内江中考数学试题及答案解析

合集下载

四川省内江市2020年中考数学试题(Word版,含答案与解析)

四川省内江市2020年中考数学试题(Word版,含答案与解析)

四川省内江市2020年中考数学试卷一、单选题(共12题;共24分)1.下列四个数中,最小的数是()A. 0B. −1C. 5D. −12020【答案】 D【考点】有理数大小比较<0<5,【解析】【解答】∵−1<−12020∴最小的数是−1,故答案为:D.【分析】先根据有理数的大小比较法则比较大小,即可得出选项.2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C. D.【答案】B【考点】中心对称及中心对称图形【解析】【解答】由中心对称的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B【分析】根据中心对称图形的定义和图形的特点即可求解.3.如图,已知直线a//b,∠1=50°,则∠2的度数为()A. 140°B. 130°C. 50°D. 40°【答案】B【考点】平行线的性质【解析】【解答】如图,∵a∥b,∴∠1=∠3=50°,∴∠2=180°−50°=130°,故答案为:B.【分析】利用平行线的性质即可解决问题.4.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A. 80,90B. 90,90C. 90,85D. 90,95【答案】B【考点】中位数,众数【解析】【解答】把分数从小到大排列为:80,85,90,90,95故中位数为90,众数为90故答案为:B.【分析】根据中位数、众数的定义即可求解.5.将直线y=−2x−1向上平移两个单位,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+3【答案】C【考点】两一次函数图象相交或平行问题,平移的性质,图形的平移【解析】【解答】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故答案为:C.【分析】向上平移时,k的值不变,只有b发生变化.6.如图,在ΔABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则SΔABC=()A. 30B. 25C. 22.5D. 20【答案】 D【考点】相似三角形的判定与性质BC,故可以判【解析】【解答】解:根据题意,点D和点E分别是AB和AC的中点,则DE∥BC且DE= 12断出△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,可知SΔADE:SΔABC=1:4,则S:SΔABC=3:4,题中已知S四边形BCED=15,故可得SΔADE=5,SΔABC=20四边形BCED故本题选择D【分析】首先判断出△ADE∽△ABC,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC的面积.7.如图,点A,B,C,D在⊙O上,∠AOC=120°,点B是AC⌢的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°【答案】A【考点】圆心角、弧、弦的关系,圆周角定理【解析】【解答】连接OB,∵点B是AC⌢的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故答案为:A.【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.8.如图,点A是反比例函数y=kx图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若ΔAOD的面积为1,则k的值为()A. 43B. 83C. 3D. 4【答案】 D【考点】反比例函数系数k的几何意义,三角形的面积【解析】【解答】点A的坐标为(m,2n),∴2mn=k,∵D为AC的中点,∴D(m,n),∵AC⊥x轴,△ADO的面积为1,∴S△ADO =12AD⋅OC=12(2n−n)⋅m=12mn=1,∴mn=2,∴k=2mn=4,故答案为:D.【分析】先设出点A的坐标,进而表示出点D的坐标,利用△ADO的面积建立方程求出mn=2,即可得出结论.9.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则正确的方程是()A. 12x=(x−5)−5 B. 12x=(x+5)+5C. 2x=(x−5)−5D. 2x=(x+5)+5【答案】A【考点】一元一次方程的实际应用-古代数学问题【解析】【解答】设索为x尺,杆子为( x−5)尺,根据题意得:12x=( x−5) −5.故答案为:A.【分析】设索为x尺,杆子为( x−5)尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x一元一次方程.10.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M 处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A. 3B. 5C. 5√136D. √13【答案】C【考点】勾股定理,矩形的性质,轴对称的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD是矩形,AB=3,BC=4,∴BD= √32+42=5,设AE 的长度为x ,由折叠可得:△ABE ≌△MBE ,∴EM=AE=x ,DE=4-x ,BM=AB=3,DM=5-3=2,在Rt △EMD 中,EM 2+DM 2=DE 2 ,∴x 2+22=(4-x )2 ,解得:x= 32 ,ED=4- 32 = 52 ,设CF 的长度为y ,由折叠可得:△CBF ≌△NBF ,∴NF=CF=y ,DF=3-y ,BN=BC=4,DN=5-4=1,在Rt △DNF 中,DN 2+NF 2=DF 2 ,∴y 2+12=(3-y )2 ,解得:x= 43 ,DF=3- 43 = 53 ,在Rt △DEF 中,EF= √DE 2+DF 2=√(52)2+(53)2=5√136 ,故答案为:C .【分析】由矩形的性质和已知求出BD=5,根据折叠的性质得△ABE ≌△MBE ,设AE 的长度为x ,在Rt △EMD 中,由勾股定理求出DE 的长度,同理在Rt △DNF 中求出DF 的长度,在Rt △DEF 中利用勾股定理即可求出EF 的长度.11.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线 y =tx +2t +2 ( t >0 )与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( ) A. 12≤t <2 B. 12<t ≤1 C. 1<t ≤2 D. 12≤t ≤2 且 t ≠1【答案】 D【考点】一次函数与不等式(组)的综合应用,一次函数图象与坐标轴交点问题,数学思想【解析】【解答】∵ y =tx +2t +2 ,∴当y=0时,x= −2−2t ;当x=0时,y=2t+2,∴直线 y =tx +2t +2 与x 轴的交点坐标为( −2−2t ,0),与y 轴的交点坐标为(0,2t+2), ∵t>0,∴2t+2>2,当t= 12 时,2t+2=3,此时 −2−2t =-6,由图象知:直线 y =tx +2t +2 ( t >0 )与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1,当t=2时,2t+2=6,此时 −2−2t =-3,由图象知:直线 y =tx +2t +2 ( t >0 )与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2,当t=1时,2t+2=4, −2−2t =-4,由图象知:直线 y =tx +2t +2 ( t >0 )与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3,∴1≤t≤2且t≠1,2故答案为:D.【分析】画出函数图象,利用图象可得t的取值范围.12.的倒数是()A. B. C. D.【答案】C【考点】有理数的倒数【解析】【解答】∵,∴的倒数是.故答案为:C【分析】由互为倒数的两数之积为1,即可求解.二、填空题(共8题;共8分)13.函数y=1中,自变量x的取值范围是________ .2x−4【答案】x≠2【考点】分式有意义的条件【解析】【解答】根据函数可知:2x−4≠0,解得:x≠2.故答案为:x≠2.【分析】分式有意义的条件:分母不为0,据此解答即可.14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为________【答案】7×108【考点】科学记数法—表示绝对值较大的数【解析】【解答】7亿=700000000= 7×108,故答案为:7×108.【分析】科学记数法的表示形式为:a×10n,其中1≤∣a∣﹤10,n为整数,确定a值和n值即可解答.15.已知关于x的一元二次方程(m−1)2x2+3mx+3=0有一实数根为−1,则该方程的另一个实数根为________【答案】−13【考点】一元二次方程的根【解析】【解答】解:把x=-1代入(m−1)2x2+3mx+3=0得m2-5m+4=0,解得m1=1,m2=4,∵(m-1)2≠0,∴m ≠1.∴m=4.∴方程为9x2+12x+3=0..设另一个根为a,则-a= 39∴a=- 1.3.故答案为:- 13【分析】根据一元二次方程的解的定义把x=-1代入原方程得到关于m的一元二次方程,解得m的值,然后根据一元二次方程的定义确定m的值.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为________.【答案】15.【考点】含30°角的直角三角形,矩形的性质,轴对称的应用-最短距离问题【解析】【解答】解:如图,过A作AG⊥BD于G,延长AG,使AG=EG,过E作EN⊥AB于N,交BD于M,则AM+MN=EN最短,∵四边形ABCD为矩形,BC=10,∠ABD=30°,∴AD=10,BD=20,AB=BD•cos30°=10√3,∵AG•BD=AD•AB,∴20AG=10×10√3,∴AG=5√3,AE=2AG=10√3,∵AE⊥BD,EN⊥AB,∠EMG=∠BMN,∴∠E=∠ABD=30°,∴EN =AE •cos30°=10√3×√32=15,∴AM +MN =15,即 AM +MN 的最小值为 15.故答案为: 15.【分析】如图,过A 作 AG ⊥BD 于 G ,延长 AG ,使 AG =EG ,过 E 作 EN ⊥AB 于 N ,交 BD 于 M ,则 AM +MN =EN 最短,再利用矩形的性质与锐角三角函数求解 EN 即可得到答案. 17.分解因式: b 4−b 2−12= ________【答案】 (b 2+3)(b +2)(b −2)【考点】因式分解﹣运用公式法,十字相乘法因式分解【解析】【解答】 b 4−b 2−12= (b 2+3)(b 2−4)=(b 2+3)(b +2)(b −2)故答案为: (b 2+3)(b +2)(b −2) .【分析】先根据十字相乘法,再利用平方差公式即可因式分解.18.若数a 使关于x 的分式方程 x+2x−1+a 1−x =3 的解为非负数,且使关于y 的不等式组 {y−34−y+13≥−13122(y −a)<0的解集为 y ≤0 ,则符合条件的所有整数a 的积为________ 【答案】 40【考点】解分式方程,解一元一次不等式组【解析】【解答】解:分式方程 x+2x−1+a 1−x =3 的解为x=5−a 2 且x≠1, ∵分式方程 x+2x−1+a 1−x =3 的解为非负数,∴ 5−a 2≥0 且 5−a 2 ≠1.∴a ≤ 5且a≠3.{y −34−y +13≥−1312①2(y −a)<0②解不等式①,得 y ≤0 .解不等式②,得y<a.∵关于y 的不等式组 {y−34−y+13≥−13122(y −a)<0 的解集为 y ≤0 ,∴a>0.∴0<a ≤ 5且a≠3.又a为整数,则a的值为1,2,4,5.符合条件的所有整数a的积为1×2×4×5=40.故答案为:40.【分析】根据分式方程的解为正数即可得出a ≤5且a≠3,根据不等式组的解集为y≤0,即可得出a>0,找出0<a ≤5且a≠3中所有的整数,将其相乘即可得出结论.19.如图,在平面直角坐标系中,点A(-2,0),直线l:y=√33x+√33与x轴交于点B,以AB为边作等边ΔABA1,过点A1作A1B1//x轴,交直线l于点B1,以A1B1为边作等边ΔA1B1A2,过点A2作A2B2//x轴,交直线l于点B2,以A2B2为边作等边ΔA2B2A3,以此类推……,则点A2020的纵坐标是________【答案】√32(22020−1)【考点】含30°角的直角三角形,探索数与式的规律,一次函数图象与坐标轴交点问题【解析】【解答】如图,过A1作A1C⊥AB与C,过A2作A2C1⊥A1B1于C1,过A3作A3C2⊥A2B2于C2,先根据直线方程与x轴交于点B(-1,0),与y轴交于点D(0,√33),∴OB=1,OD= √33,∴∠DBO=30º由题意可得:∠A1B1B=∠A2B2B1=30º,∠B1A1B=∠B2A2B1=60º∴∠A1BB1=∠A2B1B2=90º,∴AB=1,A1B1=2A1B=21,A2B2=2A2B1=22,A3B3=2A3B2=23,…A n B n=2n∴A1C= √32AB= √32×1,A1纵坐标为√32×1= √32(21−1);A2C1= √32A1B1= √32×21,A2的纵坐标为√32×1+ √32×21= √32(20+21)= √32×3= √32(22−1);A3C2= √32A2B2= √32×22,A3的纵坐标为√32×1+ √32×21+ √32×22= √32(20+21+22)= √32×7= √32(23−1);…由此规律可得:A n C n-1= √32×2n−1,A n的纵坐标为√32(20+21+22+⋯+2n−1)= √32(2n−1),∴A2020= √32(22020−1),故答案为:√32(22020−1)【分析】如图,过A1作A1C⊥AB与C,过A2作A2C1⊥A1B1于C1,过A3作A3C2⊥A2B2于C2,先根据直线方程与x轴交于点B(-1,0),且与x轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A1、A2、A3、的纵坐标,进而得到A n的纵坐标,据此可得A2020的纵坐标,即可解答.20.已知抛物线y1=−x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=−3时,使M>y2的x的取值范围是−1<x< 3;③当b=−5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是________(填写所有符合题意结论的序号)【答案】②③④【考点】函数的表示方法,分段函数,二次函数与一次函数的综合应用,二次函数的其他应用【解析】【解答】解:对于①:当x=2时,y1=−22+4×2=4,y2=2×2+b=4+b,显然只要b>0,则M的值为4+b,故①不符合题意;对于②:当b=−3时,在同一直角坐标系内画出y1,y2的图像,如下图所示,其中红色部分即表示M,联立y1,y2的函数表达式,即−x2+4x=2x−3,求得交点横坐标为3和−1,观察图形可知M>y2的x的取值范围是−1<x<3,故②符合题意;对于③:当b=−5时,在同一直角坐标系内画出y1,y2的图像,如下图所示,其中红色部分即表示M,联立y1,y2的函数表达式,即−x2+4x=2x−5,求得其交点的横坐标为1+√6和1−√6,故M=3时分类讨论:当y1=−x2+4x=3时,解得x1=3或x2=1,当y2=2x−5=3时,解得x3=4>1+√6(舍),故③符合题意;对于④:当b≥1时,函数y2≥y1,此时y2图像一直在y1图像上方,如下图所示,故此时M= y2,故M随x的增大而增大,故④符合题意.