二次函数与特殊三角形问题

合集下载

2024年中考数学复习重难点题型训练—二次函数与几何图形综合题(与特殊三角形问题)

2024年中考数学复习重难点题型训练—二次函数与几何图形综合题(与特殊三角形问题)

2024年中考数学复习重难点题型训练—二次函数与几何图形综合题(与特殊三角形问题)1.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C.(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;【答案】(1)2142y x x =-++;(2)()1,1F 或()1,5F -或()1,3F -;(3)162OM ON +=,理由见解析【分析】(1)待定系数法求解析式即可;(2)先求得抛物线的对称轴为直线1x =,设l 与x 交于点G ,过点E 作ED l ⊥于点D ,证明DFG GBF ≌,设()F 1,m ,则1DE m =+,3DG DF FG GB FG m =+=+=+,进而得出E 点的坐标,代入抛物线解析式,求得m 的值,同理可求得当点F 在x 轴下方时的坐标;当E 点与A 点重合时,求得另一个解,进而即可求解;【详解】(1)解:将点()2,0A -,()4,0B ,代入24y ax bx =++得424016440a b a b -+=⎧⎨++=⎩解得:121a b ⎧=-⎪⎨⎪=⎩,∴抛物线解析式为2142y x x =-++;(2)∵点()2,0A -,()4,0B ,∴抛物线的对称轴为直线l :2412x -+==,如图所示,设l 与x 交于点G ,过点E 作ED l ⊥于点D∵以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,∴EF BF =,∵90DFE BFG GBF ∠=︒-∠=∠,∴DFE GBF ≌,∴,GF DE GB FD ==,设()F 1,m ,则DE m =,3DG DF FG GB FG m=+=+=+∴()1,3E m m ++,∵E 点在抛物线2142y x x =-++上∴()()2131142m m m +=-++++解得:3m =-(舍去)或1m =,∴()1,1F ,如图所示,设l 与x 交于点G ,过点E 作ED l ⊥于点D∵以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,∴EF BF =,∵90DFE BFG GBF ∠=︒-∠=∠,∴DFE GBF ≌,∴,GF DE GB FD ==,设()F 1,m ,则DE m =,3DG DF FG GB FG m=+=+=-∴()1,3E m m --,∵E 点在抛物线2142y x x =-++上∴()()2131142m m m -=--+-+解得:3m =(舍去)或5m =-,∴()1,5F -,当E 点与A 点重合时,如图所示,∵6AB =,ABF △是等腰直角三角形,且90BFE ∠=︒,∴2GF AB 1==3此时()0,3F -,综上所述,()1,1F 或()1,5F -或()1,3F -;【点睛】本题考查了二次函数综合问题,待定系数法求二次函数解析式,等腰直角三角形的性质,一次函数与坐标轴交点问题,熟练掌握二次函数的性质是解题的关键.2.(2023·山东烟台·统考中考真题)如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =-交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;【答案】(1)直线AD 的解析式为1y x =-;抛物线解析式为265y x x =-+;(2)存在,点M 的坐标为()4,3-或()0,5或()5,0;【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=︒时,求出直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;②当90ADM ∠=︒时,求出直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,即可得到点M 的坐标;【详解】(1)解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将()1,0A 代入直线1y kx =-,得10k -=,解得1k =,∴直线AD 的解析式为1y x =-;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++=⎧⎨++=⎩,解得16a b =⎧⎨=-⎩,∴抛物线的解析式为265y x x =-+;(2)存在点M ,∵直线AD 的解析式为1y x =-,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =-=,∴()3,2D ,①当90DAM ∠=︒时,设直线AM 的解析式为y x c =-+,将点A 坐标代入,得10c -+=,解得1c =,∴直线AM 的解析式为1y x =-+,解方程组2165y x y x x =-+⎧⎨=-+⎩,得10x y =⎧⎨=⎩或43x y =⎧⎨=-⎩,∴点M 的坐标为()4,3-;②当90ADM ∠=︒时,设直线DM 的解析式为y x d =-+,将()3,2D 代入,得32d -+=,解得5d =,∴直线DM 的解析式为5y x =-+,解方程组2565y x y x x =-+⎧⎨=-+⎩,解得05x y =⎧⎨=⎩或50x y =⎧⎨=⎩,∴点M 的坐标为()0,5或()5,0综上,点M 的坐标为()4,3-或()0,5或()5,0;【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.3.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或1522⎛+ ⎝⎭或1522⎛⎫ ⎪ ⎪⎝⎭【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M (m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t +()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()()()222222323182m m m m m m -+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M 1522⎛+ ⎪ ⎪⎝⎭或1522⎛⎫ ⎪ ⎪⎝⎭;综上所述:满足条件的M 为()14-,或()25-,或⎝⎭或⎫⎪⎪⎝⎭.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.4.(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+-;(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭;(3)Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =--,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解.【详解】(1)解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,(2)∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+⨯--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;(3)∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫- ⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.5.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.【答案】(1)245y x x =--+;(2)①当52m =-时,EF 有最大值,最大值为254;②()38-,或()45-,或)52-【分析】(1)利用待定系数法求解即可;(2)①先求出()05C ,,进而求出直线BC 的解析式为5y x =+,则()()2455E m m m F m m --++,,,,进一步求出252524EF m ⎛⎫=-++ ⎪⎝⎭,由此即可利用二次函数的性质求出答案;②设直线x m =与x 轴交于H ,先证明BHF 是等腰直角三角形,得到45EFC BFH =∠=︒∠;再分如图3-1所示,当EC FC =时,如图3-2所示,当EF EC =时,如图3-3所示,当EF CF =时,三种情况利用等腰三角形的定义进行求解即可.【详解】(1)解:∵抛物线与x 轴交于()1,0A 和()5,0B -两点,∴抛物线对称轴为直线5122x -+==-,在33y x =-+中,当2x =-时,9y =,∴抛物线顶点P 的坐标为()29-,,设抛物线解析式为()229y a x =++,∴()21290a ++=,∴1a =-,∴抛物线解析式为()222945y x x x =-++=--+(2)解:①∵抛物线解析式为245y x x =--+,点C 是抛物线与y 轴的交点,∴()05C ,,设直线BC 的解析式为1y kx b =+,∴11505k b b -+=⎧⎨=⎩,∴15k b =⎧⎨=⎩,∴直线BC 的解析式为5y x =+,∵直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F∴()()2455E m m m F m m --++,,,,∴()2455EF m m m =--+-+25m m=--252524m ⎛⎫=-++ ⎪⎝⎭,∵10-<,∴当52m =-时,EF 有最大值,最大值为254;②设直线x m =与x 轴交于H ,∴5BH m =+,5HF m =+,∴BH HF =,∴BHF 是等腰直角三角形,∴45EFC BFH =∠=︒∠;如图3-1所示,当EC FC =时,过点C 作CG EF ⊥于G ,则()5G m ,∴点G 为EF 的中点,由(2)得()()2455E m m m F m m --++,,,,∴245552m m m --+++=,∴230m m +=,解得3m =-或0m =(舍去),∴()38E -,;如图3-2所示,当EF EC =时,则EFC 是等腰直角三角形,∴90FEF =︒∠,即CE EF ⊥,∴点E 的纵坐标为5,∴2455m m --+=,解得4m =-或0m =(舍去),∴()45E -,如图3-3所示,当EF CF =时,过点C 作CG EF ⊥于G ,同理可证CFG △是等腰直角三角形,∴FG CG m ==-,∴22CF CG m ==-,∴252m m m --=-,∴(2520m m +-=,解得25m =-或0m =(舍去),∴()225522EF CF ==-⨯-=-,2HF =,∴622HE =-,∴()25622E --,综上所述,点E 的坐标为()38-,或()45-,或()25622--,【点睛】本题主要考查了二次函数综合,勾股定理,等腰直角三角形的性质与判断,一次函数与几何综合,待定系数法求函数解析式等等,利用分类讨论的思想求解是解题的关键.6.(2022·四川省遂宁市)如图,在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-1,0),点C 的坐标为(0,-3).(1)求抛物线的解析式;(2)如图1,E 为△ABC 边AB 上的一动点,F 为BC 边上的一动点,D 点坐标为(0,-2),求△DEF 周长的最小值;(3)如图2,N 为射线CB 上的一点,M 是抛物线上的一点,M 、N 均在第一象限内,B 、N 位于直线AM 的同侧,若M 到x 轴的距离为d ,△AMN 面积为2d ,当△AMN 为等腰三角形时,求点N 的坐标.【解析】解:(1)∵抛物线y=x2+bx+c经过点A(-1,0),点C(0,-3).∴1−b+c=0c=−3,∴b=−2c=−3,∴抛物线的解析式为y=x2-2x-3;(2)如图,设D1为D关于直线AB的对称点,D2为D关于ZX直线BC的对称点,连接D1E,D2F,D1D2.由对称性可知DE=D1E,DF=D2F,△DEF的周长=D1E+EF+D2F,∴当D1,E.F.D2共线时,△DEF的周长最小,最小值为D1D2的长,令y=0,则x2-2x-3=0,解得x=-1或3,∴B(3,0),∴OB=OC=3,∴△BOC是等腰直角三角形,∵BC垂直平分DD2,且D(-2,0),∴D2(1,-3),∵D,D1关于x轴的长,∴D1(0,2),∴D1D2=D2C2+D1C2=52+12=26,∴△DEF的周长的最小值为26.(3)∵M到x轴距离为d,AB=4,连接BM.∴S△ABM=2d,又∵S△AMN=2d,∴S△ABM=S△AMN,∴B,N到AM的距离相等,∵B,N在AM的同侧,∴AM∥BN,设直线BN的解析式为y=kx+m,则有m=−33k+m=0,∴k=1m=−3,∴直线BC的解析式为y=x-3,∴设直线AM的解析式为y=x+n,∵A(-1,0),∴直线AM的解析式为y=x+1,由y=x+1y=x2−2x−3,解得x=1y=0或x=4y=5,∴M(4,5),∵点N在射线BC上,∴设N(t,t-3),过点M作x轴的平行线l,过点N作y轴的平行线交x轴于点P,交直线l于点Q.