《大数据技术与应用》核心考点汇总

合集下载

《大数据技术原理与应用(第3版)》期末复习题库(含答案)

《大数据技术原理与应用(第3版)》期末复习题库(含答案)

第一章大数据概述单选题1、第一次信息化浪潮主要解决什么问题?B(A)信息传输(B)信息处理(C)信息爆炸(D)信息转换2、下面哪个选项属于大数据技术的“数据存储和管理”技术层面的功能?A(A)利用分布式文件系统、数据仓库、关系数据库等实现对结构化、半结构化和非结构化海量数据的存储和管理(B)利用分布式并行编程模型和计算框架,结合机器学习和数据挖掘算法,实现对海量数据的处理和分析(C)构建隐私数据保护体系和数据安全体系,有效保护个人隐私和数据安全(D)把实时采集的数据作为流计算系统的输入,进行实时处理分析3、在大数据的计算模式中,流计算解决的是什么问题?D(A)针对大规模数据的批量处理(B)针对大规模图结构数据的处理(C)大规模数据的存储管理和查询分析(D)针对流数据的实时计算4、大数据产业指什么?A(A)一切与支撑大数据组织管理和价值发现相关的企业经济活动的集合(B)提供智能交通、智慧医疗、智能物流、智能电网等行业应用的企业(C)提供数据分享平台、数据分析平台、数据租售平台等服务的企业(D)提供分布式计算、数据挖掘、统计分析等服务的各类企业5、下列哪一个不属于大数据产业的产业链环节?A(A)数据循环层(B)数据源层(C)数据分析层(D)数据应用层6、下列哪一个不属于第三次信息化浪潮中新兴的技术?A(A)互联网(B)云计算(C)大数据(D)物联网7、云计算平台层(PaaS)指的是什么?A(A)操作系统和围绕特定应用的必需的服务(B)将基础设施(计算资源和存储)作为服务出租(C)从一个集中的系统部署软件,使之在一台本地计算机上(或从云中远程地)运行的一个模型(D)提供硬件、软件、网络等基础设施以及提供咨询、规划和系统集成服务8、下面关于云计算数据中心的描述正确的是:A(A)数据中心是云计算的重要载体,为各种平台和应用提供运行支撑环境(B)数据中心就是放在企业内部的一台中心服务器(C)每个企业都需要建设一个云计算数据中心(D)数据中心不需要网络带宽的支撑9、下列哪个不属于物联网的应用?D(A)智能物流(B)智能安防(C)环保监测(D)数据清洗10、下列哪项不属于大数据的发展历程?D(A)成熟期(B)萌芽期(C)大规模应用期(D)迷茫期多选题1、第三次信息化浪潮的标志是哪些技术的兴起?BCD(A)个人计算机(B)物联网(C)云计算(D)大数据2、信息科技为大数据时代提供哪些技术支撑?ABC(A)存储设备容量不断增加(B)网络带宽不断增加(C)CPU 处理能力大幅提升(D)数据量不断增大3、大数据具有哪些特点?ABCD(A)数据的“大量化”(B)数据的“快速化”(C)数据的“多样化”(D)数据的“价值密度比较低”4、下面哪个属于大数据的应用领域?ABCD(A)智能医疗研发(B)监控身体情况(C)实时掌握交通状况(D)金融交易5、大数据的两个核心技术是什么?AC(A)分布式存储(B)分布式应用(C)分布式处理(D)集中式存储6、云计算关键技术包括什么?ABCD(A)分布式存储(B)虚拟化(C)分布式计算(D)多租户7、云计算的服务模式和类型主要包括哪三类?ABC(A)软件即服务(SaaS)(B)平台即服务(PaaS)(C)基础设施即服务(IaaS)(D)数据采集即服务(DaaS)8、物联网主要由下列哪些部分组成的?ABCD(A)应用层(B)处理层(C)感知层(D)网络层9、物联网的关键技术包括哪些?ABC(A)识别和感知技术(B)网络与通信技术(C)数据挖掘与融合技术(D)信息处理一体化技术10、大数据对社会发展的影响有哪些?ABC(A)大数据成为一种新的决策方式(B)大数据应用促进信息技术与各行业的深度融合(C)大数据开发推动新技术和新应用的不断涌现(D)大数据对社会发展没有产生积极影响第二章大数据处理架构Hadoop单选题1、下列哪个不属于Hadoop的特性?A(A)成本高(B)高可靠性(C)高容错性(D)运行在Linux平台上2、Hadoop框架中最核心的设计是什么?A(A)为海量数据提供存储的HDFS和对数据进行计算的MapReduce(B)提供整个HDFS文件系统的NameSpace(命名空间)管理、块管理等所有服务(C)Hadoop不仅可以运行在企业内部的集群中,也可以运行在云计算环境中(D)Hadoop被视为事实上的大数据处理标准3、在一个基本的Hadoop集群中,DataNode主要负责什么?D(A)负责执行由JobTracker指派的任务(B)协调数据计算任务(C)负责协调集群中的数据存储(D)存储被拆分的数据块4、Hadoop最初是由谁创建的?B(A)Lucene(B)Doug Cutting(C)Apache(D)MapReduce5、下列哪一个不属于Hadoop的大数据层的功能?C(A)数据挖掘(B)离线分析(C)实时计算(D)BI分析6、在一个基本的Hadoop集群中,SecondaryNameNode主要负责什么?A(A)帮助NameNode收集文件系统运行的状态信息(B)负责执行由JobTracker指派的任务(C)协调数据计算任务(D)负责协调集群中的数据存储7、下面哪一项不是Hadoop的特性?B(A)可扩展性高(B)只支持少数几种编程语言(C)成本低(D)能在linux上运行8、在Hadoop项目结构中,HDFS指的是什么?A(A)分布式文件系统(B)分布式并行编程模型(C)资源管理和调度器(D)Hadoop上的数据仓库9、在Hadoop项目结构中,MapReduce指的是什么?A(A)分布式并行编程模型(B)流计算框架(C)Hadoop上的工作流管理系统(D)提供分布式协调一致性服务10、下面哪个不是Hadoop1.0的