故答案为:②③④.【分析】根据题目中的较大者M的定义逐个分析即可.三、解答题(共8题;共92分))−1−|−2|+4sin60°−√12+(π−3)021.计算:(−12)−1−|−2|+4sin60°−√12+(π−3)0【答案】解:(−12=−2−2+2√3−2√3+1=−3【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可.22.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【答案】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,∠B=∠C,AE=DF ,∠A=∠D.∴△AEB≌△DFC.∴AB=CD.(2)解:∵AB=CD,AB=CF,∴CD=CF,∵∠B=∠C=40°,∴∠D=(180°-40°)÷2=70°.【考点】全等三角形的判定与性质【解析】【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△CDF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFE,即可求出答案.23.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有________名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为________,图中m的值为________;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【答案】(1)5(2)72°;40(3)根据题意画树状图如下:∴P(女生被选中)= 46=23.【考点】总体、个体、样本、样本容量,扇形统计图,列表法与树状图法,概率公式【解析】【解答】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”的扇形的圆心角度数为420×360°=72°×100=40,m= 820故答案为:72°;40;【分析】(1)先根据“A等级”的人数及占比求出学生总人数,再减去各组人数即可求出成绩为“B等级”的学生人数;(2)根据“D等级”的占比即可求出其圆心角度数,根据“C等级”的人数即可求出m的值;(3)根据题意画树状图,再根据概率公式即可求解.24.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【答案】(1)过点P作PD⊥AB于点D,由题意得,AB=60(海里),∠PAB=30°,∠PBD=60°,∴∠APB=∠PBD-∠PAB=60°-30°=30°=∠PAB,∴PB=AB=60(海里),答:B处到灯塔P的距离为60海里;(2)由(1)可知∠APB=∠PAB=30°,∴PB=AB=60(海里)在Rt△PBD中,=30√3(海里),PD=BPsin60°=60 ×√32∵30√3>50,∴海监船继续向正东方向航行是安全的.【考点】解直角三角形的应用﹣方向角问题【解析】【分析】(1)作PD⊥AB于D.求出∠PAB、∠PBA、∠P的度数,证得△ABP为等腰三角形,即可解决问题;(2)在Rt△PBD中,解直角三角形求出PD的值即可判定.25.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4√3,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.【答案】(1)证明:连接OC,如图,∵OD⊥BC,∴CD=BD,∴OE为BC的垂直平分线,∴EB=EC,∴∠EBC=∠ECB,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠OBE=∠OCE,∵CE为⊙O的切线,∴OC⊥CE,∴∠OCE=90°,∴∠OBE=90°,∴OB⊥BE,∴BE与⊙O相切.(2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,BC= 2√3在Rt△OBD中,BD= 12∵OD2+BD2=OB2,∴(R−2)2+(2√3)2=R2,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt△OBE中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD⊥BC知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC= 4√3,OE=8,∴S阴影=S四边形OBEC−S扇形OBC= 12×8×4√3−120π·42360=16√3−163π,【考点】含30°角的直角三角形,勾股定理,切线的判定,扇形面积的计算,几何图形的面积计算-割补法【解析】【分析】(1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC的垂直平分线,所以EB=EC,根据等腰三角形的性质得∠EBC=∠ECB,加上∠OBC=∠OCB,则∠OBE=∠OCE;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE与⊙O相切;(2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,在Rt△OBD,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE,利用EF=OE-OF即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用S阴影=S四边形OBEC−S扇形OBC代入数值即可求解.26.我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=mn.例如:18可以分解成1×18,2×9或3×6,因为18−1>9−2>6−3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=________;f(9)=________ ;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:① f(22×3×5×7)=_____________;② f(23×3×5×7)=_____________;③ f(24×3×5×7)=_____________;④ f(25×3×5×7)=_____________.【答案】(1)23;1(2)由题意可得:交换后的数减去交换前的数的差为:10b+a−10a−b=9(b−a)=54,∴b−a=6,∵1≤a≤b≤9,∴b=9,a=3或b=8,a=2或b=7,a=1,∴t为39,28,17;∵39=1×39=3×13,∴f(39)=313;28=1×28=2×14=4×7,∴f(28)=47;17=1×17,∴f(17)=117;∴f(t)的最大值47.(3)2021,1415,2021,1415【考点】探索数与式的规律,定义新运算【解析】【解答】(1)6=1×6=2×3,∵6−1>3−2,∴f(6)=23;9=1×9=3×3,∵9−1>3−3,∴f(9)=1,故答案为:23;1;(3)①∵22×3×5×7=20×21∴f(22×3×5×7)=2021;② 23×3×5×7=28×30∴f(23×3×5×7)=2830=1415;③∵24×3×5×7=40×42∴f(24×3×5×7)=4042=2021;④∵25×3×5×7=56×60∴f(25×3×5×7)=5660=1415,故答案为:2021,1415,2021,1415.【分析】(1)6=1×6=2×3,由已知可求f(6)=23;9=1×9=3×3,由已知可求f(9)=1;(2)由题意可得:交换后的数减去交换前的数的差为:10b+a−10a−b=9(b−a)=54,得到b−a=6,可求t的值,故可得到f(t)的最大值;(3)根据f(x)=mn的定义即可依次求解.27.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B 顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=14AC,求CE:BC的值;(3)求证:PF=EQ.【答案】(1)解:∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∵BP绕点B顺时针旋转90°到BQ,∴BP=BQ,∠PBQ=90°,∴∠ABC-∠PBC=∠PBQ-∠PBC,∴∠ABP=∠CBQ,在△APB和△CQB中,{AB=BC∠ABP=∠CBQBP=QB,∴△APB≌△CQB(SAS),∴AP=CQ.(2)设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,△ABC为等腰直角三角形,∴BC= √22AC=2√2x,在Rt△PCQ中,由勾股定理有:PQ=√PC2+CQ2=√9x2+x2=√10x,且△PBQ为等腰直角三角形,∴BQ=√22PQ=√5x,又∠BCQ=∠BAP=45°,∠BQE=45°,∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ,∴△BQE∽△BCQ,∴BQBC=BEBQ,代入数据:√5x2√2x√5x,∴BE= 5√24x,∴CE=BC-BE= 3√24x,∴CE:BC3√242√2=38,故答案为:38.(3)在CE上截取CG,并使CG=FA,如图所示:∵∠FAP=∠GCQ=45°,且由(1)知AP=CQ,且截取CG=FA,故有△PFA≌△QGC(SAS),∴PF=QG,∠PFA=∠CGQ,又∵∠DFP=180°-∠PFA,∠QGE=180°-∠CGQ,∴∠DFP=∠QGE,∵DA //BC,∴∠DFP=∠CEQ,∴∠QGE=∠CEQ,∴△QGE为等腰三角形,∴GQ=QE,故PF=QE.【考点】三角形全等及其性质,三角形全等的判定,正方形的性质,相似三角形的判定与性质,旋转的性质【解析】【分析】(1)由旋转知△PBQ为等腰直角三角形,得到PB=QB,∠PBQ=90°,进而证明△APB≌△CQB 即可;(2)设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,又△ABC为等腰直角三角形,所以BC= √22AC=2√2x,PQ= √10x,再证明△BQE∽△BCQ,由此求出BE,进而求出CE:BC的值;(3)在CE上截取CG,并使CG=FA,证明△PFA≌△QGC,进而得到PF=QG,然后再证明∠QGE=∠QEG即可得到QG=EQ,进而求解.28.如图,抛物线 y =ax 2+bx +c 经过A (-1,0)、B (4,0)、C (0,2)三点,点D (x , y )为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当 ΔBCD 的面积为3时,求点D 的坐标;(3)过点D 作 DE ⊥BC ,垂足为点E , 是否存在点D , 使得 ΔCDE 中的某个角等于 ∠ABC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.【答案】 (1)将A (−1,0)、B (4,0)、C (0,2)代入y =ax 2+bx +c 得:{a −b +c =016a +4b +c =0c =2,解得: {a =−12b =32c =2故抛物线的解析式为 y =−12x 2+32x +2 .(2)如图2,过点D 作DM ∥BC ,交y 轴于点M ,设点M 的坐标为(0,m ),使得△BCM 的面积为3,CM=3×2÷4=1.5,则m =2+1.5= 72 ,M (0, 72 )∵点B (4,0),C (0,2),∴直线BC 的解析式为y =− 12 x +2,∴DM 的解析式为y =− 12 x + 72 ,联立抛物线解析式 {y =−12x +72y =−12x 2+32x +2 , 解得 {x 1=3y 2=2 , {x 2=1y 2=3. ∴点D 的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE =2∠ABC 时,取点F (0,−2),连接BF ,如图3所示.∵OC =OF ,OB ⊥CF ,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC .∵∠DCB =2∠ABC ,∴∠DCB =∠CBF ,∴CD ∥BF .∵点B (4,0),F (0,−2),∴直线BF 的解析式为y = 12 x−2,∴直线CD 的解析式为y = 12 x +2.联立直线CD 及抛物线的解析式成方程组得: {y =12x +2y =−12x 2+32x +2 , 解得: {x 1=0y 1=2 (舍去), {x 2=2y 2=3, ∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.∵∠OCH =90°−∠OHC ,∠OBF =90°−∠BHN ,∠OHC =∠BHN ,∴∠OCH =∠OBF .在△OCH 与△OBF 中{∠COH =∠BOF =90°∠OCH =∠OBF ,∴△OCH ∽△OBF ,∴ OH OF =OC OB ,即 OH 2=24 , ∴OH =1,H (1,0).设直线CN 的解析式为y =kx +n (k≠0),∵C (0,2),H (1,0),∴ {n =2k +n =0 ,解得 {k =−2n =2, ∴直线CN 的解析式为y =−2x +2.连接直线BF 及直线CN 成方程组得:{y =12x −2y =−2x +2, 解得: {x =85y =−65 , ∴点N 的坐标为( 85,−65 ).∵点B (4,0),C (0,2),∴直线BC 的解析式为y =− 12 x +2.∵NP ⊥BC ,且点N ( 85,−65 ),∴直线NP 的解析式为y =2x− 225 .联立直线BC 及直线NP 成方程组得:{y =−12x +2y =2x −225 , 解得: {x =6425y =1825 , ∴点Q 的坐标为( 6425,1825 ).∵点N ( 85,−65 ),点N ,P 关于BC 对称,∴点P 的坐标为( 8825,−6625 ).∵点C (0,2),P ( 8825,−6625 ),∴直线CP 的解析式为y = 211 x +2.将y = 211 x +2代入 y =−12x 2+32x +2 整理,得:11x2−29x =0,解得:x 1=0(舍去),x 2= 2911 ,∴点D 的横坐标为 2911 .综上所述:存在点D ,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或 2911 .【考点】待定系数法求二次函数解析式,二次函数-动态几何问题,二次函数的其他应用【解析】【分析】(1)根据点A 、B 、C 的坐标,利用待定系数法即可求出抛物线的解析式;(2)根据三角形面积公式可求与BC 平行的经过点D 的y 轴上点M 的坐标,再根据待定系数法可求DM 的解析式,再联立抛物线可求点D 的坐标;(3)分∠DCE =2∠ABC 及∠CDE =2∠ABC 两种情况考虑:①当∠DCE =2∠ABC 时,取点F (0,−2),连接BF ,则CD ∥BF ,由点B ,F 的坐标,利用待定系数法可求出直线BF ,CD 的解析式,联立直线CD 及抛物线的解析式组成方程组,通过解方程组可求出点D 的坐标;②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,由△OCH ∽△OBF 求出H 点坐标,利用待定系数法求出直线CN 的解析式,联立直线BF 及直线CN 成方程组,通过解方程组可求出点N 的坐标,利用对称的性质可求出点P 的坐标,由点C 、P 的坐标,利用待定系数法可求出直线CP 的解析式,将直线CP 的解析式代入抛物线解析式中可得出关于x 的一元二次方程,解之取其非零值可得出点D 的横坐标.依此即可得解.。

