称物体,因此我们建模时采用平面轴对称建模方式。网格为自适应网格。(见图2) 3. 加载 由于承载状态下,内环与外环相互接触摩擦,因此该分析为接触非线性结构分析。当施加力载荷时,发生了求解不收敛的情况,原因是产生了刚体运动,接触失效。为了解决该问题,我们选择了施加位移载荷的加载方式,收到了很好地效果。另外,我们还试用了施加力载荷时,在刚体运动方向加了一个刚度较弱的弹簧,来防止刚体运动的产生,虽然也达到了收敛的结果,但是发现应力分布情况与采用位移

2006年用户年会论文 加载时的结果有差别,在此一并提出,望各位专家予以指导。 4. 结论 应用ANSYS 分析软件对内、外环弹簧应力分析,结果表明内、外环弹簧的接触面上,内环簧的上角和外环簧的下角部位的接触应力最高,是产生应力集中的地方(见图3)。 在实际零件的相关部位内环弹簧采用了R2,外环弹簧采用了R3的倒角,有效地减小了相关部位的接触应力值(见图4),从理论上验证了设计的合理性。ANSYS 软件对接触问题的分析,是目前其它常规计算和实验测定无法解决的。在给定极限位移的条件下,分析得到的最大载荷为1430kN 内、外环弹簧,与实际测得载荷平均值1200kN 相差19.2%,这是因为分析中假设材料是完全弹性的。从应力图中可以看出内、外环弹簧局部应力超出材料屈服极限,导致内、外环弹簧出现塑性变形,所以实际测量值低于分析值。从内环弹簧内径缩小、外环弹簧外径增大的测量结果,也验证了ANSYS 软件分析是正确的。 图三 图四

液压缓冲器的选型

液压缓冲器的选型㈠应用数据 F终值为

㈡撞击模式 ①单纯的水平撞击 ②气缸推力下的水平撞击 ③自由落体撞击 ④气缸推力下向下的撞击 ①单纯的水平撞击(无推力) 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m) 步骤2:计算做工能量E2

计算 数值 E2 单位结果 0.0 J(N.m) 步骤3:计算每次做工能量E 计算 数值 E 单位结果 4.0 J(N.m) 步骤4:计算每小时吸收能量E T 计算 数值 E T 单位结果 400.0 J(N.m) 步骤5:有效重量W E 计算 数值 W E 单位结果 0.0 K g 4.0J 400.0J 0.0 kg 步骤6:选型 表如下: 的缓冲器 小时吸收能量大于 有效重量 根据计算结果应选单次吸收能量大于

②气缸推力下的水平撞击 步骤1:计算动能E1 计算 数值 E1单位 结果 4.0J(N.m)

步骤2:计算做工能量E2 计算 数值 E2单位 L的暂定值0.01m 结果0.5J(N.m)步骤3:计算每次做工能量E 计算 数值 E单位 结果 4.5J(N.m)步骤4:计算每小时吸收能量E T 计算 数值 E T单位 结果447.1J(N.m)步骤5:有效重量W E

计算 数值 W E单位 结果 2.2K g 次吸收能量大于 4.0J的缓冲器根据计算结果应选 小时吸收能量大于447.1J 有效重量 2.2kg ③自由落体撞击 步骤1:计算动能E1 计算 数值 E1单位 结果9.8J(N.m) 步骤2:计算做工能量E2 计算 数值 E2单位 结果0.2J(N.m) 步骤3:计算每次做工能量E 计算 数值 E单位 结果10.0J(N.m)

起重机用聚氨酯缓冲器型号

JHQ-A型聚氨酯缓冲器: 序号型号 D mm H mm M mm h mm 缓冲容量 KN.m 缓冲行程 mm 缓冲力 KN 1JHQ-A-1658016350.57347.0526.47 2JHQ-A-2808016350.4006042 3JHQ-A-38010016350.5027542 4JHQ-A-41008016350.6286066 5JHQ-A-510010016350.7857566 6JHQ-A-610012516350.9809466 7JHQ-A-71251001635 1.22775103 8JHQ-A-81251251635 1.53394103 9JHQ-A-91251601635 1.960720169 10JHQ-A-101601251635 2.51294169 11JHQ-A-111601601635 3.215120169 12JHQ-A-121602001635 4.019150265 13JHQ-A-132001602045 5.024120265 14JHQ-A-142002002045 6.280150265 15JHQ-A-1520025020457.850188265 16JHQ-A-1625020020459.810150414 17JHQ-A-17250250204512.266188414 18JHQ-A-18250320204515.700240414 19JHQ-A-19320250204520.096188675 20JHQ-A-20320320204525.732240675