∵A(-1,0),M(4,5),N(t,t-3),∴AM=52,AN=(t+1)2+(t−3)2,MN=(t−4)2+(t−8)2,∵△AMN是等腰三角形,当AM=AN时,52=(t+1)2+(t−3)2,解得t=1±21,当AM=MN时,52=(t−4)2+(t−8)2,解得t=6±21,当AN=MN时,(t+1)2+(t−3)2=(t−4)2+(t−8)2,解得t=72,∵N 在第一象限,∴t >3,∴t 的值为72,1+21,6+21,∴点N 的坐标为(72,12)或(1+21,-2+21)或(6+21,3+21).7.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.【答案】(1)()1,6D ;(2)223y x x =-++或223y x x =-+-;【分析】(1)将抛物线解析式化为顶点式,进而得出顶点坐标()1,4P -,根据对称性,即可求解.(2)由题意得,1L 的顶点()1,4P -与2L 的顶点D 关于直线y m =对称,()1,24D m +,则抛物线()()222:124223L y x m x x m =--++=-+++.进而得出可得()0,23C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .求得()3,B m m +,代入解析式得出0m =,求得22:23L y x x =-++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =,得出()5,B m m +,代入解析式得出3m =-代入22:223L y x x m =-+++,得22:23L y x x =-+-;③当90DBC ∠=︒时,此情况不存在.【详解】(1)∵2223(1)4y x x x =--=--,∴抛物线1L 的顶点坐标()1,4P -.∵1m =,点P 和点D 关于直线1y =对称.∴()1,6D .(2)由题意得,1L 的顶点()1,4P -与2L 的顶点D 关于直线y m =对称,∴()1,24D m +,抛物线()()222:124223L y x m x x m =--++=-+++.∴当0x =时,可得()0,23C m +.①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴,垂足为N .∵()1,24D m +,∴()0,24N m +.∵()0,23C m +∴1DN NC ==.∴45DCN ∠=︒.∵90BCD ∠=︒,∴45BCM ∠=︒.∵直线l x ∥轴,∴90BMC ∠=︒.∴45,CBM BCM BM CM ∠=∠=︒=.∵3m ≥-,∴()233BM CM m m m ==+-=+.∴()3,B m m +.又∵点B 在2=23y x x --图像上,∴()()23233m m m =+-+-.解得0m =或3m =-.∵当3m =-时,可得()()0,3,0,3B C --,此时B C 、重合,舍去.当0m =时,符合题意.将0m =代入22:223L y x x m =-+++,得22:23L y x x =-++.②当=90BDC ∠︒时,如图2,过B 作BT ND ⊥,交ND 的延长线于点T .同理可得BT DT =.∵()1,24D m +,∴()244DT BT m m m ==+-=+.∵1DN =,∴()145NT DN DT m m =+=++=+.∴()5,B m m +.又∵点B 在2=23y x x --图像上,∴()()25253m m m =+-+-.解得3m =-或4m =-.∵3m ≥-,∴3m =-.此时()()2,3,0,3B C --符合题意.将3m =-代入22:223L y x x m =-+++,得22:23L y x x =-+-.③当90DBC ∠=︒时,此情况不存在.综上,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-.【点睛】本题考查了二次函数的性质,特殊三角形问题,正方形的性质,勾股定理,面积问题,分类讨论是解题的关键.8.(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于()4,0B ,()2,0C -两点.与y 轴交于点()0,2A -.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.【答案】(1)211242y x x =--;(2)存在,12PK PD +的最大值为258,335,216P ⎛⎫- ⎪⎝⎭;(3)()1,6或()1,4-【分析】(1)将A 、B 、C 代入抛物线解析式求解即可;(2)可求直线AB 的解析式为122y x =-,设211,242P m m m ⎛⎫-- ⎪⎝⎭(04m <<),可求22111,2242K m m m m ⎛⎫--- ⎪⎝⎭,从而可求21132222PK PD m +=-++,即可求解;(3)过A 作2AM AB ⊥交抛物线的对称轴于2M ,过B 作1BM AB ⊥交抛物线的对称轴于1M ,连接1AM ,设()11,M n ,可求22145AM n n =++,2219BM n =+,由22211AB BM AM +=,可求1M ,进而求出直线1BM 的解析式,即可求解.【详解】(1)解:由题意得16404202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:14122a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,∴抛物线的解析式为211242y x x =--.(2)解:设直线AB 的解析式为y kx b =+,则有402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴直线AB 的解析式为122y x =-;设211,242P m m m ⎛⎫-- ⎪⎝⎭(04m <<),211122242x m m ∴-=--,解得:212x m m =-,22111,2242K m m m m ⎛⎫∴--- ⎪⎝⎭,212PK m m m ⎛⎫∴=-- ⎪⎝⎭2122m m =-+,21124PK m m ∴=-+,211242PD m m ⎛⎫=--- ⎪⎝⎭211242m m =-++,22111122442PK PD m m m m ∴+=-+-++213222m m =-++21325228m ⎛⎫=--+ ⎪⎝⎭,102-< ,∴当32m =时,12PK PD +的最大值为258,∴21313352422216y ⎛⎫=⨯--=- ⎪⎝⎭,∴335,216P ⎛⎫- ⎪⎝⎭.故12PK PD +的最大值为258,335,216P ⎛⎫- ⎪⎝⎭.(3)解:存在,如图,过A 作2AM AB ⊥交抛物线的对称轴于2M ,过B 作1BM AB ⊥交抛物线的对称轴于1M ,连接1AM ,∵抛物线211242y x x =--的对称轴为直线1x =,∴设()11,M n ,()222112AM n ∴=++245n n =++,2222420AB =+=,()222141BM n =-+29n =+,22211AB BM AM += ,2292045n n n ∴++=++,解得:6n =,()11,6M ∴;设直线1BM 的解析式为11y k x b =+,则有1111640k b k b +=⎧⎨+=⎩,解得1128k b =-⎧⎨=⎩,∴直线1BM 解析式为28y x =-+,21AM BM ∥ ,且经过()0,2A -,∴直线2AM 解析式为22y x =--,∴当1x =时,2124y =-⨯-=-,()21,4M ∴-;综上所述:存在,M 的坐标为()1,6或()1,4-.【点睛】本题考查了待定系数法求函数解析式,二次函数中动点最值问题,直角三角形的判定,勾股定理等,掌握解法及找出动点坐标满足的函数解析式是解题的关键.9.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC上以每秒个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b、c的值;(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)b=2,c=3;(2)t=2,最小值为4;(3)(3174+,23178+)【分析】(1)利用待定系数法求解即可;(2)过点P作PE⊥x轴,垂足为E,利用S四边形BCPQ=S△ABC-S△APQ表示出四边形BCPQ的面积,求出t的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,证明△PFM≌△QEP,得到MF=PE=t,PF=QE=4-2t,得到点M的坐标,再代入二次函数表达式,求出t值,即可算出M的坐标.【详解】解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),则09301b cb c=-++⎧⎨=--+⎩,解得:23 bc=⎧⎨=⎩;(2)由(1)得:抛物线表达式为y=-x 2+2x+3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP=,过点P 作PE ⊥x 轴,垂足为E ,∴AE=PE=,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∵当其中一点到达终点时,另一点随之停止运动,=,AB=4,∴0≤t≤3,∴当t=2122--⨯=2时,四边形BCPQ 的面积最小,即为2122262⨯-⨯+=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM=PQ ,∠MPQ=90°,∴∠MPF+∠QPE=90°,又∠MPF+∠PMF=90°,∴∠PMF=∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP (AAS ),∴MF=PE=t ,PF=QE=4-2t ,∴EF=4-2t+t=4-t ,又OE=3-t ,∴点M 的坐标为(3-2t ,4-t ),∵点M 在抛物线y=-x 2+2x+3上,∴4-t=-(3-2t )2+2(3-2t )+3,解得:t=98或98+(舍),∴M点的坐标为(34,23178+).【点睛】本题考查了二次函数综合,涉及到全等三角形的判定和性质,等腰直角三角形的性质,三角形面积,用方程的思想解决问题是解本题的关键.10.(2021·江苏中考真题)如图,抛物线21y 2x bx c =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C .连接AC ,BC ,点P 在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P 在第四象限,点Q 在PA 的延长线上,当∠CAQ=∠CBA +45°时,求点P 的坐标;(3)如图②,若点P 在第一象限,直线AP 交BC 于点F ,过点P 作x 轴的垂线交BC 于点H ,当△PFH 为等腰三角形时,求线段PH 的长.【答案】(1)213222y x x =-++;(2)(6,-7);(3)PH=5-或1.5或158【分析】(1)根据待定系数法解答即可;(2)求得点C 的坐标后先利用勾股定理的逆定理判断∠ACB=90°,继而可得∠ACO=∠CBA ,在x 轴上取点E (2,0),连接CE ,易得△OCE 是等腰直角三角形,可得∠OCE=45°,进一步可推出∠ACE=∠CAQ ,可得CE ∥PQ ,然后利用待定系数法分别求出直线CE 与PQ 的解析式,再与抛物线的解析式联立方程组求解即可;(3)设直线AP 交y 轴于点G ,如图,由题意可得若△PFH 为等腰三角形,则△CFG 也为等腰三角形,设G (0,m ),求出直线AF 和直线BC 的解析式后,再解方程组求出点F 的坐标,然后分三种情况求出m 的值,再求出直线AP 的解析式,进而可求出点P 的坐标,于是问题可求解.