组件:(C)(A)HDFS(B)MapReduce(C)YARN(D)NameNode和DataNode多选题1、Hadoop的特性包括哪些?ABCD(A)高可扩展性(B)支持多种编程语言(C)成本低(D)运行在Linux平台上2、下面哪个是Hadoop2.0的组件?AD(A)ResourceManager(B)JobTracker(C)TaskTracker(D)NodeManager3、一个基本的Hadoop集群中的节点主要包括什么?ABCD(A)DataNode:存储被拆分的数据块(B)JobTracker:协调数据计算任务(C)TaskTracker:负责执行由JobTracker指派的任务(D)SecondaryNameNode:帮助NameNode收集文件系统运行的状态信息4、下列关于Hadoop的描述,哪些是正确的?ABCD(A)为用户提供了系统底层细节透明的分布式基础架构(B)具有很好的跨平台特性(C)可以部署在廉价的计算机集群中(D)曾经被公认为行业大数据标准开源软件5、Hadoop集群的整体性能主要受到什么因素影响?ABCD(A)CPU性能(B)内存(C)网络(D)存储容量6、下列关于Hadoop的描述,哪些是错误的?AB(A)只能支持一种编程语言(B)具有较差的跨平台特性(C)可以部署在廉价的计算机集群中(D)曾经被公认为行业大数据标准开源软件7、下列哪一项不属于Hadoop的特性?AB(A)较低可扩展性(B)只支持java语言(C)成本低(D)运行在Linux平台上第三章分布式文件系统HDFS单选题1、分布式文件系统指的是什么?A(A)把文件分布存储到多个计算机节点上,成千上万的计算机节点构成计算机集群(B)用于在Hadoop与传统数据库之间进行数据传递(C)一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统(D)一种高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据2、下面哪一项不属于计算机集群中的节点?B(A)主节点(Master Node)(B)源节点(SourceNode)(C)名称结点(NameNode)(D)从节点(Slave Node)3、在HDFS中,默认一个块多大?A(A)64MB(B)32KB(C)128KB(D)16KB4、下列哪一项不属于HDFS采用抽象的块概念带来的好处?C(A)简化系统设计(B)支持大规模文件存储(C)强大的跨平台兼容性(D)适合数据备份5、在HDFS中,NameNode的主要功能是什么?D(A)维护了block id 到datanode本地文件的映射关系(B)存储文件内容(C)文件内存保存在磁盘中(D)存储元数据6、下面对FsImage的描述,哪个是错误的?D(A)FsImage文件没有记录每个块存储在哪个数据节点(B)FsImage文件包含文件系统中所有目录和文件inode的序列化形式(C)FsImage用于维护文件系统树以及文件树中所有的文件和文件夹的元数据(D)FsImage文件记录了每个块具体被存储在哪个数据节点7、下面对SecondaryNameNode第二名称节点的描述,哪个是错误的?A(A)SecondaryNameNode一般是并行运行在多台机器上(B)它是用来保存名称节点中对HDFS元数据信息的备份,并减少名称节点重启的时间(C)SecondaryNameNode通过HTTPGET方式从NameNode上获取到FsImage和EditLog文件,并下载到本地的相应目录下(D)SecondaryNameNode是HDFS架构中的一个组成部分8、HDFS采用了什么模型?B(A)分层模型(B)主从结构模型(C)管道-过滤器模型(D)点对点模型9、在Hadoop项目结构中,HDFS指的是什么?A(A)分布式文件系统(B)流数据读写(C)资源管理和调度器(D)Hadoop上的数据仓库10、下列关于HDFS的描述,哪个不正确?D(A)HDFS还采用了相应的数据存放、数据读取和数据复制策略,来提升系统整体读写响应性能(B)HDFS采用了主从(Master/Slave)结构模型(C)HDFS采用了冗余数据存储,增强了数据可靠性(D)HDFS采用块的概念,使得系统的设计变得更加复杂多选题1、HDFS要实现以下哪几个目标?ABC(A)兼容廉价的硬件设备(B)流数据读写(C)大数据集(D)复杂的文件模型2、HDFS特殊的设计,在实现优良特性的同时,也使得自身具有一些应用局限性,主要包括以下哪几个方面?BCD(A)较差的跨平台兼容性(B)无法高效存储大量小文件(C)不支持多用户写入及任意修改文件(D)不适合低延迟数据访问3、HDFS采用抽象的块概念可以带来以下哪几个明显的好处?ACD(A)支持大规模文件存储(B)支持小规模文件存储(C)适合数据备份(D)简化系统设计4、在HDFS中,名称节点(NameNode)主要保存了哪些核心的数据结构?AD(A)FsImage(B)DN8(C)Block(D)EditLog5、数据节点(DataNode)的主要功能包括哪些?ABC(A)负责数据的存储和读取(B)根据客户端或者是名称节点的调度来进行数据的存储和检索(C)向名称节点定期发送自己所存储的块的列表(D)用来保存名称节点中对HDFS元数据信息的备份,并减少名称节点重启的时间6、HDFS的命名空间包含什么?BCD(A)磁盘(B)文件(C)块(D)目录7、下列对于客服端的描述,哪些是正确的?ABCD(A)客户端是用户操作HDFS最常用的方式,HDFS在部署时都提供了客户端(B)HDFS客户端是一个库,暴露了HDFS文件系统接口(C)严格来说,客户端并不算是HDFS的一部分(D)客户端可以支持打开、读取、写入等常见的操作8、HDFS只设置唯