JHQ-C型聚氨酯缓冲器: 序号型号D H B b缓冲容量缓冲行程缓冲力 mm KN.m mm KN 1JHQ-C-16580100700.2656028 2JHQ-C-28080115850.46042 3JHQ-C-380100115850.5027542 4JHQ-C-4100801301000.6286066 5JHQ-C-51001001301000.7857566 6JHQ-C-61001251301000.989042 7JHQ-C-7125100165130 1.22275103 8JHQ-C-8125125165130 1.53394103 9JHQ-C-9125160165130 1.96120103 10JHQ-C-10160125200160 2.51294169 11JHQ-C-11160160200160 3.215120169 12JHQ-C-12160200200160 4.019150169 13JHQ-C-13200160250200 5.024120265 14JHQ-C-14200200250200 6.28150265 15JHQ-C-152002502502007.85188265 16JHQ-C-162502003202509.81240414 17JHQ-C-1725025032025012.266188414 18JHQ-C-1825032032025015.7240414 19JHQ-C-1932025040031520.096188675 20JHQ-C-2032032040031525.723240675 21JHQ-C-2132040040031532.154300675

液压缓冲器型号

型号 D1 (mm) D (mm) L (mm) B1 (mm) B (mm) T (mm) n_Ф (mm) 缓冲 容量 (KN.m) 缓冲 行程 (mm) 缓冲 力(KN) 总量 (kg) HYD2-50835327080110144-1425040 6.4 HYD2-6012762280125160164-14 2.5604512 HYD4-509566280100130164-18450 809.5 HYD4-9012762355125160164-144904513 HYD6-8015980360155200204-18 5.680 7022 HYD7-10011466410100130204-1871007014 HYD8-11015980440155200204-1881107525 HYD10-7013380367130170204-21107014019 HYD10-200140110710170220254-21102005041 HYD12-90203100430195250254-2112.59014046 HYD14-80180125360170220224-26148017533 HYD14-12013380537130170204-251412012024 HYD17-100168100515170220254-251710017039 HYD18-6013356440125170304-25186030030 HYD18-120203100520195250254-251812015050 HYD20-250168125856200260304-28202508067 HYD25-130245125580230285304-252513020080 HYD26-80180122400170220224-25268032541

汽车缓冲器

经过网上查阅,缓冲器主要有以下几种: 缓冲器分蓄能型和耗能型两类 . 目前市场上常用的缓冲器主要有三种:液压缓冲器(Oil Buffer)、聚氨脂缓冲器(PU Buffer)、弹簧缓冲器(Spring Buffer). 其中液压缓冲器为耗能型 , 应用最广泛,聚氨脂缓冲器、弹簧缓冲器属于蓄能型 , 由于价格便宜,低速电梯上、汽车上使用比较多。 1.汽车弹簧缓冲器 汽车弹簧缓冲器(缓冲胶)是一种高弹性高韧度的橡胶类制品,属汽车改装类配件。用来安装在汽车悬挂系统的螺旋弹簧处,主要起到缓冲避震作用并对避震器起来保护,这种功能是一种物理作用。 缓冲胶外观是有开口的圆环状,上下各有一条凹槽(用来容置螺旋弹簧),侧边有两个、三个或多个孔位。根据弹簧间距的标准规格,缓冲胶分为 A+A、A、B、C、D、E、F 七种标准型号。理论上,这七款型号可以囊括全球极大部分螺旋弹簧避震车型所需。 缓冲胶亦有称之为缓冲器、缓冲垫、缓冲块、减震胶、避震胶等等,最广泛最正确的全称是“汽车弹簧缓冲胶”,英文名称是 Car Spring Buffer Retainer 汽车弹簧缓冲器是通过利用液压弹簧减震功能,当汽车瞬间相撞时,缓冲器就起到了缓冲作用从而减轻两车相撞后的破坏程度,提高车与人的安全性。 1.汽车弹簧缓冲器- 特点 1、有效解决减震器弹簧疲软问题,恢复减震器性能。

2、保护减震器和悬挂系统,避免减震芯的油封漏油。 3、全车安装后,可消除颠簸感60%,增加急转弯稳定性,大大降低汽车噪音。 4、提高车身3—5CM、缩短刹车距离、延缓钣金老化。 5、山路、土路低速行驶过程中防颤效果好,有效消除60%以上的颠簸感。 6、安装简单,不松动车辆任何螺丝。 7、具有耐磨、耐寒、耐冲击、耐老化、耐水、使用寿命为2—3年。 8、通用型产品,适用于各种轿车。 舒适:明显降低车体震动,提高驾乘舒适感。大幅减少路嗓及震动噪音,驾乘静心舒畅。 安全:增高底盘,减少车体下塌,预防底盘擦挂。抑制过弯侧倾、甩尾,缩短制动距离。 经济:有效解决弹簧疲软、偏硬问题,提升原车减震效能。保护减震器、球头及悬挂系统,节省维护费用。延长刹车片寿命。 2.液压缓冲器 液压缓冲器(shock absorber)依靠液压阻尼对作用在其上的物体进行缓冲减速至停止,起到一定程度的保护作用。适用于起重运输、电梯、冶金、港口机械、铁道车辆等机械设备,其作用是在工作过程中防止硬性碰撞导致机构损坏的安全

