体内药物分析方法(精选)

合集下载

体内药物分析方法介绍

体内药物分析方法介绍

体内药物分析体内药物分析是通过分析的手段了解药物在体内(包括实验动物等机体)数量与质量的变化,获得各种药物代谢动力学的各种参数和转变、代谢的方式、途径等信息。

从而有助于药物生产、实验、研究、临床等各个方面对所研究的药物作出估计与评价,以及对药物的改进和发展作出贡献。

体内药物分析任务和对象的特点:1、被测定的药物和代谢物的浓度或活性极低;2、样品中存在各种直接或间接影响测定结果的物质,大多需要分离和净化;3、样品量少,尤其是连续测定时,很难再度获得完全相同的样品;4、工作量较大,随着工作的深入开展,会成倍地甚或按指数级数增加;5、往往要求很快地提供结果,尤其在毒物检测工作中;6、实验室应有多种检测手段,可进行多项分析工作;7、测定数据的处理和阐明有时不太容易。

样品的种类、采集和储存一、样品的种类和选取原则:(一)血样:血浆(plasma)和血清(serum)是体内药物分析最常采用的样本,其中选用最多的是血浆。

因血浆中的药浓可反映药物在体内(靶器管)的状况。

而且血浆中药物浓度的数据报道较多,可供借鉴。

血浆是全血(whole blood)在加肝素、枸橼酸、草酸盐等抗凝剂的全血经离心后分取,量约为全血的一半。

血清则是在血液中纤维蛋白元等影响下,引起析出血块,离心取得。

血块凝结时往往易造成药物吸附损失。

全血也应加入抗凝剂混匀,以防凝血。

对大多数药物来说血浆浓度与红细胞中的浓度成正比,所以测定全血也不能提供更多的数据,而全血的净化较血浆与血清麻烦,尤其是溶血后,血色素等可能会给测定带来影响。

但是一些可与红血球结合或药物在血浆和血球的分配比率因不同病人而异的情况下,则宜采用全血。

血样采取量会受到一定的限制,血样取样时间间隔问题也常随测定目的不同而异。

目前大都是测定原型药物总量。

当药物与血清蛋白结合率稳定时,血药总浓度可以有效表示游离药物的浓度。

但对低蛋白症或尿毒症患者,药物结合率降低,则在通常安全有效的血药总浓度中,游离型药物浓度可显著增加。

体内药物分析(2)

体内药物分析(2)

体内药物分析(2)
生物样品的前处理方法
(一)去除蛋白质
在测定血样时,首先应去除蛋白质。

去除蛋白质可使结合型的药物游离出来,以便测定药物的总浓度;去除蛋白质也可预防提取过程中蛋白质发泡,减少乳化的形成,以及可以保护仪器性能(如保护HPLC柱不被沾污),延长使用期限。

去除蛋白法有以下几种。

1.加入与水相混溶的有机溶剂
可使蛋白质的分子内及分子间的氢键发生变化而使蛋白质凝聚,使与蛋白质结合的药物释放出来。

常用的水溶性有机溶
剂有:乙腈、甲醇、乙醇、丙醇、丙酮、四氢呋喃等。

2.加入中性盐
使溶液的离子强度发生变化。

中性盐能将与蛋白质水合的水置换出来,从而使蛋白质脱水而沉淀。

常用的中性盐有:饱和硫酸铵、硫酸钠和氯化钠等。

体内药物分析常用的分析方法

体内药物分析常用的分析方法

体内药物分析常用的分析方法体内药物分析是借助于现代化的仪器与技术来分析药物在体内数量与质量的变化,以获得药物在体内的各种药代动力学参数、代谢方式、代谢途径等信息。

目前,用于体内药物分析的方法有很多,归纳起来主要有以下几类:1.色谱分析法体内药物分析中,色谱技术(Chromatography)一直是研究体内药物及其代谢物最强有力的手段,其在体内药物分析中的应用始于上世纪八十年代。

由于其具有分离和分析的双重功能,且有很高的选择性和较高的灵敏度,因而可同时分析结构相似的药物和代谢物等。

色谱法可分为薄层色谱法、薄层扫描法、气相色谱法(GC)、高效液相色谱法(HPLC)及高效毛细管电泳法(HPCE)等。

色谱法中以高效液相色谱法最为常用,特别是反相高效液相色谱法(RP-HPLC)更具有试剂价廉、方法简单和适应范围广等优点,现已成为体内药物分析方法中最重要的方法,并常作为体内药物分析中评价其它方法的参比方法。

GC法在体内药物分析方法中也占有重要地位,虽然该法只限于高挥发性、热稳定性的化合物,但通过化学衍生化技术可使应用范围大大增加。

特别值得一提的是毛细管气相色谱法,由于其柱效高,可分析复杂的混合物,因而在体内药物分析中具有很好的应用前景。

高效毛细管电泳(HPCE)是20世纪80年代后期发展起来的经典电泳技术和现代微柱分离相结合的产物,是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离分析技术。

它分离模式多,分离效率高,速度快,适用范围广,所需样品、试剂用量少,在体内药物分析中得到广泛应用。

根据分离模式的不同,又可分为毛细管区带电泳(CZE),毛细管凝胶电泳(CEC),毛细管等电聚焦(CIEF),胶束电动毛细管色谱(MEKC)等,CZE是目前应用最广泛的毛细管电泳分离模式。