【详解】解:(1)把A(-1,0),B(4,0)代入21y 2x bx c =-++,得102840b c b c ⎧--+=⎪⎨⎪-++=⎩,解得:322b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式是213222y x x =-++;(2)令x=0,则y=2,即C (0,2),∵222125AC =+=,2222420BC =+=,AB 2=25,∴222AC BC AB +=,∴∠ACB=90°,∵∠ACO+∠CAO=∠CBA+∠CAO=90°,∴∠ACO=∠CBA ,在x 轴上取点E (2,0),连接CE ,如图,则CE=OE=2,∴∠OCE=45°,∴∠ACE=∠ACO+45°=∠CBA+45°=∠CAQ ,∴CE ∥PQ ,∵C (0,2),E (2,0),∴直线CE 的解析式为y=-x+2,设直线PQ 的解析式为y=-x+n ,把点A (-1,0)代入,可得n=-1,∴直线PQ 的解析式为y=-x-1,解方程组2132221y x x y x ⎧=-++⎪⎨⎪=--⎩,得10x y =-⎧⎨=⎩或67x y =⎧⎨=-⎩,∴点P 的坐标是(6,-7);(3)设直线AP 交y 轴于点G ,如图,∵PH ∥y 轴,∴∠PHC=∠OCB ,∠FPH=∠CGF ,∴若△PFH 为等腰三角形,则△CFG 也为等腰三角形,∵C (0,2),B (4,0),∴直线BC 的解析式为122y x =-+,设G (0,m ),∵A (-1,0),∴直线AF 的解析式为y=mx+m ,解方程组122y x y mx m ⎧=-+⎪⎨⎪=+⎩,得4221521m x m m y m -⎧=⎪⎪+⎨⎪=⎪+⎩,∴点F 的坐标是425,2121m m m m -⎛⎫ ⎪++⎝⎭,∴()222222224254252,2,21212121m m m m CG m CF FG m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫=-=+-=+- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,当CG=CF 时,()222425222121m m m m m -⎛⎫⎛⎫-=+- ⎪ ⎪++⎝⎭⎝⎭,解得:m =此时直线AF 的解析式为y=12-x+12-,解方程组213222y x x y x ⎧=-++⎪⎪⎨⎪⎪⎩10x y =-⎧⎨=⎩或5112x y ⎧=⎪⎨=⎪⎩,∴点P的坐标是(5),此时点H的坐标是(5),∴PH=111522---=-;当FG=FC 时,2222425425221212121m m m m m m m m m --⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,解得m=12或m=12-(舍)或m=2(舍),此时直线AF 的解析式为y=12x+12,解方程组2132221122y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩,得10x y =-⎧⎨=⎩或32x y =⎧⎨=⎩,∴点P 的坐标是(3,2),此时点H 的坐标是(3,12),∴PH=2-12=1.5;当GF=GC 时,()22242522121m m m m m m -⎛⎫⎛⎫-=+- ⎪ ⎪++⎝⎭⎝⎭,解得34m =或m=2(舍去),此时直线AF 的解析式为y=34x+34,解方程组2132223344y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩,得10x y =-⎧⎨=⎩或52218x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P 的坐标是(52,218),此时点H 的坐标是(52,34),∴PH=21315848-=;综上,PH=355或1.5或158.【点睛】本题是二次函数的综合题,主要考查了待定系数法求二次函数的解析式、二次函数图象上点的坐标特征、直线与抛物线的交点以及等腰三角形的判定和性质等知识,具有相当的难度,熟练掌握二次函数的图象和性质、灵活应用数形结合的思想是解题的关键.11.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P ⎛⎫- ⎪⎝⎭;(3)154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ;(3)QMN 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =∠=︒,;②当90QN MN QNM =∠=︒,;③当90QM QN MQN =∠=︒,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=⎧⎨++=-⎩又∵顶点D 的坐标为()1,4-∴12b a-=-∴解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B ,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E ⎛⎫ ⎪⎝⎭,在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ∴OCE FCG∠=∠又∵OC=CG ,90COE G ∠=∠=︒∴OEC △≌()GFC ASA ,∴32FG OE ==,33,2F ⎛⎫- ⎪⎝⎭,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P ⎛⎫- ⎪⎝⎭.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P ⎛⎫- ⎪⎝⎭.(3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN 为等腰直角三角形∴①当90QM MN QMN =∠=︒,时,如下图所示则Q 点的坐标为33m m ⎛⎫-- ⎪⎝⎭,∴4=33m m QM m ⎛⎫--= ⎪⎝⎭∴24=33m m m -解得:10m =(舍去),2133m =,353m =∴此时154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;②当90QN MN QNM =∠=︒,时,如下图所示则Q 点的坐标为222233m m m m ⎛⎫--- ⎪⎝⎭∴222=33m m m m QM m -+-=∴22=33m m m m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =∠=︒,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=----∴Q 点的坐标为22111136622m m m m ⎛⎫--- ⎪⎝⎭,∴Q 点到MN 的距离=221151+6666m m m m m --=∴22511+=3662m m m m ⋅-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.12.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)和(2,2)--;(2)①04c <<;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或3122⎛⎫+ ⎪ ⎪⎝⎭或3122⎛⎫- ⎪⎝⎭【分析】(1)根据“雁点”的定义可得y=x ,再联立4y x=求出“雁点”坐标即可;(2)根据25y ax x c =++和y=x 可得240ax x c ++=,再利用根的判别式得到4c a =,再求出a 的取值范围;将点c 代入解析式求出点E 的坐标,令y=0,求出M 的坐标,过E 点向x 轴作垂线,垂足为H 点,如图所示,根据EH=MH 得出EMH 为等腰直角三角形,∠EMN 的度数即可求解;(3)存在,根据图1,图2,图3进行分类讨论,设C (m ,m ),P (x ,y ),根据三角形全等得出边相等的关系,再逐步求解,代入解析式得出点P 的坐标.【详解】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩即:函数4y x=上的雁点坐标为(2,2)和(2,2)--.(2)①联立25y x y ax x c=⎧⎨=++⎩得240ax x c ++=∵这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴2440ac ∆=-=∵4c a=∵1a >∴04c <<②将4c a =代入,得2440E E ax x a++=解得2k x a =-,∴22,E a a ⎛⎫-- ⎪⎝⎭对于245y x x a α=++,令0y =有2450ax x a++=解得41,N M x x a a=-=-∴4,0M a ⎛⎫- ⎪⎝⎭过E 点向x 轴作垂线,垂足为H 点,EH=2a ,MH=242()a a a---=∴2EH MH a ==∴EMH 为等腰直角三角形,45EMN ∠=︒(3)存在,理由如下:如图所示:过P 作直线l 垂直于x 轴于点k ,过C 作CH ⊥PK 于点H设C (m ,m ),P (x ,y )∵△CPB 为等腰三角形,∴PC=PB ,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP ,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH=PK ,HP=KB ,即3m x y m y x-=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩当32x =时,23315()23224y =-+⨯+=∴315()24P ,如图2所示,同理可得:△KCP ≌△JPB∴KP=JB ,KC=JP设P (x ,y ),C (m ,m )∴KP=x-m ,KC=y-m ,JB=y ,JP=3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122+1021022x x -==,∴2103(,)22P +或2103(,)22P -如图3所示,∵△RCP ≌△TPB∴RC=TP ,RP=TB设P (x ,y ),C (m ,m )即3y m x x m y-=-⎧⎨-=⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122102-10,=22x x +=∴此时P 与第②种情况重合综上所述,符合题意P 的坐标为315()24,或2+103()22,或2103()22-,【点睛】本题考查了利用待定系数法求函数解析式,图形与坐标,等腰三角形的判定与性质,二次函数的综合运用,理解题意和正确作图逐步求解是解题的关键.13.(2021·湖南中考真题)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程.(4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)228y x x =-++;(2)存在,()1,2P 或171,2P ⎛⎫ ⎪⎝⎭;(3)点()2,0,1,23E F ⎛⎫ ⎪⎝⎭,最短路程为,理由见详解;(4)存在,当以点Q 为直角顶点的等腰Rt CQR △时,点Q ⎝⎭或3322Q ⎛⎫ ⎪ ⎪⎝⎭,理由见详解.【分析】(1)由题意易得()()()2,0,4,0,0,8A B C -,然后设二次函数的解析式为()()24y a x x =+-,进而代入求解即可;(2)由题意易得BMN CMP ∠=∠,要使以点P 、C 、M 为顶点的三角形与△MNB 相似,则可分①当90CPM MNB ∠=∠=︒时,②当90PCM MNB ∠=∠=︒时,进而分类求解即可;(3)由题意可得作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,最后求解即可;(4)由题意可分①当点Q 在第二象限时,存在等腰Rt CQR △,②当点Q 在第一象限时,存在等腰Rt CQR △,然后利用“k 型”进行求解即可.【详解】解:(1)∵2OA =,4OB =,8OC =,∴()()()2,0,4,0,0,8A B C -,设二次函数的解析式为()()24y a x x =+-,代入点C 的坐标可得:88a -=,解得:1a =-,∴二次函数的解析式为()()24y x x =-+-,即为228y x x =-++;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似,理由如下:由(1)可得抛物线的解析式为228y x x =-++,则有对称轴为直线1x =,设直线BC 的解析式为y kx b =+,代入点B 、C 坐标可得:408k b b +=⎧⎨=⎩,解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为28y x =-+,∴点()1,6M ,()1,0N ,∴由两点距离公式可得3,6,BN MN BM CM ====若使以点P 、C 、M 为顶点的三角形与△MNB 相似,则有BMN CMP ∠=∠,①当90CPM MNB ∠=∠=︒时,则有//CP x 轴,如图所示:∴点()1,8P ,②当90PCM MNB ∠=∠=︒时,如图所示:∴35562PM BM CM MN =∴52PM =,∴点171,2P ⎛⎫ ⎪⎝⎭;(3)由题意得:动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .根据轴对称的性质及两点之间线段最短可知要使点G 走过的路程最短则有作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,如图所示:∵OC=8,点D 为CO 的中点,∴OD=4,∴()0,4D ,∵抛物线的对称轴为直线1x =,∴()()2,8,0,4I H -,设直线HI 的解析式为y kx b =+,则把点H 、I 坐标代入得:284k b b +=⎧⎨=-⎩,解得:64k b =⎧⎨=-⎩,∴直线HI 的解析式为64y x =-,当y=0时,则有064x =-,解得:23x =,当x=1时,则有6142y =⨯-=,。