内江市中考数学试题解析版

内江市中考数学试题解析版

四川省内江市2020年中考数学试卷(解析版)A卷(共100分)一、选择题(每小题3分,共36分)1.-2020的倒数是( )A.-2020 B.-12016 C.12016D.2020[答案]B[考点]实数的运算。

[解析]非零整数n的倒数是1n ,故-2020的倒数是12016=-12016,故选B.2.2020年“五一”假期期间,某市接待旅游总人数达到了9180 000人次,将9180 000用科学记数法表示应为( )A.918×104 B.9.18×105 C.9.18×106 D.9.18×107[答案]C[考点]科学记数法。

[解析] 把一个大于10的数表示成a×10n(1≤a<10,n是正整数)的形式,这种记数的方法叫科学记数法.科学记数法中,a是由原数的各位数字组成且只有一位整数的数,n比原数的整数位数少1.故选C.3.将一副直角三角板如图1放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为( )A.75° B.65° C.45° D.30°[答案]A[考点]三角形的内角和、外角定理。

[解析]方法一:∠1的对顶角所在的三角形中另两个角的度数分别为60°,45°,∴∠1=180°-(60°+45°)=75°.方法二:∠1可看作是某个三角形的外角,根据三角形的外角等于与它不相邻的两个内角的和计算. 故选A .4.下列标志既是轴对称图形又是中心对称图形的是( )[答案]A[考点]中心对称与轴对称图形。

[解析]选项B 中的图形是轴对称图形,选项C 中的图形是中心对称图形,选项D 中的图形既不是轴对称图形也不是中心对称图形.只有选项A 中的图形符合题意. 故选A .5.下列几何体中,主视图和俯视图都为矩形的是( )图130°45°1A .B .C .D .[答案]B [考点]三视图。

2020年四川省内江市中考数学试卷及答案解析

2020年四川省内江市中考数学试卷及答案解析

2020年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣22.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣13.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,956.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC =()A.30B.25C.22.5D.208.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.410.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+511.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P 在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=.23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是.(填写所有正确结论的序号)五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD 交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2020年四川省内江市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣2【解答】解:∵×2=1,∴的倒数是2,故选:A.2.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣1【解答】解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>1>﹣>﹣1,因此最小的是﹣1,故选:D.3.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°【解答】解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95【解答】解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.6.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3【解答】解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC =()A.30B.25C.22.5D.20【解答】解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.8.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°【解答】解:连接OB,如图,∵点B是的中点,∴∠AOB=∠COB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.4【解答】解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.10.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+5【解答】解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.11.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1【解答】解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是x≠2.【解答】解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为7×108.【解答】解:7亿=700000000=7×108,故答案为:7×108.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为﹣.【解答】解:把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,由根与系数的关系得:x1•x2=,又x1=﹣1,∴x2=﹣故答案为:﹣.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有5名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为72°,图中m的值为40;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【解答】解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P 在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).【解答】解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A2020的纵坐标是,故答案为.25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是②③④.(填写所有正确结论的序号)【解答】解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,故③正确,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=1;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.【解答】解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=,故答案为:;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=,故答案为:.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD 交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠F AP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.连接直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.。

2020年四川省内江市中考数学试卷和答案解析

2020年四川省内江市中考数学试卷和答案解析

2020年四川省内江市中考数学试卷和答案解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣2解析:根据乘积为1的两个数是互为倒数,进行求解即可.参考答案:解:∵×2=1,∴的倒数是2,故选:A.点拨:本题考查倒数的意义,理解和掌握乘积为1的两个数是互为倒数是正确解答的前提.2.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣1解析:根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小得出答案.参考答案:解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>0>﹣>﹣1,因此最小的数是﹣1,故选:D.点拨:本题考查有理数的大小比较,掌握两个负数比较,绝对值大的反而小,是正确判断的前提.3.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.参考答案:解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.点拨:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°解析:由直线a∥b,利用“两直线平行,同位角相等”可求出∠3的度数,再结合∠2和∠3互补,即可求出∠2的度数.参考答案:解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.点拨:本题考查了平行线的性质以及邻补角,牢记“两直线平行,同位角相等”是解题的关键.5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95解析:先将数据重新排列,再根据中位数和众数的定义求解可得.参考答案:解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.点拨:本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3解析:根据函数图象向上平移加,向下平移减,可得答案.参考答案:解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.点拨:本题考查了一次函数图象与几何变换,图象平移的规律是:上加下减,左加右减.7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30B.25C.22.5D.20解析:先根据三角形中位线的性质,证得:DE∥BC,DE=BC,进而得出△ADE∽△ABC,又由相似三角形面积的比等于相似比的平方即可求得答案.参考答案:解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.点拨:此题考查了三角形中位线定理以及相似三角形的判定与性质.注意相似三角形的面积的比等于相似比的平方.8.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°解析:连接OB,如图,利用圆心角、弧、弦的关系得到∠AOB=∠COB=∠AOC=60°,然后根据圆周角定理得到∠D的度数.参考答案:解:连接OB,如图,∵点B是的中点,∴∠AOB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.点拨:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.4解析:根据题意可知△AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值.参考答案:解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.点拨:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+5解析:设绳索长x尺,则竿长(x﹣5)尺,根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x的一元一次方程,此题得解.参考答案:解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.点拨:本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.解析:求出BD=5,AE=EM,∠A=∠BME=90°,证明△EDM∽△BDA,由相似三角形的性质得出,设DE=x,则AE=EM =4﹣x,得出,解得x=,同理△DNF∽△DCB,得出,设DF=y,则CF=NF=3﹣y,则,解得y=.由勾股定理即可求出EF的长.参考答案:解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M 处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.点拨:本题考查了翻折的性质,勾股定理,矩形的性质,相似三角形的判定与性质;熟练掌握翻折变换的性质,证明三角形相似是解题的关键.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1解析:由y=tx+2t+2=t(x+2)+2(t>0),得出直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)或(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,分别求得这三种情况下的t的值,结合图象即可得到结论.参考答案:解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.点拨:本题考查一次函数图象和性质,区域整数点;能够根据函数解析式求得直线恒经过的点,并能画出图象,结合图象解题是关键.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是x≠2.解析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0;参考答案:解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.点拨:当函数表达式是分式时,分式要有意义,则考虑分式的分母不能为0.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为7×108.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:7亿=700000000=7×108,故答案为:7×108.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为﹣.解析:把x=﹣1代入原方程求出m的值,进而确定关于x的一元二次方程,根据根与系数的关系可求出方程的另一个根.参考答案:解:∵方程(m﹣1)2x2+3mx+3=0是关于x的一元二次方程,∴(m﹣1)2≠0即m≠1.把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,由根与系数的关系得:x1•x2=,又x1=﹣1,∴x2=﹣故答案为:﹣.点拨:本题考查一元二次方程根的意义和解法,求解一元二次方程是得出正确答案的关键.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解析:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H ⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.参考答案:解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.点拨:本题考查轴对称的性质,等边三角形的判定和性质,矩形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.解析:先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得.参考答案:解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.点拨:本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.解析:(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE ≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.参考答案:(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.点拨:本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能根据全等三角形的判定求出△ABE≌△CDF 是解此题的关键.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有5名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为72°,图中m的值为40;(3)学校决定从本次比赛获得“A等级”的学生中间选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.解析:(1)A等的有3人,占调查人数的15%,可求出调查人数,进而求出B等的人数;(2)D等级占调查人数的,因此相应的圆心角为360°的即可,计算C等级所占的百分比,即可求出m的值;(3)用列表法表示所有可能出现的结果,进而求出相应的概率.参考答案:解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.点拨:本题考查条形统计图、扇形统计图的意义和制作方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求概率的前提.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?解析:(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题,根据等腰三角形的性质即可得到结论;(2)作PH⊥AB于H.求出PH的值即可判定.参考答案:解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.点拨:本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC 于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.解析:(1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC的垂直平分线,所以EB=EC,证明△OCE≌△OBE(SSS),得出∠OBE=∠OCE=90°,根据切线的判定定理得BE与⊙O相切;(2)设⊙O的半径为x,则OD=x﹣2,OB=x,由勾股定理得出(x﹣2)2+(2)2=x2,解得x=4,求出OE的长,则可求出EF的长;(3)由扇形的面积公式可得出答案.参考答案:(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.点拨:本题是圆的综合题,考查了切线的判定与性质,垂径定理,勾股定理,全等三角形的判定与性质,直角三角形的性质,扇形面积的计算等知识,熟练掌握切线的判定与性质是解题的关键.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).解析:先利用十字相乘法,再利用平方差公式进行因式分解即可.参考答案:解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).点拨:本题考查十字相乘法、公式法分解因式,掌握十字相乘法、公式法的结构特征是正确应用的前提.23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.解析:解分式方程的得出x=,根据解为非负数得出≥0,且≠1,据此求出a≤5且a≠3;解不等式组两个不等式得出y≤0且y<a,根据解集为y≤0得出a>0;综合以上两点得出整数a的值,从而得出答案.参考答案:解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.点拨:本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y =x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.解析:先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为,进而得到A n 的纵坐标为,据此可得点A2020的纵坐标.参考答案:解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A 2020的纵坐标是,故答案为.点拨:本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的纵坐标为,25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是②④.(填写所有正确结论的序号)解析:①求出y1,y2,求出m的值即可.②求出直线与抛物线的交点坐标,利用图象法解决问题即可.③画出图象,推出M=3时,y1=3,y2=3转化为方程求出x的值即可.④当b=1时,由,消去y得到,x2﹣2x+1=0,因为△=0,推出此时直线y=2x+1与抛物线只有一个交点,推出b>1时,直线y=2x+b与抛物线没有交点,由此即可判断.参考答案:解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b 的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,y2=3时,3=2x﹣5,解得x=4,也符合条件,故③错误,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.故答案为②④.点拨:本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=1;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f (24×3×5×7)=;④f(25×3×5×7)=.解析:(1)仿照样例进行计算便可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出x与y的关系式,进而求出所有的两位数,进而确定出F(t)的最大值即可;(3)根据样例计算便可.参考答案:解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为28×30,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是40×42,∴f(24×3×5×7)==,故答案为:;④∵25×3×5×7的最佳分解是56×60,∴f(25×3×5×7)==,故答案为:.点拨:本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.解析:(1)证明△BAP≌△BCQ(SAS)可得结论.(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP =AC,可以假设AP=CQ=a,则PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.参考答案:(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.点拨:本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE 中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.解析:(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)根据三角形面积公式可求与BC平行的经过点D的y轴上点M的坐标,再根据待定系数法可求DM的解析式,再联立抛物线可求点D的坐标;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,则CD∥BF,由点B,F的坐标,利用待定系数法可求出直线BF,CD的解析式,联立直线CD及抛物线的解析式成方程组,通过解方程组可求出点D的坐标;②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,由△OCH∽△OBF求出H点坐标,利用待定系数法求出直线CN的解析式,联立直线BF及直线CN成方程组,通过解方程组可求出点N的坐标,利用对称的性质可求出点P的坐标,由点C、P的坐标,利用待定系数法可求出直线CP的解析式,将直线CP的解析式代入抛物线解析式中可得出关于x的一元二次方程,解之取其非零值可得出点D的横坐标.依此即可得解.参考答案:解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y =ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)法一:如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).法二:如下图所示,过D作DG⊥x轴,垂足为G点,与BC交于K点,设D(a,b)(其中a>0,b>0),∴K(a,2﹣),∴,∴S△BCD=S△CDK+S△BDK==2b﹣4+a=3,∴2b+a=7,∵D在抛物线y=﹣x2+x+2上,∴b=,∴a2﹣4a+3=0,∴(a﹣1)(a﹣3)=0,∴a=1或3,∵当a=1时,b=3,当a=3时,b=2,∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.联立直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.点拨:本题是二次函数综合题,考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)作铅垂线,计算三角形面积的方法;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况求出点D的横坐标.。