一一个名称节点,这样做虽然大大简化了系统设计,但也带来了哪些明显的局限性?ABCD(A)命名空间的限制(B)性能的瓶颈(C)隔离问题(D)集群的可用性9、HDFS数据块多副本存储具备以下哪些优点?ABC(A)加快数据传输速度(B)容易检查数据错误(C)保证数据可靠性(D)适合多平台上运行10、HDFS具有较高的容错性,设计了哪些相应的机制检测数据错误和进行自动恢复?BCD(A)数据源太大(B)数据节点出错(C)数据出错(D)名称节点出错第四章分布式数据库HBase单选题1、下列关于BigTable的描述,哪个是错误的?A(A)爬虫持续不断地抓取新页面,这些页面每隔一段时间地存储到BigTable里(B)BigTable是一个分布式存储系统(C)BigTable起初用于解决典型的互联网搜索问题(D)网络搜索应用查询建立好的索引,从BigTable得到网页2、下列选项中,关于HBase和BigTable的底层技术对应关系,哪个是错误的?B(A)GFS与HDFS相对应(B)GFS与Zookeeper相对应(C)MapReduce与Hadoop MapReduce相对应(D)Chubby与Zookeeper相对应3、在HBase中,关于数据操作的描述,下列哪一项是错误的?C(A)HBase采用了更加简单的数据模型,它把数据存储为未经解释的字符串(B)HBase操作不存在复杂的表与表之间的关系(C)HBase不支持修改操作(D)HBase在设计上就避免了复杂的表和表之间的关系4、在HBase访问接口中,Pig主要用在哪个场合?D(A)适合Hadoop MapReduce作业并行批处理HBase表数据(B)适合HBase管理使用(C)适合其他异构系统在线访问HBase表数据(D)适合做数据统计5、HBase中需要根据某些因素来确定一个单元格,这些因素可以视为一个“四维坐标”,下面哪个不属于“四维坐标”?B(A)行键(B)关键字(C)列族(D)时间戳6、关于HBase的三层结构中各层次的名称和作用的说法,哪个是错误的?A(A)Zookeeper文件记录了用户数据表的Region位置信息(B)-ROOT-表记录了.META.表的Region位置信息(C).META.表保存了HBase中所有用户数据表的Region位置信息(D)Zookeeper文件记录了-ROOT-表的位置信息7、下面关于主服务器Master主要负责表和Region的管理工作的描述,哪个是错误的?D(A)在Region分裂或合并后,负责重新调整Region的分布(B)对发生故障失效的Region服务器上的Region进行迁移(C)管理用户对表的增加、删除、修改、查询等操作(D)不支持不同Region服务器之间的负载均衡8、HBase只有一个针对行健的索引,如果要访问HBase表中的行,下面哪种方式是不可行的?B(A)通过单个行健访问(B)通过时间戳访问(C)通过一个行健的区间来访问(D)全表扫描9、下面关于Region的说法,哪个是错误的?C(A)同一个Region不会被分拆到多个Region服务器(B)为了加快访问速度,.META.表的全部Region都会被保存在内存中(C)一个-ROOT-表可以有多个Region(D)为了加速寻址,客户端会缓存位置信息,同时,需要解决缓存失效问题多选题1、关系数据库已经流行很多年,并且Hadoop已经有了HDFS和MapReduce,为什么需要HBase?ABCD(A)Hadoop可以很好地解决大规模数据的离线批量处理问题,但是,受限于Hadoop MapReduce编程框架的高延迟数据处理机制,使得Hadoop无法满足大规模数据实时处理应用的需求上(B)HDFS面向批量访问模式,不是随机访问模式(C)传统的通用关系型数据库无法应对在数据规模剧增时导致的系统扩展性和性能问题(D)传统关系数据库在数据结构变化时一般需要停机维护;空列浪费存储空间2、HBase与传统的关系数据库的区别主要体现在以下哪几个方面?ABCD(A)数据类型(B)数据操作(C)存储模式(D)数据维护3、HBase访问接口类型包括哪些?ABCD(A)Native Java API(B)HBase Shell(C)Thrift Gateway(D)REST Gateway4、下列关于数据模型的描述,哪些是正确的?ABCD(A)HBase采用表来组织数据,表由行和列组成,列划分为若干个列族(B)每个HBase表都由若干行组成,每个行由行键(row key)来标识(C)列族里的数据通过列限定符(或列)来定位(D)每个单元格都保存着同一份数据的多个版本,这些版本采用时间戳进行索引5、HBase的实现包括哪三个主要的功能组件?ABC(A)库函数:链接到每个客户端(B)一个Master主服务器(C)许多个Region服务器(D)廉价的计算机集群6、HBase的三层结构中,三层指的是哪三层?ABC(A)Zookeeper文件(B)-ROOT-表(C).META.表(D)数据类型7、以下哪些软件可以对HBase进行性能监视?ABCD(A)Master-status(自带)(B)Ganglia(C)OpenTSDB(D)Ambari8、Zookeeper是一个很好的集群管理工具,被大量用于分布式计算,它主要提供什么服务?ABC(A)配置维护(B)域名服务(C)分布式同步(D)负载均衡服务9、下列关于Region服务器工作原理的描述,哪些是正确的?ABCD(A)每个Region服务器都有一个自己的HLog 文件(B)每次刷写都生成一个新的StoreFile,数量太多,影响查找速度(C)合并操作比较耗费资源,只有数量达到一个阈值才启动合并(D)Store是Region服务器的核心10、下列关于HLog工作原理的描述,哪些是正确的?ABCD(A)分布式环境必须要考虑系统出错。