中考数学 考点系统复习 第三章 函数 第九节 二次函数与几何综合题 类型三:二次函数与特殊三角形问题

中考数学 考点系统复习 第三章 函数 第九节 二次函数与几何综合题 类型三:二次函数与特殊三角形问题

求点的坐标: 1.分别表示出点 A,B,P 的坐标,再表示出线段 AB,BP,AP 的长度, 由①AB=AP,②AB=BP,③AP=BP 分别列方程求解即可. 2.作等腰三角形底边上的高,用勾股定理或相似建立等量关系. 3.以 AB 为底边时,可用解析法,先求中垂线的解析式,再联立方程组 求交点.
此时点 C 的坐标为21,1+32
5
或2 1,13-2
5
.
综上可知,当△ABC 是直角三角形时,点 C 的坐标共有 4 个为((1 1,,33)),
((1,1,- -2)
2),21,1+23
5
或21,1-23
5
.
问题:已知线段 AB 和直线 l,在 l 上求点 P,使△PAB 为直角三角形.
【分层分析】 点 P 在线段 BC 的中垂线与抛物线的交点处.求中垂线的解析式,联立方 程组求解.
解:存在.由题意得 B(3,0),C(0,-3),由点 B,C 的坐标求得直线
BC 的解析式为 y=x-3,线段 BC 的中点为32,-32,设线段 BC 的中垂线 的解析式为 y=-x+b,代入23,-32,得 b=0. ∴线段 BC 的中垂线的解析式为 y=-x,
【分层分析】 利用两圆一中垂的方法在直线 l上找出点 P,共有 5 个,并注意检验点 P 是否满足条件,当点 P,A,C 共线时,不符合题意.
解:存在.设 P(1,p),AC2=10, PA2=(1+1)2+(p-0)2=p2+4, PC2=(1-0)2+(p+3)2=p2+6p+10. 分三种情况讨论: ①当 PA=PC 时,p2+4=p2+6p+10, 解得 p=-1,∴P1(1,-1); ②当 AC=PC 时,p2+6p+10=10,解得 p1=0,p2=-6, 当 p=-6 时,显然 A,C,P 三点在一条直线上不能构成三角形,舍去, ∴P2(1,0);