2024年中考数学专题复习—逆等线之乾坤大挪移

2024年中考数学专题复习—逆等线之乾坤大挪移

2024年中考数学专题复习—逆等线之乾坤⼤挪移题型⼀平移,对称或构造平⾏四边形2022年四川省内江中考1.如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最⼩值是.【答案】10【分析】延长BC到G,使CG=EF,连接FG,证明四边形EFGC是平⾏四边形,得出CE=FG,得出当点A、F、G三点共线时,AF+CE的值最⼩,根据勾股定理求出AG即可.【详解】解:延长BC到G,使CG=EF,连接FG,∥,EF=CG,∵EF CG∴四边形EFGC是平⾏四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最⼩为AG,由勾股定理得,AG=10,∴AF +CE 的最⼩值为102.如图,Rt △ABC 中,∠ACB =90°,∠B =30°,D ,E 为AB 边上的两个动点,且AD =BE ,连接CD ,CE ,若AC =2,则CD +CE 的最⼩值为 .【答案】4解:如图:构造矩形ACBF ,连接DF ,EF ,CF 交AB 于点O ,则OF =OC ,OA =OB ,AB =CF ,∵AD =BF , ∴OD =OE ,∴四边形CEFD 为平⾏四边形,∴DF =CE , ∴CD+CE =CD+DF≥CF ,∵Rt △ABC 中,∠ACB =90°,∠B =30°,∴AB =2AC =4,∴CD+CE≥4, 故答案为:4.3.如图,在矩形ABCD 中,12AB AD,,点E 在AD 上,点F 在BC 上,且AE CF ,连结CE DF ,,则CE DF 的最⼩值为 .【答案】【分析】证BAE DCF V V ≌得CE DF CE BE,作点B 关于AD 的对称点B ,则CE BE CE B E CB ,据此即可求解.【详解】解:连接BE ,作点B 关于AD 的对称点B ,连接CB EB,由题意得:,90AB CD BAE DCF∵AE CF∴BAE DCFV V ≌∴,BE DF CE DF CE BE∵,BE B E ∴CE BE CE B E CBCB ∴CE DF的最⼩值为2022滨州中考4.如图,在矩形ABCD 中,AB =5,AD =10,点E 是边AD 上的⼀个动点,过点E 作EF ⊥AC ,分别交对⾓线AC ,直线BC 于点O ,F ,则在点E 移动的过程中,AF +FE +EC 的最⼩值为_________.A DB CF EO【答案】252 【解析】∵AB =5,AD =10,∴AC=∵EF ⊥AC ,∴由矩形内⼗字架模型可知,EF AC =AB AD ,510,∴EF=.以EF ,EC 为邻边作□EFGC ,则EC =FG ,CG =EF=,A DB C F EOG∠ACG =∠EOC =90°.在Rt △ACG 中,AG=252,∴AF +FE +EC =AF +FG +FE≥AG +FE=252 ,∴AF +FE +EC的最⼩值为.5.如图,在矩形ABCD 中,6AB,5AD ,点P 在边AD 上,点Q 在边BC 上,且AP CQ ,连接CP ,QD ,则PC QD的最⼩值为.【答案】13【分析】连接BP ,在BA 的延长线上截取AE =AB =6,连接PE ,CE ,PC +QD =PC +PB ,则PC +QD 的最⼩值转化为PC +PB 的最⼩值,在BA 的延长线上截取AE =AB =6,则PC +QD =PC +PB =PC +PE ≥CE ,根据勾股定理可得结果.【详解】解:如图,连接BP,在矩形ABCD 中,AD ∥BC ,AD =BC ,∵AP=CQ,∴AD-AP=BC-CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平⾏四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最⼩值转化为PC+PB的最⼩值,在BA的延长线上截取AE=AB=6,连接PE,∵P A⊥BE,∴P A是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE.∴PC+PB的最⼩值为13分6.如图,正⽅形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N作EF AM 别交AB,CD于点E,F.(1)AM的长为;的最⼩值为.(2)EM AF【答案】【分析】(1)根据正⽅形的性质求得AB与BM,再由勾股定理求得AM;(2)过F作FG⊥AB于G,证明△ABM≌△FGE得AM=EF,再将EF沿EM⽅向平移⾄MH,连接FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最⼩,由勾股定理求出此时的AH的值便可.【详解】解:(1)∵正⽅形ABCD的边长为2,∴AB=BC=2,∠ABC=90°,∵M是BC的中点,∴BM=12BC=1,∴AM(2)过F作FG⊥AB于G,则FG=BC=AB,∠ABM=∠FGE=90°,∵EF⊥AM,∴∠BAM+∠AEN=∠AEN+∠GFE=90°,∴∠BAM=∠GFE,∴△ABM≌△FGE(ASA),∴AM=EF,将EF沿EM⽅向平移⾄MH,连接FH,则EF=MH,∠AMH=90°,EM=FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最⼩,此时EM AF AH∴EM+AF题型⼆构造SAS型全等拼接线段7.如图,在△ABC中,∠ABC=90°,∠A=60°,AB=2,D、E分别是AC、AB上的动点,且AD=BE,F是BC的中点,则BD+EF的最⼩值为___________.AB CDE F 【答案】提⽰:作BG ∥AC 且BG =AB ,连接GE ,作GH ⊥BC 于HAB CDE F G H 则∠GBH =∠C =30°,GH =1,HB =BF =,HF =2,GF =△ABD ≌△BGE (SAS ),BD =GEBD +EF =GE +EF ≥GF =,最⼩值为8.如图,矩形ABCD 中,AB =3,AD =3,点E 、F 分别是对⾓线AC 和边CD 上的动点,且AE =CF ,则BE +BF 的最⼩值是___________.D ABC E F【答案】3提⽰:作AG ⊥AC 且AG =BC ,连接BG 、EGD AB CE FGH 则△GAE ≌△BCF ,BF =GEBE +BF =BE +GE ≥BG解△ABG 得BG =3,BE +BF 的最⼩值是39.如图,在矩形ABCD 中,AB =2,AD =4,E 为边BC 上⼀点,AE =AD ,M 、N 分别为线段AE 、BE上的动点,且AM =EN ,连接DM 、DN ,则DM +DN 的最⼩值为___________.ABC DN E M【答案】4提⽰:连接ANA B CD NE MA′由题意,AD =AE ,∠DAM =∠AEN =30°,AM =EN∴△ADM ≌△EAN ,∴DM =AN延长AB ⾄点A',使A'B =AB ,连接A'N 、A'D则AN =A'N ,∴DM +DN =AN +DN =A'N +DN ≥A'D当A'、N 、D 三点共线时DM +DN 的值最⼩此时A'N =DN ,∴AN = A'D =DN∴点N 在线段AD 的垂直平分线上∴BN = BC =2,∴AN =AB =2∴DM +DN ≥A'D =2AN =4即DM +DN 的最⼩值为410.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对⾓线BD 上的动点,且BE =DF ,则AE +AF 的最⼩值为___________.A DFB CE【答案】2提⽰:作BG⊥AB且BG=AB,连接AG、EGA DFB CEG则AD=BG,∠ADF=∠GBE=30°⼜∵DF=BE,∴△ADF≌△GBE,∴AF=EG∴AE+AF=AE+EG≥AG=AB=2即AE+AF的最⼩值为211.如图,在平⾯直⾓坐标系xO y中,点A(0,6),C(4,3),CD⊥y轴于D,连接OC,E、F分别是线段CD、OC上的动点,且CE=OF,连接AE、AF,则AE+AF的最⼩值为___________,此时点E的坐标为___________.【答案】(,0)提⽰:在x轴上取点B(5,0),连接AB、AC、BF∵A (0,6),C (4,3),CD ⊥y 轴,∴AD =OD =3∴AC =5=BO ,CD 是AO 的垂直平分线,∴CA =CO∴∠ACE =∠OCE =∠BOF⼜∵CE =OF ,∴△ACE ≌△BOF (SAS ),∴AE =BF∵A (0,6),B (5,0),∴AB =∴AE +AF =AF +BF ≥AB =,即AE +AF 的最⼩值为此时点F 落在线段AB 上,即直线AB 与OC 的交点易求直线AB :y =- x +6,直线OC :y = x可得F (,),CE =OF = ,DE =CD -CE =4- =∴此时点E 的坐标为(,0)12.如图,在Rt △ABC 中,∠B =90°,∠ACB =30°,AB =2,将△ABC 绕点A 顺时针旋转30°到△AB'C',M 、N 分别为边AC'、B'C' 上的动点,且AM =C'N ,连接CM 、CN ,则CM +CN 的最⼩值为___________.AB′C′NMC B【答案】4提⽰:连接AN由题意,AM =C'N ,∠C'=∠ACB =∠CAC'=30°,AC =AC'∴△ACM ≌△C'AN ,∴CM =AN延长AB' ⾄点A',使A'B'=AB',连接A'N 、A'C AB′C′N MCB A′则AN =A'N ,∴CM +CN =AN +CN =A'N +CN ≥A'C当A'、N 、C 三点共线时CM +CN 的值最⼩此时A'N =CN ,∴AN = A'C =CN∴点N 在线段AC 的垂直平分线上∴B'N = AC =AB =AB',∴AN =AB'=AB =2∴CM +CN ≥A'C =2AN =4即CM +CN 的最⼩值为42022·贵州遵义·统考中考真题13.如图,在等腰直⾓三⾓形ABC 中,90BAC ,点M ,N 分别为BC ,AC上的动点,且AN CM ,AB .当AM BN的值最⼩时,CM 的长为.【答案】2【分析】过点A 作AD BC ∥,且AD AC ,证明AND CMA ≌△△,可得AM DN ,当,,B N D 三点共线时,BN AM 取得最⼩值,证明AB BM ,即可求解.【详解】如图,过点A 作AD BC ∥,且AD AC ,连接DN ,如图1所⽰,DAN ACM  ,⼜AN CM,AND CMA V V ≌,AM DN ,BN AM BN DN BD ,当,,B N D 三点共线时,BN AM 取得最⼩值,此时如图2所⽰,Q 在等腰直⾓三⾓形ABC 中,90BAC ,AB2BC ,Q AND CMA ≌△△,ADN CAM  ,AD AC AB Q ,ADN ABN  ,AD BC ∥Q ,ADN MBN  ,ABN MBN  ,设MAC,90BAM BAC  ,245ABM ABN NBM  ,22.5 ,180180904567.5AMB BAM ABM  ,9022.567.5BAM ,AB BM ,2CM BC BM即BN AM 取得最⼩值时,CM 的长为2,故答案为:22023·⽇照·⼆模14.如图,在平⾯直⾓坐标系中,等腰Rt ABC △三个顶点在坐标轴上,90BAC ,点D ,E 分别为BC AC ,上的两个动点,且,AE CD ACAD BE 的值最⼩时,则点D 的坐标为 .【答案】 2,0/2 【分析】如图:过点C 作CB BC 使CB AB ,连接B D ;证SAS ABE CB D V V 可得DB BE ,AB CB;将AD BE 最⼩值可转化成AD CB 最⼩值,则当A 、D 、B 在同⼀直线上时,AD BE 最⼩,即AB 长度;;再根据AC 求得AB CB AC22OA OC ,即 0,2,2,A B ;再运⽤待定系数法求得直线AB 表达式,最后将0y 代⼊表达式求得x 的值即可解答.【详解】解:如图:过点C 作CB BC 使CB AB ,连接B D ,在ABE V 和CB D △中,AB CB BAE B CD AE CD,∴ SAS ABE CB D V V ,∴DB BE ,AB CB,∴AD BE 最⼩值可转化成AD CB最⼩值,当A 、D 、B 在同⼀直线上时,AD BE 最⼩,即AB 长度;∵AC,∴AB CB AC22OA OC ∴0,2,2,A B 设AB 表达式为: 0y kx b k,由题意可得:22b k b ,解得:21b k ,∴AB 表达式为:12y x ,将0y 代⼊得: 012x ,解得:2x,∴D点坐标为2,0 .故答案为: 2,0.2023·咸阳·⼆模15.如图,在Rt ABC △中,21AC BC ,,90ABC ,点P 是边BC 上的动点,在边AC 上截取CQ BP ,连接AP BQ 、,则AP BQ的最⼩值为 .【分析】由“SAS ”可证ABP DCQ V V ≌,可得AP DQ ,则AP BQ的最⼩值为BD ,由勾股定理可求解.【详解】解:过点C 作CD AC ,并截取CD AB ,连接DQ BD 、,设BD 交AC 于点E ,∵2190AC BC ABC ,,,∴AB ,1cos 2ACB ,∴60ACB ,∵AB CD 90ABP DCQ ,BP CQ,∴ SAS ABP DCQ V V ≌,∴AP DQ ,∴AP BQ DQ BQ,在BDQ △中,BQ DQ BD,∴AP BQ的最⼩值为BD ,如图,过点B 作BF CD ⊥于F ,∴BF AC ∥,∴60FBC ACB ,∴30BCF ,∴1122BF BC ,2CF ,∴FD ,∴BD 2023·深圳中学联考16.如图,点E 是正⽅形ABCD 内部⼀个动点,且8AD EB,2BF ,则DE CF 的最⼩值为( )A .10B .C .D 【答案】A【分析】取2BG BF ,则826CG ,证明BGE BFC V V ≌得出BEG BCF ,进⽽证明FCE GEC ,即可证明FCE GEC V V ≌,得出EG CF,则当,,E G D 三点共线时,DE CF 取得最⼩值,最⼩值为DG 的长,勾股定理即可求解.【详解】解:如图所⽰,取2BG BF,则826CG ,连接EG,∵8AD EB,2BF ,∴点E 在以B 为圆⼼8为半径的圆上运动,点F 在以B 为圆⼼2为半径的圆上运动,在,BGE BFC V V 中,BF BG EBG CBF BE BC,∴BGE BFC V V ≌,∴BEG BCF,BGE BFC ∴FGC CFE,∵8BE BC,∴BEC BCE,即FEC GCE,∴FCE GEC,⼜6CG EF,FGC CFE ,∴FCE GEC V V ≌,∴EG FC ,当EG FC 时,则当,,E G D 三点共线时,DE CF取得最⼩值,最⼩值为DG 的长,在Rt CDG △中,10DG17.如图,在Rt△ABC中,∠ACB=90°,AB=6,BC=4,D,E分别是AC,AB上的动点,且AD=BE,连结BD,CE,则BD+CE的最⼩值为 .【答案】解:过B作BF∥AC,在平⾏线上取BF=AB,连接EF,如图:∴∠EBF=∠A,∵BF=AB,BE=AD,∴△BEF≌△ADB(SAS),∴EF=BD,∴BD+CE=EF+CE,当C,E,F共线时,EF+CE最⼩,即BD+CE最⼩,最⼩值即为CF的长度,∵BF∥AC,∠ACB=90°,∴∠FBC=90°,∴CF∴BD+CE最⼩为故答案为:18.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对⾓线BD上的动点,且BE =DF ,则AE +AF 的最⼩值为 .【答案】【详解】解:如图,BC 的下⽅作∠CBT =30°,在BT 上截取BT ,使得BT =AD ,连接ET ,AT .∵四边形ABCD 是菱形,∠ABC =60°,∴∠ADC =∠ABC =60°,∠ADF =12∠ADC =30°,∵AD =BT ,∠ADF =∠TBE =30°,DF =BE ,∴△ADF ≌△TBE (SAS ),∴AF =ET ,∵∠ABT =∠ABC +∠CBT =60°+30°=90°,AB =AD =BT =2,∴AT =∴AE +AF =AE +ET ,∵AE +ET ≥AT ,∴AE +AF ≥,∴AE +AF 的最⼩值为,故答案为.2023·⽢肃武威中考真题拆解19.如图1,抛物线2y x bx 与x 轴交于点A ,与直线y x 交于点 4,4B ,点 0,4C 在y 轴上.点P 从点B 出发,沿线段BO ⽅向匀速运动,运动到点O 时停⽌.(1)求抛物线2y x bx 的表达式;(2)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正⽅向匀速运动,点P 停⽌运动时点Q 也停⽌运动.连接BQ ,PC ,求CP BQ的最⼩值.【答案】(1)23y x x(2)【分析】(1)⽤待定系数法求⼆次函数解析式即可;(2)由题意得,BP OQ ,连接BC .在OA 上⽅作OMQ V ,使得45MOQ ,OM BC ,证明SAS CBP MOQ △≌△,根据CP BQ MQ BQ MB得出CP BQ 的最⼩值为MB ,利⽤勾股定理求得MB ,即可得解.【详解】(1)解:∵抛物线2y x bx 过点 4,4B ,∴1644b,∴3b,∴23y x x;(2)如图2,由题意得,BP OQ,连接BC .在OA 上⽅作OMQ V ,使得45MOQ ,OM BC ,∵4OC BC ,BC OC ,∴45CBP ,∴CBP MOQ,∵BP OQ,CBP MOQ ,BC OM ,∴ SAS CBP MOQ △≌△,∴CP MQ ,∴CP BQ MQ BQ MB(当M ,Q ,B 三点共线时最短),∴CP BQ的最⼩值为MB ,∵454590MOB MOQ BOQ ,∴MB即CP BQ 的最⼩值为2023·黄冈中考真题拆解20.已知抛物线213222y x x 与x 轴交于,(4,0)A B 两点,与y 轴交于点(0,2)C ,点P 为第⼀象限抛物线上的点,连接,,,CA CB PB PC .如图2,点D 在y 轴负半轴上,OD OB ,点Q 为抛物线上⼀点,90QBD ,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF ,记BE QF 的最⼩值为m .①求m 的值;②设PCB V 的⾯积为S ,若214S m k ,请直接写出k 的取值范围.【答案】m1317k 【分析】①作DH DQ ,且使DH BQ ,连接FH .根据SAS 证明BQE HDF V V ≌,可得BE QF FH QF QH ,即Q ,F ,H 共线时,BE QF 的值最⼩.作QG AB 于点G ,设(0),G n ,则213,222Q n n n ,根据QG BG 求出点Q 的坐标,燃然后利⽤勾股定理求解即可;②作PT y ∥轴,交BC 于点T ,求出BC 解析式,设22,1T a a,213,222P a a a ,利⽤三⾓形⾯积公式表⽰出S ,利⽤⼆次函数的性质求出S 的取值范围,结合①中结论即可求解.【详解】解:①如图2,作DH DQ ,且使DH BQ ,连接FH .∵90BQD BDQ ,90HDF BDQ ,∴QD HDF,∵QE DF ,DH BQ ,∴(SAS)BQE HDF V V ≌,∴BE FH ,∴BE QF FH QF QH, ∴Q ,F ,H 共线时,BE QF的值最⼩.作QG AB 于点G ,∵OB OD ,90BOD ,∴45OBD ,∵90QBD ,∴45QBG ,∴QG BG .设(0),G n ,则213,222Q n n n,∴2132422n n n ,解得1n或4n (舍去),∴(2),3Q ,∴413QG BG,∴BQ DH =QD∴m QH ;②如图3,作PT y ∥轴,交BC 于点T ,待定系数法可求BC 解析式为122y x  ,设22,1T a a,213,222P a a a ,则 221131224242222S a a a a ,∴04S, ∴21044m k ,∴0174k,∴1317k.题型三 构造相似求加权线段和2023年成都市天府新区⼆模21.如图,在Rt ABC △中,90BAC ,1AB,2AC .D ,E 分别是边AB ,AC 上的动点,且2CE AD,则2BE CD 的最⼩值为 .【分析】过C 作CF AC 于F ,使24CF AC,连接EF 、BF ,即可得到2EF CD ,2BE CD BE EF BF ,即最⼩值为BF 的长.【详解】⽅法⼀:过C 作CF AC 于F ,使24CF AC,连接EF 、BF ,∵2CE AD,∴2CE CF AD AC ,∵90DAC FAC ,∴DAC ECF V :V ,∴2CE CF EF AD AC CD ,即2EF CD,∴2BE CD BE EF BF,∴当B E F 、、三点共线时2BE CD 有最⼩值,最⼩值为BF 的长∵90DAC FAC∴AB CF P ,∴OB OA AB OF OC CF ,∵1AB,2AC ,24CF AC ∴14OB OA AB OF OC CF ,∴548,455BF OF OC AC ,∴OF ,∴54BF OF∴2BE CD ⽅法⼆:AD x ,则22CE AD x,22AE AC CE x ,∴BE CD 设22y BE CD ,∴12y BE CD∴y 可以看成点 ,0M x 到点11,2A 和 0,2B 的距离之和,∴当 ,0M x 、11,2A 、 0,2B 三点共线时y 最⼩,最⼩值2y AB 22.如图,已知BC ⊥AB ,BC =AB =3,E 为BC 边上⼀动点,连接AE ,D 点在AB 延长线上,且CE =2BD ,则AE +2CD 的最⼩值为________【答案】解:作CF ⊥CB ,且使得CF=6,连接EF过点A做AG⊥CF,交FC延长线于点G∵CF CB =CEBD=2 ,∴△FCE∽△CBD,EF=2CD∴AE+2CD=AE+EF当A、E、F三点⼀线时,AE+EF取到最⼩值,此时AE+EF=AF易知:四边形ABCG为正⽅形 AG=3,CG=3FG=9 在Rt△FAG中,由勾股定理得 AF=AE+2CD的最⼩值为23.如图,菱形ABCD的边长为1,∠ABC=60°.E,F分别是BC,BD上的动点,且CE=DF,则AE+AF的最⼩值为。