大数据学知识点总结

大数据学知识点总结

大数据学知识点总结引言随着数字化时代的到来,大数据已经成为了信息时代最重要的组成部分之一。

在各行业的发展中,大数据的应用正在广泛的推进,而在大数据的应用中,大数据学作为一个核心学科正在逐渐得到重视。

大数据学通过对大数据的采集、存储、处理与分析,为各行业提供了丰富的数据支持,因此大数据学的学习和掌握对于未来的发展至关重要。

本文将对大数据学的知识点进行总结,包括大数据的概念、大数据技术、大数据的应用、大数据的发展趋势等内容。

一、大数据的概念1.大数据的定义大数据是指规模大、类型多、更新快的数据集合,大数据的处理和分析需要特殊的技术和工具,以便从这些数据中提取出有价值的信息。

2.大数据的四个特点(1)规模大:大数据的数据量通常非常庞大,以至于传统的数据处理方式无法很好地处理这些数据;(2)类型多:大数据的类型多种多样,包括结构化数据、半结构化数据和非结构化数据;(3)更新快:大数据的更新速度非常快,需要实时收集和处理数据;(4)价值密度低:大数据中包含了大量的无价值数据,需要通过分析和挖掘来找到有价值的信息。

3.大数据的价值大数据的价值主要体现在两个方面:一是通过大数据的分析可以帮助企业做出更加精准的决策,提高生产效率和企业竞争力;二是大数据的分析可以帮助企业发现商机和趋势,促进创新和发展。

二、大数据技术1.大数据的采集技术大数据的采集技术包括了数据的传感器采集、日志采集、文档采集、网络爬虫采集等方式,通过这些方式可以有效地将数据收集到系统中。

2.大数据的存储技术大数据的存储技术是大数据技术中的一个核心部分,存储技术包括了分布式文件系统、对象存储、数据库等多种方式,以便保证数据的高效存储和管理。

3.大数据的处理技术大数据的处理技术包括了数据清洗、数据预处理、数据分析等多种方式,以便将大数据进行整理、提取、分析等处理,为数据的后续应用提供支持。

4.大数据的分析技术大数据的分析技术是大数据技术中最重要的一块,包括了数据挖掘、机器学习、人工智能等多种分析方式,可以提供对大数据的深层次挖掘和分析。

大数据方面核心技术有哪些(一)

大数据方面核心技术有哪些(一)