2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案

2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P点在直线MN上运动.若恰好存在3个P点使得△PAC为直角三角形,请求出C点坐标,并直接写出P点的坐标.
20.如图,抛物线y= x2﹣ x﹣ 与x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴交于点D.
13.如图,抛物线 经过点A(0,3),B(-1,0).
(1)求抛物线的解析式;
(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.
(3)在抛物线上是否存在点P,使△PBD是以BD为直角边的直角三角形,若存在请直接写出点P的坐标,若不存在,请说明理由.
14.如图,抛物线 过点 , , .
(3)如图2,在(2)的条件下,点D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
7.如图,抛物线y= x2+bx+c与x轴交于A(3,0)、B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.
(1)求a、b满足的关系式及c的值;
(2)如果 ,点P是直线AB下方抛物线上的一点,过点P作PD垂直于x轴,垂足为点D,交直线AB于点E,使 .
①求点P的坐标;
②若直线PD上是否存在点Q,使 为直角三角形?若存在,求出符合条件的所有点Q的坐标;若不存在,请说明理由.
16.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,P为第一象限抛物线上的动点,连接AB,BC,PA,PC,PC与AB相交于点Q.
(1)点E的坐标为;

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

最新九年级中考数学复习:二次函数综合题(特殊三角形问题)

最新九年级中考数学复习:二次函数综合题(特殊三角形问题)

2023年九年级中考数学复习:二次函数综合题(特殊三角形问题)1.抛物线y=ax2+c交x轴于A、B(1,0)两点,且经过(2,3).(1)求抛物线的解析式;(2)如图1,直线y=kx+3交y轴于点G,交抛物线y=ax2+c于点E和F,F在y轴右侧,若△GOF的面积为△GOE面积的2倍,求k值;(3)如图2,点P是第二象限的动点,分别连接P A、PB,并延长交直线y=-2于M、N 两点. 若M、N两点的横坐标分别为m、n,试探究m、n之间的数量关系.2.如图,已知抛物线2=++与直线y=0.5x+3相交于A,B两点,交△轴于C,0.5y x bx cD两点,连接AC,BC,已知A(0,3),C(-3,0).(1)求抛物线的表达式;(2)在抛物线对称轴l上找一点M,使|MB一MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上的一动点,连接P A,过点P作PQ△P A交y轴于点Q,是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.3.如图,抛物线与x轴交于A和B两点(点B位于点A右侧),与y轴交于点C,对称轴是直线x=2,且OA=1,OC=3,连接AC,BC.(1)求此抛物线的函数解析式;(2)设抛物线的顶点为点P,请在x轴上找到一个点D,使以点P、B、D为顶点的三角形与△ABC相似?(3)此抛物线的对称轴和以AC为直径的圆是什么位置关系?如果是相切或相交,请直接写出切点或交点的坐标(不必写演推过程);如果是相离,请简要说明理由.4.如图1,已知抛物线y=ax2+bx+3与x轴分别交于A(−3,0),B(1,0)两点,与y轴交于点C,点D为抛物线的顶点,连接AD、CD、AC、BC.(1)请直接写出抛物线的表达式及顶点D的坐标;(2)求证:△ACD是直角三角形;(3)判断△ACB和△OAD的数量关系,并说明理由;(4)如图2,点F是线段AD上一个动点,以A,F,O为顶点的三角形是否与△ABC相似?若相似,请直接写出点F的坐标;若不相似,请说明理由.5.抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图△,点P 为直线AC 下方抛物线上的点,连接P A ,PC ,△BAF 的面积记为S 1,△P AC 的面积记为S 2,当S 2=38S 1时.求点P 的横坐标;(3)如图△,连接CD ,点Q 为平面内直线AE 下方的点,以点Q ,A ,E 为顶点的三角形与△CDF 相似时(AE 与CD 不是对应边),请直接写出符合条件的点Q 的坐标. 6.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.7.如图1,已知二次函数y =ax2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C (0,﹣2),顶点为D ,对称轴交x 轴于点E .(1)求该二次函数的解析式;(2)设M 为该抛物线上直线BC 下方一点,过点M 作x 轴的垂线,交线段BC 于点N ,线段MN 是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;(3)连接CE (如图2),设点P 是位于对称轴右侧该抛物线上一点,过点P 作PQ △x 轴,垂足为Q .连接PE ,请求出当△PQE 与△COE 相似时点P 的横坐标.8.如图,直线y kx b =+与x 轴、y 轴分别交于A ,B 两点,抛物线2y ax bx c =++经过A ,B 两点,点C 的坐标为()1,0-,3AO CO ==,点C 关于点B 的对称点M 刚好落在抛物线上,连接AM .(1)求点M 的坐标;(2)求抛物线的解析式;(3)过点M 作MD 平行于y 轴交AB 于点D ,若点E 为抛物线上的一点,点F 在x 轴上,连接AE ,AF ,EF .是否存在点F 使得△ADM 与△AEF 相似?若存在,请直接写出点F 的坐标;若不存在,请说明理由.9.如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)△求点A ,B ,C 的坐标;△求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM △AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.10.平面直角坐标系中,已知抛物线1C :()21y x m x m =-++-(m 为常数)与x 轴交于点A ,B 两点(点A 在点B 左边),与y 轴交于点C .(1)若4m =,求点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若90DBA ACB ∠∠+=︒,求点D 的坐标;(3)如图2,将抛物线1C 向左平移n 个单位长度(0n >)与直线AC 交于M ,N (点M 在点N 右边),若2AM CN =,求m ,n 之间的数量关系.11.如图,直线y x n =-+与x 轴交于点()3,0A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求n 的值及抛物线的解析式;(2)(),0E m 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP .△点E 在线段OA 上运动,若BPD △与ADE 相似,求点E 的坐标;△若抛物线的顶点为Q ,AQ 与CB 的延长线交于点H ,点E 在x 轴的正半轴上运动,若PBD CBO H ∠+∠=∠.请求写出m 的值.12.如图1,平面直角坐标系xOy 中,直线y =-12x -2与x 轴交于点A ,与y 轴交于点C .抛物线y =14x 2+bx +c 经过点A 、点C ,且与x 轴交于另一点B ,连接BC .(1)求抛物线的解析式;(2)点P 是抛物线上一动点.△当点P 在直线AC 下方的抛物线上运动时,如图2,连接AP ,CP .求四边形ABCP 面积的最大值及此时点P 的坐标;△当点P 在x 轴上方的抛物线上运动时,过点P 作PM △x 轴于点M ,连接BP .是否存在点P ,使△PMB 与△AOC 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.14.如图,抛物线23(0)y ax bx a=+-≠的顶点E的横坐标为1,与x轴交于A、B两点,与y轴交于点C,直线113y x=-+过点B,与y轴交于点D.(1)求抛物线的解析式;(2)证明:ABD CBE∠=∠;(3)是否存在点1O,使点1O到A,B,C,D的距离都相等,若存在,求出点1O坐标,若不存在,请说明理由.(4)设抛物线与直线DB另一交点为Q,F为线段BQ上一点(不含端点),连接AF,一动点P从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FQ个单位的速度运动到Q后停止,当点F的坐标是多少时,点P在整个运动过程中用时最少?(直接写出答案)15.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB =6OA =6,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当PD :OD 的值最大时,求点P 的坐标;(3)点P 在抛物线上运动,点N 在y 轴上运动,是否存在点P 、点N .使△CPN =90°,且△CPN 与△BOC 相似,若存在,请直接写出点P 的坐标,若不存在,说明理由.16.在平面直角坐标系xOy 中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A ,点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上一动点,连接AD 交BC 于点E ,若AE =2ED ,求点D 的坐标;(3)直线y =kx ﹣2k +1与抛物线交于M ,N 两点,取点P (2,0),连接PM ,PN ,求△PMN 面积的最小值.17.综合与探究如图,直线3y x =-+与x 轴,y 轴分别交于B ,C 两点,抛物线2y x bx c =-++经过点B ,C ,与x 轴的另一交点为A ,顶点为D .(1)求抛物线的解析式及顶点D的坐标.(2)连接CD,BD,求点D到BC的距离h.(3)P为对称轴上一点,在抛物线上是否存在点Q,使得PDQ与BOC相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.18.如图,已知直线223y x=-与x轴交于点A,与y轴交于点B,抛物线226y x bx=-++经过点A,与x轴的另一个交点为C,交y轴于点D.(1)求抛物线的函数表达式及点D的坐标;(2)点M是y轴上的点,在y轴右侧的抛物线上是否存在点P,使得PMD△与BOC相似,且点M与点O为对应点,若存在,请求出点P的坐标,若不存在,请说明理由.19.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=-2x2+bx+c过A,C两点,与x轴交于另点B.(1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当EF =12BF 时,求sin△EBA 的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.20.如图,一次函数3y x =-+的图象与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图象经过B ,C 两点,并与x 轴交于点A .点(),0M m 是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图象和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式.(2)△求DE 、CE 的值(用含m 的代数式表示).△当以C ,D ,E 为顶点的三角形与△ABC 相似时,求m 的值.(3)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案:1.(1)21y x =- (2)k =(3) 1.-2.(1)215322y x x =++(3)在点P (1,6)3.(1)y =x 2-4x +3(2)点D 的坐标是(0,0)或(73,0) (3)相交,交点的坐标是(2,1)或(2,2)4.(1)抛物线解析式为y =-x 2-2x +3;顶点D 的坐标为(-1,4);(2)见解析(3)△OAD =△ACB(4)相似,F 点的坐标为(-65,185)或(-2,2).5.(1)y =x 2﹣2x ﹣3(2)P 352(3)Q 点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5)6.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭7.(1)224233y x x =--(2)线段MN 存在最大值,最大值为32(3)点P 的横坐标为5或28.(1)(M(2)2y x x =(3)存在,()()()()()11,0,3,0,,0,5,0,7,0,13,03⎛⎫-- ⎪⎝⎭9.(1)△A (3,0),B (3,3),C (0,3);△23b c =⎧⎨=⎩ (2)2133324n m ⎛⎫=--+ ⎪⎝⎭(0≤m ≤3);3410.(1)A (1,0),B (4,0),C (0,﹣4)(2)D (83,209) (3)93m n =-11.(1)n =3,y =-x 2+2x +3.(2)△(1,0)或(2,0).△m =5或73.12.(1)211242y x x =+- (2)△四边形ABCP 面积的最大值为8,此时点P 为(-2,-2);△存在符合条件的点P ,点P 坐标为(-6,4)或(-12,28)或(4,4)13.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 14.(1)2 2 3y x x =--(2)见解析(3)存在点()111O -,,使点P 到A ,B ,C ,D 的距离都相等(4)F 的坐标为41,3⎛⎫- ⎪⎝⎭时,点P 在整个运动过程中用时最少15.(1)y =﹣2x 2+4x +6(2)点P 的坐标为315(,)22(3)存在,点P 的坐标分别为(3,0)或(1,8)或939(,)48或755(,)4816.(1)y =﹣x 2+2x +3(2)(1,4)或(2,3)17.(1)223y x x =-++,顶点D (1,4)(2)h =(3)Q (0,3)或(2,3)18.(1)2246y x x =-++;(0,6)D(2)存在,点P 的坐标为755,48⎛⎫ ⎪⎝⎭或939,48⎛⎫ ⎪⎝⎭或(1,8)或(3,0)19.(1)抛物线的解析式为y =-2x 2-4x +6;(2)sin△EBA ; (3)M 的坐标为(2,-10)或(-4,-10)或(0,6).20.(1)223y x x =-++(2)△23DE m m =-,CE ;△m 的值为32或53(3)存在以C ,D ,E ,F 为顶点的四边形为菱形,点M 的坐标为(1,0)或(2,0)或(3,0).。