2020年四川内江中考数学试卷(解析版)

2020年四川内江中考数学试卷(解析版)








中,



解得:



中,

故选 .
12. D
解析:


∴当
时,
;当
时,

∴直线
与 轴的交点坐标为
,与 轴的交点坐标为

∵,



时,
,此时

11
由图象知:直线 如图 ,
与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,
当 时, 由图象知:直线 如图 ,
图 ,此时
, 与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,
11. 如图,矩形
中, 为对角线,将矩形
沿
上的点 处,点 落在 上的点 处,连结 ,已知
、 所在直线折叠,使点 落在

,则 的长为( ).
A. B. C. D.
12. 在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线

两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则 的取值范围是( ).

的解为非负数,


17
解不等式①,得

解不等式②,得

∵关于 的不等式组




又 为整数,则 的值为 , , , .
符合条件的所有整数 的积为
故答案为: .
的解集为


24. 解析: 如图,过 作 与 轴交于点
y
于 ,过 作 ,与 轴交于点
于 ,过 作 ,
于 ,先根据直线方程

2020年四川省内江中考数学试卷附答案解析版

2020年四川省内江中考数学试卷附答案解析版

数是
()
A.30°
B.40°
C.50°
D.60°
9.如下图,点 A 是反比例函数 y= k 图象上的一点,过点 A 作 AC ⊥ x 轴,垂足为点 C,D x
为 AC 的中点,若△AOD 的面积为 1,则 k 的值为
()
A. 4
B. 8
C.3
D.4
3
3
数学试卷 第 2 页(共 8 页)
10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索, 索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和

2.答 A 卷时,每小题选出答案后,用钢笔或水笔把答案直接填写在对应题目的后面
括号.
第Ⅰ卷(选择题 共 36 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四
个选项中,只有一项是符合题目要求的.)

1. 1 的倒数是
2
A.2
B. 1
2
C. − 1 2
() D. −2
(1)求 B 处到灯塔 P 的距离;
(2)已知灯塔 P 的周围 50 海里内有暗礁,若海监船继续向正东方向航行是否安全?