大数据方面核心技术有哪些(一)引言概述:大数据已经成为当前社会发展的热点领域之一,它能够以前所未有的方式对海量数据进行分析和应用。

在大数据领域中,核心技术的应用对于数据处理、存储和分析具有重要意义。

本文将介绍大数据方面的核心技术,其中包括数据采集、数据存储、数据处理、数据分析和数据可视化等五个大点。

正文内容:一、数据采集1. 传感器技术:通过传感器获取实时数据,如温度、压力和运动等。

2. 高速数据捕获技术:利用高速数据捕捉设备,对数据进行高效采集,确保数据捕获的准确性和完整性。

3. 云计算技术:通过云平台获取分布式数据,实现多方数据聚合。

二、数据存储1. 分布式存储系统:利用分布式存储系统,将海量数据分布式地存储在多台服务器上,提高数据的可靠性和存储容量。

2. 列存储技术:采用列存储结构,在处理大量数据时能够提高查询速度和压缩比率。

3. NoSQL数据库:使用非关系型数据库管理大数据,实现高性能和灵活的数据存储。

三、数据处理1. 分布式计算:利用分布式计算系统,将大规模数据进行分割,并在多台计算机上并行处理,提高数据处理速度。

2. 并行计算技术:通过将任务分解为多个子任务,并在多个处理器上同时执行,实现高效的数据计算。

3. 流式处理:采用流式处理技术,对实时数据进行快速处理和分析,以支持实时决策。

四、数据分析1. 数据挖掘:利用数据挖掘技术发现数据中的模式和趋势,从而提供决策支持和业务洞察。

2. 机器学习:应用机器学习算法对大数据进行建模和预测,从而实现智能化的数据分析和决策。

3. 文本分析:通过自然语言处理和文本挖掘技术,对大数据中的文本信息进行分析和理解。

五、数据可视化1. 图表和可视化工具:使用图表、地图和可视化工具将数据转化为可理解的图形和可视化表达形式。

2. 交互式可视化:通过交互式可视化技术,使用户能够探索和分析大数据,并从中提取有用的信息。

3. 实时可视化:实时地将数据可视化展示,以便及时发现和分析数据中的异常和趋势。

大数据技术原理与应用第三版核心知识点

大数据技术原理与应用第三版核心知识点

大数据技术原理与应用第三版核心知识点一、大数据概述1. 大数据定义大数据是指规模巨大、种类繁多的数据集合,这些数据量大到传统数据处理工具无法处理。

2. 大数据特点- 五V特点:大数据具有Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)五个特点。

- 非结构化数据:大部分大数据都是非结构化数据,需要通过特定的技术进行处理和分析。

二、大数据技术基础1. 分布式存储- Hadoop分布式文件系统HDFS:将大数据存储在多个节点上,提高了数据的可靠性和并行处理能力。

2. 分布式计算- MapReduce计算模型:将数据分片并行处理,提高了数据处理的速度和效率。

3. 数据清洗和预处理- 数据清洗:去除噪音数据、填补缺失值、处理异常值等。

- 数据预处理:将数据转换成可供分析的格式,如规范化、归一化等。

三、大数据存储技术1. NoSQL数据库- HBase:面向列的分布式数据库,适用于大规模结构化数据存储。

- MongoDB:面向文档的数据库,适用于存储半结构化数据。

2. 大数据文件格式- Parquet、ORC等列式存储格式:适用于大规模数据存储和分析,能够减少I/O操作。

四、大数据处理技术1. 数据挖掘- 聚类分析、分类分析、关联规则挖掘、异常检测等。

2. 机器学习- 逻辑回归、决策树、支持向量机、神经网络等机器学习算法在大数据中的应用。

3. 实时流式处理- Storm、Flink等实时流式处理框架,在大数据实时处理中的应用。

4. 图计算- 图数据库、图计算框架如Neo4j、GraphX等在大数据图计算中的应用。

五、大数据分析与应用1. 数据可视化- Tableau、Power BI等工具的应用,将大数据分析结果直观展现。

2. 业务智能- 利用大数据分析结果进行商业决策和趋势预测。

3. 个性化推荐系统- 利用用户行为数据进行个性化推荐,提升用户体验。

大数据考点总结

大数据考点总结

大数据考点总结————————————————————————————————作者:————————————————————————————————日期:名词解释1.Hadoop:是一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构。

基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中。

核心是分布式文件系统HDFS(Hadoop Distributed )和MapReduce。

2.HDFS:是Hadoop的一个分布式文件系统,它的主要设计理念为存储超大文件,最高效的访问模式是一次写入、多次读取,运行在普通廉价的服务器上。

3.Hbase:是一个高可靠、高性能、面向列、可伸缩的分布式数据库,主要用来存储非结构化和半结构化的松散数据。

$hbaseshell4.Spark:AMP实验室于2009年开发,基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序5.推荐系统: 是自动联系用户和物品的一种工具,通过研究用户的兴趣偏好,进行个性化计算,帮助用户从海量信息中去发掘自己潜在的需求6.网络爬虫 :又称为网络蜘蛛,是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。

7.大数据: 一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库能力范围的数据集合(1.数据量大 2.数据类型多3.处理速度快4价值密度低即Volume、Variety、Value、Velocity)8.物联网:物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化和远程管理控制9.云计算:通过整合和管理分布在网络各处的计算资源,提供可伸缩的、廉价的分布式计算能力,通过互联网以统一界面,向大量的用户提供服务的一种模式10数据可视化:将大型集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程简答题1.hadoop有哪些组件以及功能?答:主要组件有分布式文件系统HDFS,为海量数据提供存储; 分布式并行编程模型Mapreduce为用户提供强大的计算能力。