2023年中考数学一轮复习课件 二次函数综合题特殊三角形存在性问题

2023年中考数学一轮复习课件 二次函数综合题特殊三角形存在性问题

直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(2)存在.理由如下:
设点P(1,p),
∵A(-1,0),C(0,3),
∴AC2=12+32=10,
AP2=(1+1)2+p2=CAP=90°,
例题图①
则AC2+AP2=CP2,
∴10+4+p2=p2-6p+10,
解得p=- 2 ,
3
∴此时点P的坐标为(1,-
2
);
3
②若∠ACP=90°,则AC2+CP2=AP2,
∴10+p2-6p+10=4+p2,
解得p= 8 , ∴此时点3P的坐标为(1,8 );
3
③若∠APC=90°,则AP2+CP2=AC2,
例题图①
即4+p2+p2-6p+10=10,
随堂练习
1. 如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y
轴交于点C,对称轴为直线x= 5 .
2
(1)求抛物线的解析式;
a b 4 0
解:(1)根据题意,得
b 2a
5 2
,
解得
a b
1 ,
5
∴抛物线的解析式为y=x2-5x+4;
第1题图
(2)如图①,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y 轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边 形OCPQ的形状并说明理由; (2)四边形OCPQ是平行四边形,理由如下: 令x=0,则y=4, 令y=0,即x2-5x+4=0, 解得x1=1,x2=4.∴B(4,0),C(0,4), ∴直线BC的解析式为y=-x+4.
第1题解图
当△BEF是等腰三角形时,分三种情况讨论:

新-107.二次函数与特殊三角形-3


,∴
D1

−1,−
9 4


同理,直线
AC
向上平移
9 2
个长度单位得到
l2
,可求得
D2

−1,27 4

综上所述,
D
点坐标为:
D1

−1,−
9 4


D2

−1,27 4


y
M C
A
BE
F ON
x
x=-1 L2
D2
C L1
B
A
OF
D1 E
图2
图1
⑶如图 2,以 AB 为直径作⊙F ,圆心为 F .过 E 点作⊙F 的切线,这样的
x2
x
图2 ⑴ 求 A,B 两点的坐标及 C 点的坐标; ⑵ 连结 AC ,BC ,求证 △ABC 为直角三角形;
⑶ 将直线 l 平移到 C 点时得到直线 l′ ,求两直线 l 与 l′ 的距离.
l
y
l'
B
P
G A
1
H
C
O1
x
图10
{ 【答案】⑴由
y y
= =
2x + 2x2
2
,解得

x1 y1
∴点 P 坐标为 (2,3) ;
(Ⅱ)如答图 3 所示,点 P 在 x 轴下方.
y
B O
A
Cx
F
P
答图 3
∵ A(0,− 5) , C (5,0) ,∴ △AOC 为等腰直角三角形,∠OAC = 45° ;
过点 P 作 PF ⊥ x 轴于点 F , ∵ PA ⊥ AC ,∴∠PAF = 45° ,即 △PAF 为等腰直角三角形.