答 21.(本小题满分 9 分) 如下图, AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥ BC 于点 D ,过点 C 作⊙O 的 切线,交 OD 的延长线于点 E ,连结 BE .
24.如下图,在平面直角坐标系中,点 A(−2,0) ,直线 l : y= 3 x + 3 与 x 轴交于点 B ,
33 以 AB 为边作等边 △ABA1 ,过点 A1 作 A1B1∥x 轴,交直线 l 于点 B1 ,以 A1B1 为边作 等边△A1B1A2 ,过点 A2 作 A2B2∥x 轴,交直线 l 于点 B2 ,以 A2B2 为边作等边△A2B2 A3 , 以此类推……,则点 A2020 的纵坐标是________;

2020年四川省内江中考数学试卷-答案

2020年四川省内江中考数学试卷-答案

2020年四川省内江市初中学业水平考试暨高中阶段学校招生考试数学答案解析一、1.【答案】A【解析】根据乘积是1的两个数叫做互为倒数,求解. 解:12=12⨯∵ 12∴的倒数是2 故选:A .【提示】本题考查倒数的概念,掌握概念正确计算是解题关键.【考点】倒数的概念2.【答案】D【解析】先根据有理数的大小比较法则比较大小,即可得出选项.11052020−−∵<<<, ∴最小的数是1−,故选:D .【提示】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.【考点】有理数的大小比较3.【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A C D 、、都不是中心对称图形,只有B 是中心对称图形. 故选B .4.【答案】B【解析】利用平行线的性质即可解决问题.如图,a b ∵∥,°1=3=50∴∠∠∠,°°°2=18050=130−∴∠,故选:B .【提示】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【考点】平行线的性质5.【答案】B【解析】根据中位数、众数的定义即可求解.把分数从小到大排列为:80,85,90,90,95故中位数为90,众数为90故选B .【提示】此题主要考查中位数、众数,解题的关键是熟知中位数、众数的定义.【考点】中位数,众数6.【答案】C【解析】向上平移时,k 的值不变,只有b 发生变化.解:原直线的=2=1k b −−,;向上平移两个单位得到了新直线,那么新直线的=2=121k b −−+=,∴新直线的解析式为=21y x −+.故选:C .【提示】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k 和b 的值发生变化.【考点】一次函数图象的变换7.【答案】D【解析】首先判断出ADE ABC △∽△,然后根据相似三角形的面积比等于相似比的平方即可求出ABC △的面积.解:根据题意,点D 和点E 分别是AB 和AC 的中点,则DE BC ∥C 且1=2DE BC ,故可以判断出ADE ABC △∽△,根据相似三角形的面积比等于相似比的平方,可知:=1:4ADE ABC S S △△,则:=3:4ABC BCED S S △四边形,题中已知=15BCED S 四边形,故可得=5=20ADE ABC S S △△,故本题选择D【提示】本题主要考查相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断ADE ABC △∽△,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.【考点】相似三角形的判定与性质8.【答案】A【解析】根据圆心角、弧、弦的关系定理得到12AOB AOC ∠=∠,再根据圆周角定理解答. 连接OB ,∵点B 是AC 的中点,°1=602AOB AOC ∴∠=∠, 由圆周角定理得,°1=302D AOB ∠=∠, 故选:A .【提示】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.【考点】圆心角、弧、弦的关系定理,圆周角定理9.【答案】D【解析】先设出点A 的坐标,进而表示出点D 的坐标,利用ADO △的面积建立方程求出=2mn ,即可得出结论.点A 的坐标为()2m n ,, 2=mn k ∴,D ∵为AC 的中点,()D m n ∴,,AC x ⊥∵轴,ADO △的面积为1, ()111==2==1222ADO S AD OC n n m mn −△∴, =2mn ∴,=2=4k mn ∴,故选:D .【提示】本题考查反比例函数系数k 的几何意义、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.【考点】反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征10.【答案】A【解析】设索为x 尺,杆子为()5x −尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x 一元一次方程.设索为x 尺,杆子为()5x −尺, 根据题意得:()1=552x x −−. 故选:A .【提示】本题考查了一元一次方程的应用,找准等量关系是解题的关键.【考点】一元一次方程的应用11.【答案】C【解析】由矩形的性质和已知求出=5BD ,根据折叠的性质得ABE MBE △≌△,设AE 的长度为x ,在Rt EMD △中,由勾股定理求出DE 的长度,同理在Rt DNF △中求出DF 的长度,在Rt DEF △中利用勾股定理即可求出EF 的长度.解:∵四边形ABCD 是矩形,=3=4AB BC ,,BD ∴,设AE 的长度为x ,由折叠可得:ABE MBE △≌△,===4==3=53=2EM AE x DE x BM AB DM −−∴,,,,在Rt EMD △中,222=EM DM DE +,()2222=4x x +−∴, 解得:335==4=222x ED −,, 设CF 的长度为y ,由折叠可得:CBF NBF △≌△, ===3==4=54=1NF CF y DF y BN BC DN −−∴,,,,在Rt DNF △中,222=DN NF DF +,()2221=3y y +−∴, 解得:445==3=333x DF −,,在Rt DEF △中,6EF , 故答案为:C .【提示】本题考查矩形的性质、折叠的性质、全等三角形的判定与性质和勾股定理,运用勾股定理求出DE 和DF 的长度是解题的关键.【考点】矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理12.【答案】D【解析】画出函数图象,利用图象可得t 的取值范围.=22y tx t ++∵,∴当=0y 时,2=2x t−−;当=0x 时,=22y t +, ∴直线=22y tx t ++与x 轴的交点坐标为220t ⎫⎛−− ⎪⎝⎭,,与y 轴的交点坐标为()022t +,, 0t ∵>,222t +∴>, 当1=2t 时,22=3t +,此时22=6t −−−,由图象知:直线()=220y tx t t ++>与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1,当=2t 时,22=6t +,此时22=3t−−−,由图象知:直线()=220y tx t t ++>与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2,当=1t 时,222=42=4t t+−−−,,由图象知:直线()=220y tx t t ++>与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3,122t ∴≤≤且1t ≠, 故选:D .【提示】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t 的值正确画出图象理解题意是解题的关键.【考点】一次函数的图象的性质,一次函数图象,坐标轴交点坐标二、13.【答案】2x ≠【解析】根据函数可知:240x −≠,解得:2x ≠.故答案为:2x ≠.14.【答案】8710⨯【解析】科学记数法的表示形式为:10n a ⨯,其中110a n ≤<,为整数,确定a 值和n 值即可解答. 7亿=700 000 000=8710⨯,故答案为:8710⨯.【提示】此题考查科学记数法的表示,正确确定a 的值和n 的值是解答的关键.【考点】科学记数法的表示15.【答案】13− 【解析】根据一元二次方程的解的定义把=1x −代入原方程得到关于m 的一元二次方程,解得m 的值,然后根据一元二次方程的定义确定m 的值.解:把=1x −代入()22133=0m x mx −++得254=0m m −+,解得12=14m m =,, ()210m −≠∵, 1m ≠∴.=4m ∴.∴方程为29123=0x x ++.设另一个根为a ,则3=9a −. 1=3a −∴. 故答案为:13−. 【提示】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.【考点】一元二次方程的解16.【答案】15【解析】如图,过A 作AG BD ⊥于G ,延长AG ,使=AG EG ,过E 作EN AB ⊥于N ,交BD 于M ,则=AM MN EN +最短,再利用矩形的性质与锐角三角函数求解EN 即可得到答案.解:如图,过A 作AG BD ⊥于G ,延长AG ,使=AG EG ,过E 作EN AB ⊥于N ,交BD 于M ,则=AM MN EN +最短,∵四边形ABCD 为矩形,°=10=30BC ABD ,∠,°=10=20=cos30AD BD AB BD ∴,,,=AG BD AD AB ∵,20=10AG ⨯∴=2AG AE AG ∴,=AE BD EN AB EMG BMN ⊥⊥∵,,∠∠,°==30E ABD ∴∠∠,°=cos30EN AE ∴, =15AM MN +∴,即AM MN +的最小值为15.故答案为:15.【提示】本题考查的是矩形的性质,锐角三角函数的应用,同时考查利用轴对称与垂线段最短求线段和的最小值问题,掌握以上知识是解题的关键.【考点】矩形的性质,锐角三角函数的应用,利用轴对称,垂线段最短求线段和的最小值三、17.【答案】解:()10°124sin60π32−⎫⎛−−−+−− ⎪⎝⎭=221−−++=3−【解析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可.【提示】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.【考点】实数的混合运算18.【答案】(1)证明:AB CD ∵∥,=B C ∴∠∠,在ABE △和CDF △中,===B C AE DF A D ∠∠,,∠∠.AEB DFC ∴△≌△.=AB CD ∴.(2)=AB CD ∵,=AB CF ,=CD CF ∴,°==40B C ∵∠∠,()°°°=180402=70D −÷∴.【解析】(1)根据平行线的性质求出=B C ∠∠,根据AAS 推出ABE CDF △≌△,根据全等三角形的性质得出即可;(2)根据全等得出===AB CD BE CF B C ,,∠∠,求出=CF CD ,推出=D CFE ∠∠,即可求出答案.【提示】本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能根据全等三角形的判定求出ABE CDF △≌△是解此题的关键.【考点】全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用19.【答案】(1)5(2)72°40(3)根据题意画树状图如下:P ∴(女生被选中)42==63. 【解析】(1)先根据“A 等级”的人数及占比求出学生总人数,再减去各组人数即可求出成绩为“B 等级”的学生人数;(2)根据“D 等级”的占比即可求出其圆心角度数,根据“C 等级”的人数即可求出m 的值;(3)根据题意画树状图,再根据概率公式即可求解.(1)学生总人数为315%=20÷(人)∴成绩为“B 等级”的学生人数有20384=5−−−(人)故答案为:5;(2)“D 等级”的扇形的圆心角度数为°°4360=7020⨯ 8=100=4020m ⨯, 故答案为:72°;40;【提示】此题主要考查统计调查的应用,解题的关键是根据题意求出学生总人数及概率的求解方法.【考点】统计调查的应用20.【答案】(1)过点P 作PD AB ⊥于点D ,由题意得,=60AB (海里),°°=30=60PAB PBD ∠,∠,°°°==6030=30=APB PBD PAB PAB −∴∠∠∠-∠,==60PB AB ∴(海里),答:B 处到灯塔P 的距离为60海里;(2)由(1)可知°==30APB PAB ∠∠,==60PB AB ∴(海里),在PBD Rt △中,°=sin60=602PD BP ⨯50∵, 【解析】(1)作PD AB ⊥于D .求出PAB PBA P ∠、∠、∠的度数,证得ABP △为等腰三角形,即可解决问题;(2)在Rt PBD △中,解直角三角形求出PD 的值即可判定.∴海监船继续向正东方向航行是安全的.【提示】本题考查了解直角三角形的应用、方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.【考点】直角三角形的应用,方向角问题21.【答案】(1)证明:连接OC ,如图,OD BC ⊥∵,=CD BD ∴,OE ∴为BC 的垂直平分线,=EB EC ∴,=EBC ECB ∴∠∠,=OB OC ∵,=OBC OCB ∴∠∠,+=+OBC EBC OCB ECB ∴∠∠∠∠,即=OBE OCE ∠∠, CE ∵为O ⊙的切线,OC CE ⊥∴,°=90OCE ∴∠,°=90OBE ∴∠,OB BE ⊥∴,BE ∴与O ⊙相切.(2)设O ⊙的半径为R ,则==2=OD R DF R OB R −−,,在OBD Rt △中,1=2BD BC 222=OD BD OB +∵,()(2222=R R −+∴,解得=4R=2=4OD OB ∴, °=30OBD ∴∠,°=60BOD ∴∠,∴在Rt OBE △中,°=30=2=8BEO OE OB ∠,,==84=4EF OE OF −−∴,即=4EF ;(3)由°==30OCD OBD ∠∠和OD BC ⊥知:°==60COD BOD ∠∠,°=120BOC ∴∠,又=8BC OE ,=OBEC OBC S S S −阴影四边形扇形∴21120π4=82360⨯⨯ 16π3, 【解析】(1)连接OC ,如图,根据垂径定理由OD BC ⊥得到=CD BD ,则OE 为BC 的垂直平分线,所以=EB EC ,根据等腰三角形的性质得=EBC ECB ∠∠,加上=OBC OCB ∠∠,则=OBE OCE ∠∠;再根据切线的性质得°=90OCE ∠,所以°=90OBE ∠,然后根据切线的判定定理得BE 与O ⊙相切;(2)设O ⊙的半径为R ,则==2=OD R DF R OB R −−,,在OBD Rt △,利用勾股定理解得=4R ,再利用含30°角的直角三角形边角关系可求得OE ,利用=EF OE OF −即可解答;(3)利用(2)中可求得°=120BOC ∠,然后利用=OBEC OBC S S S −阴影四边形扇形代入数值即可求解.【提示】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.【考点】切线的判定与性质,垂径定理,扇形面积的计算,含30º角的直角三角形边角关系,勾股定理 四、22.【答案】()()()2322b b b ++−【解析】先根据十字相乘法,再利用平方差公式即可因式分解. ()()()()()4222212=34=322b b b b b b b −−+−++−故答案为:()()()2322b b b ++−.【提示】此题主要考查因式分解,解题的关键是熟知因式分解的方法.【考点】因式分解23.【答案】40【解析】根据分式方程的解为正数即可得出5a ≤且3a ≠,根据不等式组的解集为0y ≤,即可得出0a >,找出05a <≤且3a ≠中所有的整数,将其相乘即可得出结论.解:分式方程2=311x a x x++−−的解为5=2a x −且1x ≠,∵分式方程2=311x a x x++−−的解为非负数, 502a −∴≥且512a −≠. 5a ∴≤且3a ≠.()3113431220y y y a −+⎧−−⎪⎨⎪−⎩≥①<② 解不等式①,得0y ≤.解不等式②,得y a <.∵关于y 的不等式组()3113431220y y y a −+⎧−−⎪⎨⎪−⎩≥<的解集为0y ≤, 0a ∴>.05a ∴<≤且3a ≠.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为1245=40⨯⨯⨯.故答案为:40.【提示】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.【考点】分式方程的解,解一元一次不等式24.【答案】()2020212− 【解析】如图,过1A 作1AC AB ⊥与C ,过2A 作2111A C A B ⊥于1C ,过3A 作3222A C A B ⊥于2C ,先根据直线方程与x 轴交于点()10B −,,且与x 轴夹角为30°,则有=1AB ,然后根据平行线的性质、等边三角形的性质、含30°的直角三角形的性质,分别求的123A A A 、、、的纵坐标,进而得到n A 的纵坐标,据此可得2020A 的纵坐标,即可解答.