大数据技术与应用(最全)-20211116115223

大数据技术与应用(最全)-20211116115223

大数据技术与应用(最全)20211116115223大数据技术是指对大规模、多样化、高速率的数据进行采集、存储、处理、分析和可视化的一系列技术。

大数据技术的应用已经深入到各个领域,如金融、医疗、教育、交通、物流、零售等,对我们的生活和工作产生了深远的影响。

大数据技术的核心是数据采集和处理。

数据采集是指通过各种方式获取数据,如传感器、摄像头、社交媒体、网络日志等。

数据采集的过程需要考虑到数据的准确性和完整性,以确保后续的数据处理和分析的准确性。

数据处理是指对采集到的数据进行清洗、转换、整合和存储,以便于后续的数据分析和应用。

大数据技术的另一个重要组成部分是数据分析。

数据分析是指对处理后的数据进行分析,以提取有价值的信息和知识。

数据分析的方法有很多种,如统计分析、机器学习、深度学习等。

数据分析的结果可以用于决策支持、预测分析、推荐系统等。

大数据技术的应用已经深入到各个领域。

在金融领域,大数据技术可以用于风险控制、欺诈检测、客户关系管理等。

在医疗领域,大数据技术可以用于疾病预测、个性化治疗、药物研发等。

在教育领域,大数据技术可以用于学生评估、教学优化、教育资源管理等。

在交通领域,大数据技术可以用于交通流量预测、路线规划、交通安全管理等。

大数据技术的应用不仅在各个领域取得了显著的成果,还为社会带来了深刻的变革。

在金融行业,大数据技术可以帮助银行更好地了解客户需求,提供个性化的金融产品和服务。

通过分析客户的消费习惯、信用记录和风险偏好,银行可以精准地为客户提供贷款、投资和保险等金融服务,从而提高客户满意度和忠诚度。

在医疗领域,大数据技术可以助力医疗机构提高诊断准确性和治疗效果。

通过对大量病例数据的分析,医生可以更快地发现疾病的早期迹象,制定更有效的治疗方案。

大数据技术还可以用于药物研发,通过分析临床试验数据,加速新药的研发进程,降低研发成本。

在教育领域,大数据技术可以帮助教育机构实现个性化教育。

通过对学生的学习数据进行分析,教师可以了解学生的学习进度、兴趣和困难,从而调整教学策略,提高教学质量。

大数据方面知识点总结

大数据方面知识点总结一、大数据的定义大数据是指数据量非常庞大,传统数据管理工具已无法有效捕捉、存储、管理和分析这种数据的一类数据。

大数据通常具有“3V”特征:Volume(大量), Velocity(高速), Variety (多样)。

即数据量大、数据产生速度快、数据种类多。

此外,有人提出了新的特征:“4V” :Volume(大量), Velocity(高速), Variety(多样), Veracity(真实)。

二、大数据的特点1.数据量巨大:大数据的数据量通常非常庞大,传统的数据管理工具已无法有效地存储和处理这么多的数据。

这就要求我们使用新的技术和工具来应对数据的规模。

2.数据类型多样:大数据不仅包括结构化数据,还包括非结构化数据、半结构化数据等多种数据类型。

这要求我们的数据处理工具具有处理不同类型数据的能力。

3.数据产生速度快:大数据的数据产生速度非常快,例如互联网上的用户行为数据、社交网络上的数据等。

这要求我们的数据处理工具具有处理高速数据流的能力。

4.数据价值密度低:大数据中很多数据并没有太高的价值,因此我们需要通过数据挖掘等技术从大数据中找到有价值的信息。

三、大数据的技术架构大数据的技术架构通常包括数据采集、数据存储、数据处理、数据分析和数据可视化等环节。

下面对大数据的技术架构中的各个环节进行详细的介绍。

1.数据采集数据采集是大数据处理的第一步,数据采集通常包括批量数据采集和实时数据采集两种方式。

批量数据采集是指定期定时地从各种数据源中采集数据,例如数据库、日志文件、文档等。

实时数据采集是指实时地从数据源中采集数据,例如从传感器、网站日志、社交网络等实时生成的数据中采集数据。

2.数据存储数据存储是大数据处理的第二步,数据存储通常包括分布式文件系统、分布式数据库、内存数据库等多种存储方式。

分布式文件系统是指将数据分布在多台计算机上进行存储的文件系统,例如Hadoop的HDFS。

分布式数据库是指将数据分布在多台计算机上进行存储和管理的数据库,例如HBase、Cassandra。

大数据技术与应用考试 选择题 50题

1. 大数据的核心特征不包括以下哪一项?A. 大量性B. 高速性C. 多样性D. 单一性2. Hadoop生态系统中,用于数据仓库的组件是?A. HBaseB. HiveC. PigD. Zookeeper3. 在数据挖掘中,以下哪种技术主要用于分类?A. 聚类分析B. 关联规则C. 决策树D. 回归分析4. 大数据处理框架Apache Spark的核心抽象是?A. RDDB. DataFrameC. DatasetD. GraphX5. 以下哪个不是NoSQL数据库的类型?A. 键值存储B. 文档存储C. 关系数据库D. 图数据库6. 在Hadoop中,负责数据存储的组件是?A. HDFSB. MapReduceC. YARND. Oozie7. 大数据分析中,以下哪个步骤通常最先进行?A. 数据清洗B. 数据可视化C. 数据建模D. 数据收集8. 以下哪个编程语言常用于大数据处理?A. PythonB. RubyC. SwiftD. Perl9. 在Spark中,用于处理实时数据流的组件是?A. Spark SQLB. Spark StreamingC. MLlibD. GraphX10. 以下哪个工具不是用于大数据可视化的?A. TableauB. Power BIC. ExcelD. D3.js11. 在数据仓库中,ETL过程指的是?A. 提取、转换、加载B. 加密、传输、登录C. 编辑、测试、发布D. 评估、培训、学习12. 以下哪个是大数据处理中的批处理技术?A. Spark StreamingB. KafkaC. MapReduceD. Storm13. 在Hadoop中,负责资源管理的组件是?A. HDFSB. MapReduceC. YARND. Oozie14. 大数据技术中,以下哪个不是数据存储技术?A. HBaseB. CassandraC. MongoDBD. MapReduce15. 在数据分析中,以下哪个方法用于发现数据中的异常值?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析16. 以下哪个是大数据技术中的内存计算框架?A. HadoopB. SparkC. FlinkD. Storm17. 在数据仓库设计中,以下哪个模型用于表示数据的关系?A. 