最新九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)含答案

2023年九年级数学中考复习:二次函数综合压轴题(特殊三角形问题)1.如图,直线y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣43x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求点B的坐标和抛物线的解析式;(2)在运动过程中,若点P为线段MN的中点,求m的值;(3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;2.如图△,已知抛物线y=ax2﹣4amx+3am2(a、m为参数,且a>0,m>0)与x轴交于A、B两点(A在B的左边),与y轴交于点C.(1)求点B的坐标(结果可以含参数m);(2)连接CA、CB,若C(0,3m),求tan△ACB的值;(3)如图△,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.3.如图,已知二次函数的图象经过点A (4,4)、B (5,0)和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为D (m ,0),并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.4.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B .(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.△当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹.并直接写出直线CD 的解析式;△点()(),0P m n m >是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR ∆.在△的条件下,记PQR ∆与COD ∆的公共部分的面积为S .求S 关于m 的函数关系式,并求S 的最大值.5.已知抛物线y=a(x﹣1)(x﹣3)(a<0)的顶点为A,交y轴交于点C,过C作CB△x 轴交抛物线于点B,过点B作直线l△x轴,连结OA并延长,交l于点D,连结OB.(1)当a=﹣1时,求线段OB的长.(2)是否存在特定的a值,使得△OBD为等腰三角形?若存在,请写出求a值的计算过程;若不存在,请说明理由.(3)设△OBD的外心M的坐标为(m,n),求m与n的数量关系式.6.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且△DBP=45°,求点P的坐标;(3)在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.7.如图,二次函数y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y 轴交于点C(0,4).点D为抛物线上一点(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请直接写出点D的横坐标m的取值范围.8.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.9.如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN△x 轴于点N ,交抛物线于点M ,当△BCM 面积最大时,求△BPN 的周长. (3)在(2)的条件下,当△BCM 面积最大时,在抛物线的对称轴上是否存在点Q ,使△CNQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.10.如图1,抛物线243y x x =++与x 轴交于,A B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 抛物线的顶点.(1)求直线BD 的解析式;(2)抛物线对称轴交x 轴于点E ,P 为直线BD 上方的抛物线上一动点,过点P 作PF BD ⊥于点F ,当线段PF 的长最大时,连接PE ,过点E 作射线EM ,且EM EP ⊥,点G 为射线EM 上一动点(点G 不与点E 重合),连接PG ,H 为PG 中点,连接AH ,求AH 的最小值;(3)如图2,平移抛物线,使抛物线的顶点D 在射线BD 上移动,点B ,D 平移后的对应点分别为点'B ,'D ,y 轴上有一动点M ,连接'MB ,'MD ,''MB D ∆是否能为等腰直角三角形?若能,请求出所有符合条件的M 点的坐标;若不能,请说明理由.11.如图1,抛物线()230y ax bx a =++≠与x 轴交于()1,0A -、()30B ,两点,与y 轴交于点C ,顶点为点M .(1)求这条抛物线的解析式及直线BM 的解析式;(2)P 段BM 上一动点(点P 不与点B 、M 重合),过点P 向x 轴引垂线,垂足为Q ,设OQ 的长为t ,四边形PQAC 的面积为S .求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在线段BM 上是否存在点N ,使NMC ∆为等腰三角形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.如图,已知抛物线与x 轴交于A(−1,0)、B(3,0)两点,与y 轴交于点C(0,3).(1)该抛物线的对称轴是直线___________, (2)求抛物线的解析式;(3)设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由:13.在平面直角坐标系中,将二次函数()20y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.14.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.△是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;△若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.15.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且△MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.16.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.17.已知:直线122y x =+与y 轴交于A ,与x 轴交于D ,抛物线y =12x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)点P 是直线AE 上一动点,当△PBC 周长最小时,求点P 坐标; (3)动点Q 在x 轴上移动,当△QAE 是直角三角形时,求点Q 的坐标;(4)在y 轴上是否存在一点M ,使得点M 到C 点的距离与到直线AD 的距离恰好相等?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.18.如图,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2.(1)求抛物线的函数表达式;(2)设D 为抛物线的顶点,连接DA 、DB ,试判断△ABD 的形状,并说明理由; (3)设P 为对称轴上一动点,要使PC ﹣PB 的值最大,求出P 点的坐标.19.如图,抛物线2y ax bx c =++ 经过点()2,5A -,与x 轴相交于()1,0B -,()3,0C 两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将BCD ∆沿沿直线BD 翻折得到BC D '∆,若点D '恰好落在抛物线的对称轴上,求点C '和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当CPQ ∆为等边三角形时,求直线BP 的函数表达式.20.如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到Rt COD ∆,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. △若2PMN S ∆=,求k 的值;△证明:无论k 为何值,PMN ∆恒为直角三角形;△当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.参考答案:1.(1)B (0,2),抛物线解析式为y=﹣43x 2+103x+2;(2)m 的值为12;(3)当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0). 2.(1)B (3m ,0);(2)tan△ACB =12;(3)点P 的坐标是:)或). 3.(1)y =﹣x 2+5x ;(2)当点P 在直线OA 的上方时,线段PC 的最大值是4;(3)存在,P 的坐标是(4,2﹣)或(6,﹣6)或(5,0). 4.(1)()21154y x =--+;(2);4y x =-+;△S 27448x x =-+-;S 的最大值为47.5.(1)5;(2)a =﹣1(3)m =3n 2+2 6.(1)y =﹣x 2+3x +4;(2)P (﹣25,6625);(3)点M 的坐标为(32,298)或(32,﹣58)或(32,52)或(32,32).7.(1)y=x 2-5x+4, A(1,0);(2)(6,10)或(2,-2);m <6或 3m <28.(1)y =﹣x 2+4x ﹣3;(2)在y 轴上存在点M ,点M 的坐标为(0,3),(0,3-或(0,3-,(3)P (4,﹣3).9.(1)y =﹣x 2+2x+3 (2)310.(1)43y x =-+(2(3)(0,,,.11.(1)2y x 2x 3=-++,26y x =-+;(2)四边形ACPQ S 29322t t =-++,t 的取值范围是13t <<;(3)716,55N ⎛⎫⎪⎝⎭或14N ⎛ ⎝⎭或()2,2N 12.(1)1x = (2)2y x 2x 3=-++;(3)存在,⎝⎭或(2.3)13.(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3.14.(1)211384y x x =--+;(2)△存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;△点3,02M ⎛⎫⎪⎝⎭15.(1)y=-23x 2-43x+2;(2)S 的最大值为174;(3)存在,点N或)或)或).16.(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 17.(1)215222y x x =-+;(2)P (1213,3213);(3)Q 点坐标为(1,0)或(172,0);(4)存在;M 点坐标为M (0,﹣8).18.(1)抛物线的函数表达式为y =x 2﹣4x +3;(2)△ADB 是等腰直角三角形;理由见解析;(3)P (2,﹣3).19.(1)223y x x =--;(2)点'C 坐标为(点D 的坐标为⎛ ⎝⎭;(3)直线BP 的函数表达式为y =y x =20.(1)2y x 2x 3=-++,()1,4P ;(2)△k =±△2241y x x =-++.。