如图,过1A 作1AC AB ⊥与C ,过2A 作2111A C A B ⊥于1C ,过3A 作3222A C A B ⊥于2C ,先根据直线方程与x 轴交于点()10B −,,与y 轴交于点03D ⎛ ⎝⎭,,=1OB OD ∴,°=30DBO ∴∠由题意可得:°°1122111221==30==60A B B A B B B A B B A B ∠∠,∠∠ °11212==90A BB A B B ∴∠∠,12311122213332=1=2=2=2=2=2=2=2n n n AB A B A B A B A B A B A B A B ∴,,,,11AC ∴,1A 纵坐标为()12122⨯−;121112A C A B ,2A ))1012122221++−;232222A C A B ,3A ))12012312222221++−;由此规律可得:112n n n A C −−,n A ))0121222221n n −+++−,()20202020212A −∴,)202021−【提示】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.25.【答案】②④【解析】根据题目中的较大者M 的定义逐个分析即可.解:对于①:当=2x ,212=242=4=22=4y y b b −+⨯⨯++,,显然只要0b >,则M 的值为4b +,故①错误;对于②:当=3b −时,在同一直角坐标系内画出12y y ,的图像,如下图所示,其中红色部分即表示M ,联立12y y ,的函数表达式,即2423x x x −+=−,求得交点横坐标为3和1−,观察图形可知2M y >的x 的取值范围是13x −<<,故②正确;对于③:当5b =−时,在同一直角坐标系内画出12y y ,的图像,如下图所示,其中红色部分即表示M ,联立12y y ,的函数表达式,即2425x x x −+=−,求得其交点的横坐标为1和1,故=3M 时分类讨论:当21=4=3y x x −+时,解得1=3x 或2=1x ,当2=25=3y x −时,解得3=4x ,故③错误; 对于④:当1b ≥时,函数21y y ≥,此时2y 图像一直在1y 图像上方,如下图所示,故此时2=M y ,故M 随x 的增大而增大,故④正确.故答案为:②④.【提示】本题考查了二次函数与一次函数的图像性质及交点坐标,本题的关键是要能理解M 的含义,学会用数形结合的方法分析问题.【考点】二次函数,一次函数的图像性质,交点坐标五、26.【答案】(1)231(2)由题意可得:交换后的数减去交换前的数的差为: ()1010=9=54b a a b b a +−−−,=6b a −∴,19a b ∵≤≤≤,=9=3b a ∴,或=8=2b a ,或=7=1b a ,,t ∴为39,28,17;39=139=313⨯⨯∵,()339=13f ∴; 28=128=214=47⨯⨯⨯,()428=7f ∴; 17=117⨯,()117=17f ∴; ()f t ∴的最大值47.(3)2021 1415 1528 1415【解析】(1)6=16=23⨯⨯,由已知可求()26=9=19=333f ⨯⨯;,由已知可求()91f =; (2)由题意可得:交换后的数减去交换前的数的差为:()1010=9=54b a a b b a +−−−,得到=6b a −,可求t 的值,故可得到()f t 的最大值;(3)根据()=m f x n的定义即可依次求解. (1)6=16=23⨯⨯,6132−−∵>,()26=3f ∴; 9=19=33⨯⨯,9133−−∵>,()91f =∴, 故答案为:23;1; (3)①22357=2021⨯⨯⨯⨯∵()2202357=21⨯⨯⨯∴; ②32357=2830⨯⨯⨯⨯()328142357==3015f ⨯⨯⨯∴; ③42357=5630⨯⨯⨯⨯∵()430152357==5628f ⨯⨯⨯∴;④52357=5660⨯⨯⨯⨯∵()556142357==6015f ⨯⨯⨯∴, 故答案为:2014151421152815,,,. 【提示】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.【考点】因式分解的应用27.【答案】(1)解:∵四边形ABCD 为正方形,°==90AB BC ABC ∴,∠,BP ∵绕点B 顺时针旋转90°到BQ ,°==90BP BQ PBQ ∴,∠,=ABC PBC PBQ PBC −−∴∠∠∠∠,=ABP CBQ ∴∠∠,在APB △和CQB △中,==AB BC ABP CBQ BP QB ⎧⎪⎨⎪=⎩∠∠,()APB CQB SAS ∴△≌△,=AP CQ ∴.(2)设=AP x ,则=4=3AC x PC x ,,由(1)知==CQ AP x ,ABC △为等腰直角三角形,BC AC ∴, 在Rt PCQ △中,由勾股定理有:PQ ,且PBQ △为等腰直角三角形,2BQ ∴, 又°°==45=45BCQ BAP BQE ∠∠,∠,°==45BCQ BQE ∴∠∠,且=CBQ CBQ ∠∠,BQE BCQ ∴△∽△,=BQ BE BC BQ ∴,===44BE x CE BC BE x −∴,∴,3:8CE BC ∴. (3)在CE 上截取CG ,并使=CG FA ,如图所示:°==45FAP GCQ ∵∠∠,且由(1)知=AP CQ ,且截取=CG FA ,故有()PFA QGC SAS △≌△,==PF QG PFA CGQ ∴,∠∠,又°°=180=180DFP PFA QGE CGQ −−∵∠∠,∠∠,=DFP QGE ∴∠∠,DA BC ∵∥,=DFP CEQ ∴∠∠,=QGE CEQ ∴∠∠,QGE ∴△为等腰三角形,=GQ QE ∴,故=PE QE .【解析】(1)由旋转知PBQ △为等腰直角三角形,得到°==90PB QB PBQ ,∠,进而证明APB CQB △≌△即可;(2)设=AP x ,则=4=3AC x PC x ,,由(1)知==CQ AP x ,又ABC △为等腰直角三角形,所以BC AC PQ ,,再证明BQE BCQ △∽△,由此求出BE ,进而求出:CE BC 的值; (3)在CE 上截取CG ,并使=CG FA ,证明PFA QGC △∽△,进而得到=PE QG ,然后再证明=QGE QEG ∠∠即可得到=QG EQ ,进而求解.【提示】本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE 上截取CG ,并使=CG FA 这条辅助线.【考点】正方形的性质,旋转的性质,三角形全等的判定和性质,相似三角形判定和性质的综合28.【答案】(1)将()()()104002A B C −,、,、,代入2=y ax bx c ++得: =0164=0=2a b c a b c c −+⎧⎪++⎨⎪⎩, 解得:1=23=2=2a b c ⎧−⎪⎪⎪⎨⎪⎪⎪⎩故抛物线的解析式为213=222y x x −++. (2)如图2,过点D 作DM BC ∥,交y 轴于点M ,设点M 的坐标为()0m ,,使得BCM △的面积为3,=324=1.5CM ⨯÷, 则7=2 1.5=2m +, 702M ⎫⎛ ⎪⎝⎭, ∵点()()4002B C ,,,, ∴直线BC 的解析式为1=22y x−+, DM ∴的解析式为17=22y x −+,联立抛物线解析式217=2213=222y x y x x ⎧−+⎪⎪⎨⎪−++⎪⎩,解得1122=3=1=2=3x x y y ⎧⎧⎨⎨⎩⎩,. ∴点D 的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当=2DCE ABC ∠∠时,取点()02F −,,连接BF ,如图3所示.=OC OF OB CF ∵,⊥,=ABC ABF ∴∠∠,=2CBF ABC ∴∠∠.=2DCB ABC ∵∠∠,=DCB CBF ∴∠∠,CD BF ∴∥.∵点()()4002B F ,,,-, ∴直线BF 的解析式为1=22y x −, ∴直线CD 的解析式为1=22y x +. 联立直线CD 及抛物线的解析式成方程组得:21=2213=222y x y x x ⎧+⎪⎪⎨⎪−++⎪⎩, 解得:11=0=2x y ⎧⎨⎩(舍去),22=2=3x y ⎧⎨⎩,∴点D 的坐标为(2,3);②当=2CDE ABC ∠∠时,过点C 作CN BF ⊥于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.°°=90=90OCH OHC OBF BHN −−∵∠∠,∠∠,=OHC BHN ∠∠,=OCH OBF ∴∠∠.在OCH △与OBF △中°==90=COH BOF OCH OBF ⎧⎨⎩∠∠∠∠, OCH OBF ∴△∽△,=OH OC OF OB ∴,即2=24OH , ()=110OH H ∴,,.设直线CN 的解析式为()=0y kx n k +≠,()()0,210C H ∵,,,=2=0n k n ⎧⎨+⎩∴,解得=22k n −⎧⎨=⎩, ∴直线CN 的解析式为=22y x −+.连接直线BF 及直线CN 成方程组得:1=22=22y x y x ⎧−⎪⎨⎪−+⎩, 解得:8=56=5x y ⎧⎪⎪⎨⎪−⎪⎩,∴点N 的坐标为8655⎫⎛− ⎪⎝⎭,. ∵点()()4002B C ,,,, ∴直线BC 的解析式为1=22y x −+. NP BC ⊥∵,且点8655N ⎫⎛− ⎪⎝⎭,, ∴直线NP 的解析式为22=25y x −. 联立直线BC 及直线NP 成方程组得:1=2222=25y x y x ⎧−+⎪⎪⎨⎪−⎪⎩, 解得:64=2518=25x y ⎧⎪⎪⎨⎪⎪⎩,∴点Q 的坐标为64182525⎫⎛ ⎪⎝⎭,. ∵点8655N ⎫⎛− ⎪⎝⎭,,点N P ,关于BC 对称, ∴点P 的坐标为88162525⎫⎛ ⎪⎝⎭,. ∵点()8866022525C P ⎫⎛− ⎪⎝⎭,,,, ∴直线CP 的解析式为2=211y x +. 将2=211y x +代入213=222y x x −++整理,得:11229=0x x −, 解得:1=0x (舍去),229=11x , ∴点D 的横坐标为2911.综上所述:存在点D ,使得CDE △的某个角恰好等于ABC ∠的2倍,点D 的横坐标为2或2911. 【解析】(1)根据点A B C 、、的坐标,利用待定系数法即可求出抛物线的解析式; (2)根据三角形面积公式可求与BC 平行的经过点D 的y 轴上点M 的坐标,再根据待定系数法可求DM 的解析式,再联立抛物线可求点D 的坐标;(3)分=2DCE ABC ∠∠及=2CDE ABC ∠∠两种情况考虑:①当=2DCE ABC ∠∠时,取点()02F −,,连接BE ,则CD BF ∥,由点B F ,的坐标,利用待定系数法可求出直线BF CD ,的解析式,联立直线CD 及抛物线的解析式组成方程组,通过解方程组可求出点D 的坐标;②当=2CDE ABC ∠∠时,过点C 作CN BF ⊥于点N ,交OB 于H .作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,由OCH OBF △∽△求出H 点坐标,利用待定系数法求出直线CN 的解析式,联立直线BF 及直线CN 成方程组,通过解方程组可求出点N 的坐标,利用对称的性质可求出点P 的坐标,由点C P 、的坐标,利用待定系数法可求出直线CP 的解析式,将直线CP 的解析式代入抛物线解析式中可得出关于x 的一元二次方程,解之取其非零值可得出点D 的横坐标.依此即可得解.【提示】本题是二次函数综合题,考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)根据三角形面积公式和待定系数法求出点D 的坐标;(3)分=2DCE ABC ∠∠及=2CDE ABC ∠∠两种情况求出点D 的横坐标.【考点】待定系数法求二次函数解析式,二次函数图象上点的坐标特征,勾股定理,等腰三角形的性质,平行线的判定与性质,相似三角形的判定与性质,待定系数法求一次函数解析式,一次函数图象上点的坐标特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内江市2015年中考数学试卷及答案解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•内江)9的算术平方根是()A.﹣3B.±3C.3D.考点:算术平方根.分析:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.解答:解:9的算术平方根是3.故选:C.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(3分)(2015•内江)用科学记数法表示,结果是()A.×10﹣5B.×10﹣6C.×10﹣5D.61×10﹣7考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:用科学记数法表示,结果是×10﹣6.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•内江)如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得俯视图为.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)(2015•内江)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()A.10B.C.D.2考点:方差;算术平均数.分析:首先根据算术平均数的概念求出a的值,然后把数据代入方差公式求出数值.解答:解:∵3,a,4,6,7,它们的平均数是5,∴=5,∴a=5,∴s2=[(5﹣3)2+(5﹣5)2+(5﹣4)2+(5﹣6)2+(5﹣7)2]=2.故选D.点评:本题主要考查了方差以及算术平均数的知识,解答本题的关键是根据算术平均数的概念求出a的值,此题难度不大.5.(3分)(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠1考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.点评:本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2015•内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.B.C.D.考点:概率公式.分析:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少即可.解答:解:抬头看信号灯时,是黄灯的概率为:5÷(30+25+5)=5÷60=故选:A.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.7.(3分)(2015•内江)下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、应为a3•a4=a3+4=a7,故本选项错误;C、应为a6÷a3=a6﹣3=a3,故本选项错误;D、4a﹣a=(4﹣1)a=3a,正确.故选D.点评:本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.8.(3分)(2015•内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BA C的度数为()A.40°B.45°C.60°D.70°考点:等腰三角形的性质;平行线的性质.分析:根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.解答:解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.点评:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.9.(3分)(2015•内江)植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意可得:,故选D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(3分)(2015•内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°考点:切线的性质.分析:连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.解答:解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.点评:本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.11.(3分)(2015•内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.考点:轴对称-最短路线问题;正方形的性质.分析:由于点B与D关于AC对称,所以BE与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解答:解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选B.点评:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,等边三角形的性质,找到点P 的位置是解决问题的关键.12.(3分)(2015•内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<16考点:反比例函数与一次函数的交点问题.分析:先根据题意求出A点的坐标,再根据AB=BC=3,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.