星型模型B. 雪花模型C. 实体-关系模型D. 维度模型18. 以下哪个不是大数据分析的应用领域?A. 金融B. 医疗C. 教育D. 农业19. 在Spark中,以下哪个组件用于机器学习?A. Spark SQLB. Spark StreamingC. MLlibD. GraphX20. 以下哪个是大数据技术中的流处理框架?A. HadoopB. SparkC. FlinkD. Storm21. 在数据分析中,以下哪个方法用于预测未来趋势?A. 聚类分析B. 关联规则C. 时间序列分析D. 回归分析22. 以下哪个是大数据技术中的图计算框架?A. HadoopB. SparkC. FlinkD. GraphX23. 在数据仓库中,以下哪个步骤用于将数据从源系统转移到数据仓库?A. 数据提取B. 数据转换C. 数据加载D. 数据清洗24. 以下哪个不是大数据技术的优势?A. 提高决策效率B. 降低成本C. 增加数据冗余D. 增强数据洞察力25. 在数据分析中,以下哪个方法用于发现数据中的模式?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析26. 以下哪个是大数据技术中的列存储数据库?A. HBaseB. CassandraC. MongoDBD. HDFS27. 在数据仓库中,以下哪个步骤用于将数据转换为适合分析的格式?A. 数据提取B. 数据转换C. 数据加载D. 数据清洗28. 以下哪个不是大数据技术的挑战?A. 数据安全B. 数据隐私C. 数据冗余D. 数据质量29. 在数据分析中,以下哪个方法用于发现数据中的关联?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析30. 以下哪个是大数据技术中的键值存储数据库?A. HBaseB. CassandraC. MongoDBD. HDFS31. 在数据仓库中,以下哪个步骤用于将数据加载到数据仓库中?A. 数据提取B. 数据转换C. 数据加载D. 数据清洗32. 以下哪个不是大数据技术的应用场景?A. 个性化推荐B. 风险管理C. 数据备份D. 智能分析33. 在数据分析中,以下哪个方法用于将数据分组?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析34. 以下哪个是大数据技术中的文档存储数据库?A. HBaseB. CassandraC. MongoDBD. HDFS35. 在数据仓库中,以下哪个步骤用于将数据从源系统提取出来?A. 数据提取B. 数据转换C. 数据加载D. 数据清洗36. 以下哪个不是大数据技术的特点?A. 数据量大B. 数据种类多C. 数据处理速度快D. 数据处理精度低37. 在数据分析中,以下哪个方法用于预测数值?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析38. 以下哪个是大数据技术中的图存储数据库?A. HBaseB. CassandraC. MongoDBD. Neo4j39. 在数据仓库中,以下哪个步骤用于将数据清洗干净?A. 数据提取B. 数据转换C. 数据加载40. 以下哪个不是大数据技术的应用领域?A. 零售B. 制造C. 娱乐D. 军事41. 在数据分析中,以下哪个方法用于发现数据中的异常?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析42. 以下哪个是大数据技术中的内存数据库?A. HBaseB. CassandraC. MongoDBD. Redis43. 在数据仓库中,以下哪个步骤用于将数据转换为适合分析的格式?A. 数据提取B. 数据转换C. 数据加载D. 数据清洗44. 以下哪个不是大数据技术的优势?A. 提高决策效率B. 降低成本C. 增加数据冗余D. 增强数据洞察力45. 在数据分析中,以下哪个方法用于发现数据中的模式?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析46. 以下哪个是大数据技术中的列存储数据库?A. HBaseB. CassandraC. MongoDBD. HDFS47. 在数据仓库中,以下哪个步骤用于将数据加载到数据仓库中?A. 数据提取C. 数据加载D. 数据清洗48. 以下哪个不是大数据技术的应用场景?A. 个性化推荐B. 风险管理C. 数据备份D. 智能分析49. 在数据分析中,以下哪个方法用于将数据分组?A. 聚类分析B. 关联规则C. 异常检测D. 回归分析50. 以下哪个是大数据技术中的文档存储数据库?A. HBaseB. CassandraC. MongoDBD. HDFS答案:1. D2. B3. C4. A5. C6. A7. D8. A9. B10. C11. A12. C13. C14. D15. C16. B17. C18. D19. C20. D21. C22. D23. A24. C25. A26. B27. B28. C29. B30. A31. C32. C33. A34. C35. A36. D37. D38. D39. D40. D41. C42. D43. B44. C45. A46. B47. C48. C49. A50. C。

大数据应用知识点总结

大数据应用知识点总结随着互联网和信息技术的飞速发展,数据量呈现爆炸性增长,大数据技术的应用已经成为企业发展的重要战略。

大数据技术可以帮助企业有效地收集、存储、处理、分析和利用海量数据,从而提高企业的决策能力、市场竞争力和创新能力。

本文将对大数据应用的知识点进行总结,包括大数据技术的基本概念、大数据的应用场景、大数据分析的方法和工具、大数据安全与隐私保护等方面。

一、大数据技术的基本概念1. 大数据的概念:大数据是指规模巨大、来源多样、处理复杂、价值密度低的数据集合。

大数据的特点包括“3V”,即数据量大(Volume)、数据速度快(Velocity)和数据种类多(Variety)。

2. 大数据的技术特点:大数据技术主要包括数据采集、数据存储、数据处理和数据分析等方面。

大数据技术的核心是分布式计算、分布式存储、并行计算、数据挖掘和机器学习等技术。

3. 大数据的关键技术:大数据的关键技术包括Hadoop、Spark、Flink、Kafka、HBase、Cassandra、Hive、Pig、Mahout、Storm、Flume等。

这些技术主要用于数据的存储、处理、分析和挖掘。

二、大数据的应用场景1. 企业运营管理:大数据技术可以帮助企业进行业务数据分析、销售预测、客户关系管理、供应链管理、运营监控等方面的工作,从而提高企业的运营效率和管理水平。