二次函数——由动点生成的特殊三角形问题

二次函数——由动点生成的特殊三角形问题在数学中,二次函数是一类特殊的函数,其数学表达式为y = ax² + bx + c,其中a、b、c为实数,且a≠0。

二次函数在数学中被广泛运用于解决各种问题,其中包括由动点生成的特殊三角形问题。

这个问题是通过将动点移动而生成的三角形,而且有一些特殊性质。

在本文中,我们将探讨这个问题,并研究其中的数学原理和应用。

首先,让我们考虑一个动点M(x, y)在平面直角坐标系上的移动。

该动点的运动路径取决于二次函数y = ax² + bx + c的具体形式。

我们可以通过设置一些特定的条件,来确定动点的运动路径。

例如,如果我们设置动点在y轴上移动,即x始终为常数,那么我们可以得到一条直线y = bx + c,其中b、c为常数。

这条直线称为二次函数的纵轴截距。

同样地,如果我们设置动点在x轴上移动,即y始终为常数,那么我们可以得到y轴上的一条直线y=c。

这条直线称为二次函数的横轴截距。

通过改变a的值,我们可以改变二次函数的开口方向。

当a>0时,二次函数的图像是一个开口向上的抛物线;当a<0时,二次函数的图像是一个开口向下的抛物线。

有了这些基本概念后,我们可以引出动点生成的特殊三角形问题。

该问题是通过动点在平面上的移动生成一个特殊的三角形。

设有一个二次函数y = ax² + bx + c。

我们将动点M(x, y)沿着该函数的图像移动。

当动点到达二次函数的两个零点时,即该二次函数与x轴的交点时,我们可以得到一个特殊的三角形。

令二次函数与x轴的交点为A(x₁,0)和B(x₂,0)。

那么三角形OAB的面积可以通过计算底边OA和OB之间的面积来得到。

对于这个特殊的三角形,我们可以发现一些有趣的性质。

首先,由于三角形的底边OA和OB的长度是确定的,因此三角形的面积也是确定的。

这意味着不论动点如何移动,三角形的面积是恒定的。

其次,由于底边OA和OB的长度也是确定的,所以这个特殊三角形的形状也是固定的。

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型三


解:(1)在直线 y=-2x+10 中, 令 x=0,则 y=10,令 y=0,则 x=5, ∴A(5,0),B(0,10),
∵点 C 是 OB 中点,∴C(0,5),
0=25+5b+c, b=-6,
将 A 和 C 代入抛物线 y=x2+bx+c 中,5=c,
解得c=5,
∴抛物线的函数解析式为 y=x2-6x+5.
∴E(m,-2m+10), ∴DE=-2m+10-m2+6m-5=-m2+4m+5,
∴S△ABD=12×OA×DE=12×5×(-m2+4m+5)=425, 解得 m=2, ∴点 D 的坐标为(2,-3).
(3)抛物线解析式为 y=x2-6x+5, ∵△APB 是以 AB 为直角边的直角三角形设点 P(n,n2-6n+5), ∵A(5,0),B(0,10),∴AP2=(n-5)2+(n2-6n+5)2, BP2=n2+(n2-6n+5-10)2,AB2=125,
①若 AB 为斜边时, 点 Q 与点 O 重合,不符合题意,舍去;
②若 AB 为直角边时, 如图,当∠BAQ1=90°时, 点 Q1 在 x 轴上,∵∠ABQ1=45°, ∴△BAQ1 为等腰直角三角形, ∵AO⊥BQ1,∴OQ1=OB=6, ∴Q1(-6,0);
当∠ABQ2=90°时,点 Q2在 y 轴上,
y=-2x+10, x=-1, x=5, (2)联立y=x2-6x+5,解得y=12 或y=0, ∴直线 AB 与抛物线交于点(-1,12)和(5,0), ∵点 D 是直线 AB 下方抛物线上的一点,设 D(m,m2-6m+5), ∴-1<m<5, 如解图 1,过点 D 作 DE⊥x 轴,交直线 AB 于点 E,
【思路点拨】 第一步:先确定点 C,F 的坐标,求出△ACF 的各边长; 第二步:判断△ACF 的形状.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4

AGH~M GB AG = GH MG BG
11 5 11 4 =4
MG 5 5 4
M G 25 4
M H=M G+GH= 25 + 11 =9 44
点 M 的 坐 标 为 ( 5 ,9) 2
(2) ② 当∠BAM=90°时,如图3所示
设M(5,m) 2
AB2 AM2 =BM2
(532 42) 2 (52+32 m2)2=(5252 (m-4) 2) 2
∴∠CBA=∠BAO=∠CAB. ∴BC=AC.∴BC=5. ∵BC∥AO,BC=5,OC=4, ∴点B的坐标为(5,4).



a c
4
1 6
b
5
∵A(﹣3.0)、C(0,4)、
6
B(5,4)在抛物线
yax2 bxc上.


线





y
-
1 6
x2
5 6
x
4
试题分析: (2)由于AB为直角边,分别以和∠ABM=90°(如图4)
三角形,则点C的个数为B( )
A.2
B.3
C.4
D.5
2、(2016广东)如图,抛物线与y轴交于点C,点D(0,1), 点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形, 则点P的坐标为( 1 2,2)或 ( 1- 2,2)
小结:
1、知识层面
2、思想方面
课后作业(走进中考)
(2016泸州)如图,在平面直角坐标系中,点O为坐标原 点,直线l与抛物线 ymx2 nx相交于 A ( 1,33) , B ( 4,0) 两 点. (1)求出抛物线的解析式;
试题分析: (1)如图,易证BC=AC, 从而得到点B的坐标,然后 运用待定系数法求出二次函 数的解析式;
(1)如图1
∵A(﹣3,0),C(0,4),
∴OA=3,OC=4.
9a 3b c 0
∵∠AOБайду номын сангаас=90°,
c
4
∴AC=5. ∵BC∥AO,AB平分∠CAO,
2 5 a 5 b c 4
2 O DO F
8
P 1(5,0)P ,2(5,0)
①利用两腰相等
P3 (8, 0 )
②利用“三线合一”
P
4
25 8
,
0
法 二 : 设 P( a , 0 ), 则 (4 -a )2 3 2 a
③利用图形相似或
a
25 8
两圆一线
勾股定理或等腰三
角形性质
P
25 8
,0
2、已知:O为坐标原点,A(2,4),点P是直线x=3上一
m11
综 上 所 述 : 符 合 要 求 的 点 M 的 坐 标 为 ( 5, 9) 和 ( 5, -11)
2
2
变式:若点P是抛物线对称轴上且在X轴下方的动点,是否存在点 P使△ABP为等腰三角形?若存在,求出所有符合条件的点P的坐 标;若不存在,请说明理由 。
变式:若点P是抛物线对称轴上且在X轴下方的动点,是否存在点 P使△ABP为等腰三角形?若存在,求出所有符合条件的点P的 坐标;若不存在,请说明理由 。
5
1 5 3 11
11
xG
xH
xM
2 yG
22 2
GH 4
4
BDG 900,BD 5 ,DG 4 11 5 ,
2
44
BG BD 2 D G 2 (5 )2 (5 )2 5 5 .
24
4
同 理 : AG= 11 5 又 AGH M GB, AHG M BG 900
自主学习:
1、如图,O为坐标原点,D(4,3),在x轴上 找一点P使得与O点,D点构成等腰三角形, 这样的等腰三角形能画多少个?并求出P点
坐标.
y

O
x
①当OD=OP时
②当DO=DP时
③当PO=PD时
y
y

P1
O
P2 x O

B
P3 x
y

E
O
P4 F x
O O P D 3 2 4 2 5 2 P BO B 4 O E5, O PO E, O P25
2
2
m1点 P的 坐 标 为 ( 5, -1) 。 2
综 上 所 述 : 存 在 点 P 的 坐 标 为 P ( 5 , 1 9 9 ) , ( 5 , 4 2 9 5 ) , ( 5 , - 1 ) 使 得 P A B 为 等 腰 三 角 形 。 2222 2
反馈练习:
1、(2015泸州12)在平面直角坐标系中,点A( 2 , 2 ) ,B(3 2,3 2), 动点C在x 轴上,若以A、B、C三点为顶点的三角形是等腰
解:AB 532 42 80
①若PA AB
设P(5,m)则 (53)2 m2 80m 199舍去或- 199
2
2
2
2
P(5, 199)
② 若 2PB 2AB(55)2m4280
2
m4+295舍 去 或 4 295 点 P的 坐 标 为 ( 5, 4295) 。
2
2
22
③ 若 PAPB则(53)2m2 (55)2m42
二次函数与特殊三角形 ---- 等腰、直角三角形存在探究问题
复习回顾
1 、 两 点 间 的 距 离 公 式 : A ( x 1 ,y 1).B (x2,y2), 则 A B =( x 2-x 1 )2+ (y 2-y 1 )2
2 、 等 腰 三 角 形 和 直 角 三 角 形 的 性 质 及 相 关 定 理
二次函数与特殊三角形 ---- 等腰、直角三角形存在探究问题
中考考情回顾:
该题型一般都是考查二次函数与三角形、四边形、圆结 合的存在探究问题。设问一般都是3问,常涉及以下题型:
1、求抛物线的解析式 2、求点的坐标。 3、探究几何图形的面积最值问题及等量关系问题。 4、探究特殊几何图形的存在性问题。 5、判断直线与圆的位置关系等。
动点,当△AOP是直角三角形,则符合条件的点P
有几个?
A P1
A P3
0
3
P2
P4
0
3
两线一圆
备考指导:
求作等腰三角形 求作直角三角形
两圆一线 两线一圆
合作探究
如图,抛物线 yax2bxc 经过 A( -3,0) ,C(0,4),点B在抛物线上, CB∥x轴,且AB平分∠CAO. (1)求抛物线的解析式; (2)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角 形?如果存在,求出点M的坐标;如果不存在,说明理由.
∠BAM=90°(如图3)进行讨论,通过三角形 相似建立等量关系,就可以求出点M的坐标.
两点间的距离公式及勾股定理
(2) ①当∠ABM=90°时,如图4所示
设M(5,m) 2
AB2 BM2=AM2
(532 42) 2 (5252 m42) 2=(5232m2) 2
m9
法二:利用三角形相似
(2) ①当∠ABM=90°时,如图4所示 抛物线的对称轴为x b 5 2a 2
相关文档
最新文档