解答:解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A 的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(4,4)时,k=16,因而1≤k≤16.故选:C.点评:本题主要考查了反比例函数,用待定系数法求一次函数的解析式,解此题的关键是理解题意进而求出k的值.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)(2015•内江)分解因式:2x2y﹣8y= 2y(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2y,再对余下的多项式利用平方差公式继续分解.解答:解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(5分)(2015•内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.考点:翻折变换(折叠问题).分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC 于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC ﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.解答:解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,在Rt△ABH中,AH==2,∴EF=.故答案为:.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.15.(5分)(2015•内江)已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是 2 .考点:根与系数的关系.分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.解答:解:∵3x2+2x﹣11=0的两个解分别为x、x2,1∴x1+x2=6,x1x2=k,+===3,解得:k=2,故答案为:2.点评:此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.16.(5分)(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推算步骤)17.(7分)(2015•内江)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及绝对值、零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+=2﹣1+2﹣+2=3+.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握绝对值、零指数幂、负整数指数幂、二次根式化简等考点的运算.18.(9分)(2015•内江)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE 交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)欲证明四边形BECD是矩形,只需推知BC=ED.解答:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.点评:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.19.(9分)(2015•内江)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.考点:列表法与树状图法;用样本估计总体;频数(率)分布直方图;扇形统计图.分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;(2)由题意可求得:考试成绩评为“B”的学生大约有:×1500=420(名);(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.解答:解:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有:×1500=420(名);(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有10种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:=.点评:此题考查了树状图法与列表法求概率的知识以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)(2015•内江)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁(参考数据:≈,≈)考点:解直角三角形的应用-方向角问题.分析:根据题意,在△MNP中,∠MNP=30°,∠PMN=45°,MN=2千米,是否搬迁看P点到MN 的距离与的大小关系,若距离大于千米则不需搬迁,反之则需搬迁,因此求P点到MN 的距离,作PD⊥MN于D点.解答:解:过点P作PD⊥MN于D∴MD=PD•cot45°=PD,ND=PD•cot30°=PD,∵MD+ND=MN=2,即PD+PD=2,∴PD==﹣1≈﹣1=>.答:修的公路不会穿越住宅小区,故该小区居民不需搬迁.点评:考查了解直角三角形的应用﹣方向角问题,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角(30°、45°、60°).21.(10分)(2015•内江)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.考点:一次函数的应用;分式方程的应用;一元一次不等式组的应用.分析:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据“商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等”,列出方程,即可解答;(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,根据题意得:,得到,根据x为正整数,所以x=34,35,36,37,38,39,40,即合理的方案共有7种,利用一次函数的性质,确定获利最大的方案以及最大利润;(3)当电冰箱出厂价下调k(0<k<100)元时,则利润y=(k﹣50)x+15000,分两种情况讨论:当k﹣50>0;当k﹣50<0;利用一次函数的性质,即可解答.解答:解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:,解得:x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,根据题意得:,解得:,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.(3)当厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,则利润y=(2100﹣2000+k)x+(1750﹣1600)(100﹣x)=(k﹣50)x+15000,当k﹣50>0,即50<k<100时,y随x的增大而增大,∵,∴当x=40时,这100台家电销售总利润最大,即购进电冰箱40台,空调60台;当k﹣50<0,即0<k<50时,y随x的增大而减小,∵,∴当x=34时,这100台家电销售总利润最大,即购进电冰箱34台,空调66台;答:当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大.点评:本题考查了列分式方程解实际问题的运用,一次函数的解析式的性质的运用,解答时根据总利润═冰箱的利润+空调的利润建立解析式是关键.四、填空题(本大题共4小题,每小题6分,共24分)22.(6分)(2015•内江)在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6 .考点:含30度角的直角三角形;勾股定理.分析:由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.解答:解:∵∠B=30°,AB=12,AC=6,∴△ABC是直角三角形,∴BC===6,故答案为:6.°点评:此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.23.(6分)(2015•内江)在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b 为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=.考点:一次函数图象上点的坐标特征;解直角三角形.分析:设直线l与坐标轴的交点分别为A、B,根据三角形内角和定理求得∴∠OAB=∠OPQ,根据一次函数图象上点的坐标特征求得tan∠OAB=,进而就可求得.解答:解:如图,设直线l与坐标轴的交点分别为A、B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由直线的斜率可知:tan∠OAB=,∴tan∠OPQ=;故答案为.点评:本题考查了一次函数图象上点的坐标特征,解直角三角形,求得∠OAB=∠OPQ是解题的关键.24.(6分)(2015•内江)如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①CH⊥BE;②HOBG;③S正方形ABCD:S正方形ECGF=1:;④EM:MG=1:(1+),其中正确结论的序号为②.考点:四边形综合题.分析:证明△BCE≌△DCG,即可证得∠BEC=∠DGC,然后根据三角形的内角和定理证得∠EHG=90°,则HG⊥BE,然后证明△BGH≌△EGH,则H是BE的中点,则OH是△BGE 的中位线,根据三角形的中位线定理即可判断②.根据△DHN∽△DGC求得两个三角形的边长的比,则③④即可判断.解答:解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG,∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,∴HG⊥BE,则CH⊥BE错误,则故①错误;∵在△BGH和△EGH中,,∴△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HOBG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴,即,即a2+2ab﹣b2=0,解得:a=或a=(舍去),则,则S正方形ABCD:S正方形ECGF=()2=,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴=,∴,∴===.故④错误.故正确的是②.故答案是:②.点评:本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.25.(6分)(2015•内江)已知实数a,b满足:a2+1=,b2+1=,则2015|a﹣b|= 1 .考点:因式分解的应用;零指数幂.分析:由于a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,则有(a+b)(a﹣b)=,分解因式可得a=b,依此可得2015|a﹣b|=20150,再根据零指数幂的计算法则计算即可求解.解答:解:∵a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,(a+b)(a﹣b)=,[ab(a+b)+1](a﹣b)=0,∴a﹣b=0,即a=b,∴2015|a﹣b|=20150=1.故答案为:1.点评:考查了因式分解的应用,零指数幂,本题关键是得到a=b.五、解答题(本大题共3小题,每小题12分,共36分,解答时应写出必要的文字说明或演算步骤)26.(12分)(2015•内江)(1)填空:(a﹣b)(a+b)= a2﹣b2;(a﹣b)(a2+ab+b2)= a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)= a4﹣b4.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= a n﹣b n(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.考点:平方差公式.专题:规律型.分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.解答:解:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4;故答案为:a2﹣b2,a3﹣b3,a4﹣b4;(2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.点评:此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.27.(12分)(2015•内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O 的直径AB的长.考点:圆的综合题;线段的性质:两点之间线段最短;等腰三角形的性质;等边三角形的判定与性质;菱形的判定与性质;锐角三角函数的定义;特殊角的三角函数值.专题:综合题.分析:(1)连接OC,如图1,要证CE是⊙O的切线,只需证到∠OCE=90°即可;(2)过点C作CH⊥AB于H,连接OC,如图2,在Rt△OHC中运用三角函数即可解决问题;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图3,易证四边形AOCF是菱形,根据对称性可得DF=DO.过点D作DH⊥OC于H,易得DH=DC,从而有CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,然后在Rt△OHF中运用三角函数即可解决问题.解答:解:(1)连接OC,如图1,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图2,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=OC,∴OC==h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图3,则∠AOF=∠COF=∠AOC=(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=DC,∴CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即CD+OD)最小,此时FH=OF•sin∠FOH=OF=6,则OF=4,AB=2OF=8.∴当CD+OD的最小值为6时,⊙O的直径AB的长为8.点评:本题主要考查了圆周角定理、切线的判定、等腰三角形的性质、三角函数的定义、特殊角的三角函数值、等边三角形的判定与性质、菱形的判定与性质、两点之间线段最短等知识,把CD+OD转化为DH+FD是解决第(3)小题的关键.28.(12分)(2015•内江)如图,抛物线与x轴交于点A(﹣,0)、点B(2,0),与y轴交于点C(0,1),连接BC.(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(﹣<t <2),求△ABN的面积S与t的函数关系式;(3)若﹣<t<2且t≠0时△OPN∽△COB,求点N的坐标.考点:二次函数综合题;待定系数法求二次函数解析式;相似三角形的性质.专题:综合题.分析:(1)可设抛物线的解析式为y=ax2+bx+c,然后只需运用待定系数法就可解决问题;(2)当﹣<t<2时,点N在x轴的上方,则NP等于点N的纵坐标,只需求出AB,就可得到S与t的函数关系式;(3)根据相似三角形的性质可得PN=2PO.由于PO=,需分﹣<t<0和0<t<2两种情况讨论,由PN=2PO得到关于t的方程,解这个方程,就可解决问题.解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由题可得:,解得:,∴抛物线的函数关系式为y=﹣x2+x+1;(2)当﹣<t<2时,yN>0,∴NP==y N=﹣t2+t+1,∴S=AB•PN=×(2+)×(﹣t2+t+1)=(﹣t2+t+1)=﹣t2+t+;(3)∵△OPN∽△COB,∴=,∴=,∴PN=2PO.①当﹣<t<0时,PN==y N=﹣t2+t+1,PO==﹣t,∴﹣t2+t+1=﹣2t,整理得:3t2﹣9t﹣2=0,解得:t1=,t2=.∵>0,﹣<<0,∴t=,此时点N的坐标为(,);②当0<t<2时,PN==y N=﹣t2+t+1,PO==t,∴﹣t2+t+1=2t,整理得:3t2﹣t﹣2=0,解得:t3=﹣,t4=1.∵﹣<0,0<1<2,∴t=1,此时点N的坐标为(1,2).综上所述:点N的坐标为(,)或(1,2).点评:本题主要考查了用待定系数法求二次函数的解析式、相似三角形的性质、解一元二次方程等知识,需要注意的是:用点的坐标表示相关线段的长度时,应先用坐标的绝对值表示线段的长度,然后根据坐标的正负去绝对值;解方程后要检验,不符合条件的解要舍去.。

相关文档
最新文档