2. 金融行业:大数据技术在金融行业的应用包括风险管理、欺诈检测、交易监控、市场分析、客户信用评估等方面,可以帮助金融机构更好地管理风险和提高服务质量。

3. 医疗健康:大数据技术在医疗健康领域的应用包括医疗数据分析、疾病预测、医疗资源调度、个性化治疗等方面,可以帮助医疗机构提高医疗服务水平和医疗资源利用效率。

4. 电商行业:大数据技术在电商行业的应用包括用户行为分析、商品推荐、交易风险管理、供应链优化等方面,可以帮助电商企业提高销售额和客户满意度。

5. 城市智能:大数据技术在城市智能领域的应用包括交通管理、环境监测、智能城市规划、公共安全管理等方面,可以帮助城市实现智慧化管理和可持续发展。

《大数据技术原理与应用》 期末复习重点

大数据技术原理与应用期末复习重点一、1、数据产生方式大致经历了3个阶段:运营式系统阶段、用户原创内容阶段、感知式系统阶段。

2、大数据的特点:数据量大(volume)、数据类型繁多(variety)、处理速度快(velocity)、价值密度低(value);4V+1C (C:复杂度complexity)。

3、云计算的特点:超大规模、虚拟化、高可靠性、通用性、高可伸缩性、按需服务、极其廉价。

4、科学研究方面经历的4种范式:实验、理论、计算、数据。

5、大数据四种计算模式:批量计算(针对大规模数据的批量数据);流计算(针对流计算的实时计算);图计算(针对大规模图结构数据的处理);查询分析计算(大规模数据的存储管理和查询分析)。

6、数据总体上可以分为静态数据和流数据。

7、对静态数据和流数据的处理,对应着两种截然不同的计算模式:批量计算和实时计算。

8、Hadoop的特性:高可靠性、高效性、高扩展性、高容错性、成本低、运行在Linux平台上、支持多种编程语言。

9、Hadoop的核心子项目:HDFS和MapReduce。

HDFS 2.0的新特性HDFS HA和HDFS联邦。

10、YARN体系结构中的三个组件:ResourceManager、ApplicationMaster和NodeManager。

二、1、分布式文件系统是一种通过网络实现文件在多台主机上进行分布式存储的文件系统。

2、名称节点:名称节点也叫主节点,负责管理分布式文件系统的命名空间,负责文件和目录的创建、删除和重命名等,同时管理着数据节点和文件块的映射关系。

数据节点:数据节点也叫从节点,负责数据的存储和读取,在存储时,有名称节点分配存储位置,然后由客户端把数据直接写入相应的数据节点。

第二名称节点:完成EditLog合并到FsImage的过程,缩短合并的重启时间,其次作为“检查点”保存元数据的信息。

3、HDFS体系结构:HDFS采用了主从结构模型,一个HDFS集群包括一个名称节点和若干个数据节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大数据技术与应用》核心考点汇总大数据技术与应用是当今科技领域中备受瞩目的热门话题,其在各行各业都有着重要的应用价值,也是许多企业和机构所追求的发展方向。

本文将对大数据技术与应用的核心考点进行汇总,帮助读者快速了解这一领域的重要概念和关键技术。

一、大数据的定义和特征
大数据指的是规模庞大、类型多样、变化快速的数据集合,通常具备五个特征:数量大、速度快、多样性高、价值密度低和难以处理。

这些特征决定了传统的数据处理方法无法满足大数据的需求,需要借助大数据技术来进行有效处理和分析。

二、大数据的采集和存储
大数据的采集是指从各种来源收集大规模数据的过程。

其中包括传感器、社交媒体、设备日志、网络日志等多种数据源。

常见的采集方式有主动采集和被动采集两种方式,主动采集是指有目的地主动收集数据,而被动采集是指通过监控设备或系统来自动收集数据。

大数据的存储涉及到数据的保存和管理。

常见的大数据存储技术包括关系型数据库、分布式文件系统、NoSQL数据库等。

选择适合的存储技术需要考虑数据的规模、速度以及访问需求等因素。

三、大数据的清洗和预处理
大数据往往包含大量的噪音和冗余信息,需要进行数据清洗和预处理。

数据清洗主要是去除重复数据、修复缺失数据、剔除异常数据等。

数据预处理包括数据变换、数据规约、数据归约等操作,目的是提高
数据的质量和可用性。

四、大数据的分析和挖掘
大数据的分析和挖掘是为了从海量的数据中获取有价值的信息和知识。

常见的大数据分析方法包括数据挖掘、统计分析、机器学习等。

通过这些方法可以揭示数据背后的规律和趋势,为决策提供科学依据。

五、大数据的可视化和应用
大数据的可视化是将抽象的数据转化为可视化的形式,以便用户能
够更直观地理解和分析数据。

常见的大数据可视化工具包括图表、地图、仪表盘等。

大数据的应用涉及到各个领域,包括金融、医疗、交通、电商等。

通过大数据分析,可以提高效率、降低成本、改善用户
体验等。

六、大数据的安全和隐私保护
大数据的应用不仅带来了机遇,也带来了安全和隐私方面的挑战。

大数据的安全包括数据的保密性、完整性和可用性。

隐私保护涉及到
个人信息的收集、存储和使用,需要合理的数据安全策略和技术手段
来保护用户的隐私权益。

结语
大数据技术与应用是一门综合性的学科,涉及到数据采集、存储、清洗、分析、可视化等多个方面。

本文对大数据技术与应用的核心考点进行了汇总,希望对读者对这一领域有所了解。

随着技术的不断发展,大数据将在更多的领域发挥重要作用,为社会带来更多的机遇和挑战。

相关文档
最新文档