聚氨酯缓冲器

一.概述 该产品在中国科学技术大学及各行业厂矿专家的大力支持配合下,积极采用国外新科技术,新材料,新工艺的基础上形成生产能力,可向用户提供理想的配套产品。 本厂产品已通过中国科学技术大学测试和部定点测试中心(南京起重电器厂)检测。 本厂生产的聚氨酯缓冲器共有三个系列,其联接方式分别为:螺柱式(JHQ-A),压板式(JHQ-B),法兰盘式(JHQ-C)各系列是分别有14-21种规格,分别对应不同的缓冲容量,供用户选用。 二.技术性能(常温) 项目单位指标备注 密度g/cm平方米0.55-0.65 硬度邵氏A60-80 回复率%>95压缩75%后卸载5分钟测试 抗压强度MPo 1.2-2.5压缩至名义高度的50%时测试 工作温度度-30--+60 使用寿命年10

三.应用场合和使用特点 聚氨酯缓冲器是安全保护装置之一,适应性面广量多.如:桥式起重机,龙门起重机,卷扬机,电梯,机械运输行至终点时的安全装置,亦可用于各种汽车面包车前后包角以备防撞. 该产品不但可吸收大量的冲击性能,还有较高的冲击弹性,良好的抗压恢复性,较高的机械强度,良好的绝缘性,防爆性,防腐蚀性,耐热性,耐寒性,耐油性和耐老化等优异性能. 四.经济效益 聚氨酯缓冲器与我国当前应用的橡胶式,弹簧式,液压式缓冲器相比较,不但缓冲性能远远优越于它们,而且比重小,结构简单,造价低廉,安装维修方便. 与橡胶式缓冲器相比,不但抗冲抗压性好,使用寿命大大增长. 与弹簧式缓冲器相比,同等缓冲容量,聚氨酯缓冲器的重量是弹簧式缓冲器重量的1/10,价格是弹簧式缓冲器的1/3,大大节约了钢材,简化了制作程序. 与液压缓冲器相比,更为优越,免去多种液压元件,复杂的油路等,避免了漏油等麻烦问题,给维修工人减轻了负担节约了资金,为用户取得较大的经济效益.

电梯1350kg梯速1.75设计计算

设计计算书TKJ(1350/1.75-JXW)

目录 1设计的目的 2 主要技术参数 3电机功率的计算 4电梯运行速度的计算 5电梯曳引能力的计算 6悬挂绳或链安全系数计算 7绳头组合的验算 8轿厢及对重导轨强度和变形计算 9轿厢架的受力强度和刚度的计算 10搁机梁受力强度和刚度的计算 11安全钳的选型计算 12限速器的选型计算与限速器绳的计算 13缓冲器的选型计算 14轿厢和门系统计算说明 15井道顶层和底坑空间的计算 16轿厢上行超速保护装置的选型计算 17盘车力的计算 18操作维修区域的空间计算 19电气选型计算 20机械防护的设计和说明 21主要参考文献

1设计的目的 TKJ(1350/1.75-JXW-VVVF)型客梯,是一种集选控制的、交流调频调压调速的乘客电梯,额定载重1350Kg,额定运行速度1.75m/s。本客梯采用先进的永磁同步无齿轮曳引机进行驱动,曳引比为2:1,绕绳方式为单绕,采用2导轨结构,用一个主轿架承受轿厢,在曳引绳的牵动下沿着2根主导轨上下运行,以达到垂直运输乘客和医疗设备的目的。 本客梯的轿厢内净尺寸为宽2100mm*深1600mm,内净面积为 3.36M2,完全符合GB7588-2003《电梯制造与安装安全规范》的要求。 本计算书按照GB7588-2003《电梯制造与安装安全规范》的要求进行计算,以验证设计是否满足GB7588-2003标准和型式试验细则的要求。 本计算书验算的电梯为本公司标准的1350kg乘客电梯,主要参数如下: 额定速度1.75m/s额定载重量1350kg 提升高度43.5m 层站数15层15站 轿厢内净尺寸2100mm*1600mm 开门尺寸1100mm*2100mm 开门方式为中分式 本电梯对以下主要部件进行计算: (一)曳引机、承重部分和运载部分 曳引机永磁同步无齿轮曳引机,GETM6.0H型,15 Kw,绕绳比2:1,单绕,曳引轮节径450 mm,速度1.75m/s 搁机大梁主梁25#工字钢 轿厢2100mm*1600mm,2导轨 钢丝绳7-φ10,2∶1曳引方式 导轨轿厢主导轨T89/B (二)安全部件计算及声明 安全钳渐进式AQ11B型,总容许质量3500kg,额定速度1.75m/s 限速器LOG03型,额定速度1.75m/s 缓冲器YH68-210型油压缓冲器,额定速度1.0~1.75m/s,总容许质量800-3500 kg,行程210 mm,总高675mm 2主要技术参数

相关文档
最新文档