2.联用分析法目前使用较广泛的为色谱联用分析法和色谱与核磁共振联用分析法。

色谱与质谱的联用是应用于药物分析中最为活跃的技术,能够使样品的分离、定性、定量一次完成。

药物分析-体内药物分析

药物分析-体内药物分析
或化学衍生化处理 (2) 对分析方法的灵敏
度及专属性要求较高 (3) 分析工作量大, 数据
处理和结果阐明繁杂
第一节
常用体内样品的制备与贮藏 1 体内样品的种类
2 体内样品的采集与制备 3 体内样品的贮藏与处理
一、体内样品的种类
体液
血液; 唾液
脑脊液;胃液; 胆汁;乳汁;精 液;泪液
组织
胃;肠;肝;肾;肺 ,脑;肌肉;头发
原形,代谢物及缀合物 药物浓度较高 收集量大(1~5L) 2. 尿样的采集 自然排尿 规定时间段(6-8h)(时间尿) 3. 尿样的贮藏 加入适当防腐剂
(三)唾液 TDM测定S代替P进行临床监测 1. 唾液的组成
腮腺, 舌下腺和颌下腺 2. 唾液的采集
漱口15min, 安静状态, 自然流出的唾液 物理或化学方法刺激 3. 样品的制备 3000r/min离心10min,上清液
(二) 去活性
采样后立即终止酶的活性 常用方法: 液氮速冻, 微波照射, 匀浆/沉淀, 加酶活性 阻断剂(氟化钠)或抗氧剂(VC), 煮沸
•血液是主要样品
体液或组织 •尿液,唾液,头发和脏器
概述
特点
体内药物分析的特点 主要来自于体内样品的特点
1. 体内样品的特点 (1) 采样量少: ml~µl级;
且不易重新获得 (2) 待测物浓度低:µg/ml
~ng/ml级, 甚至pg/ml (3) 干扰物质多: 尤其是
血样和组织中的蛋白质
2. 体内药物分析的特点 (1) 样品需经纯化浓集,
概述
体内药物分析
分析方法 样品制备 存在形式
体内样品
指体内样品(生物体液、器官或 组织)中药物及其代谢物或内源 性生物活性物质的定量分析。

体内药物分析 体内样品分析 (药物分析课件)

体内药物分析 体内样品分析 (药物分析课件)

分光光度法 薄层扫描法 气相色谱法 高效液相色谱法
免疫法
五、样品的测定方法
方法
紫外-可见分光光度法 荧光分光光度法 原子吸收分光光度法 紫外扫描 荧光扫描 氢火焰监测器 氮磷检测器 电子捕获监测器 质量碎片选择离子监测器 紫外检测器 荧光检测器 电化学检测器 放射免疫法 酶免疫法 荧光免疫法 游离基免疫法
体内药物分析
一、样品的种类
体内药物分析采用的生物样品种类包括体内的各种体液和组织。其中 最常用的是血液(血浆、血清、全血)、尿液和唾液。
二、样品的采集
采集原则
根据不同的分析目的和要求进行选取; 所取样品应能正确反映药物浓度与效 应之间的关系; 样品应易于获取,便于处理、分析。
二、样品的采集
(一)血样 血样包括血浆、血清和全血,是体内药物 分析中最常用的样品。 血样采集方法:静脉取血或毛细血管取血。 血样采集的量:一般取血量为1~3ml。 动物:采血量不宜超过动物总血量的1/10。
四、样品的制备及测定
样品的制备 (一)样品制备方法选择的一般原则
生物样品的类型 药物的理化性质和浓度范围 药物测定的目的 样品制备与分析技术的关系
四、样品的制备及测定
(二)样品的制备方法 1.去蛋白法
(1)加入沉淀剂和变性试剂:加入中性盐、加入酸、加入金属离子。 (2)加入可与水混溶的有机溶剂:如甲醇、乙醇、丙酮、乙腈、四 氢呋喃等。 (3)酶消化法:最常用的酶是蛋白水解酶中的枯草菌溶素。
二、样品的采集
(二)尿液
测定尿药浓度主要用于药物的 剂量回收、肾清除率和生物利 用度的研究以及药物代谢类型 的测定。体内兴奋剂检测的样 品主要是尿液。
二、样品的采集
(三)唾液
唾液的pH约在6.9±0.5,个体差异较 大,此外尚受到一些其他因素,如有 无刺激,剌激类型、强度与持续时间, 年龄,性别,疾病,药物等的影响。 一些药物的唾液浓度与血浆浓度相关, 样品易得,取样无损害。

体内药物分析

体内药物分析

7、测定回收率的方法~ 体内校正
1、内标法: 将已知浓度的内标加至灌流液中,假设透析液中待测 物与内标的回收率一致,通过内标法定量求得待测物的绝 对量。灌流液中内标物的已知浓度(Cic),透析液中内标 物的浓度(Cec),体内回收率(Rin,viv)可用下式计算:
• Rin,viv=(1一 Cec/Cic )×100%
2、微透析技术的主要原理
主要原理:
以透析原理作为基础,通过对插入生物体内 中的微透析探头在非平衡条件下进行灌流,物质 沿浓度梯度逆向扩散,使被分析物质穿过膜扩散 进入透析管内,并被透析管内连续流动的灌流液 不断带出,从而达到活体组织取样的目的。
3、微透析系统及其特点
1、微透析系统装置主要 由微量泵、微透析探头、 收集器、连接管及配套 设备组成。如下图: 2、目前微透析系统主 要有两种模式:探针和 微旁流(见图2)
5、微透析技术的优点
优点:
• 探针具有较小的尺寸,取样时对组织器官损伤小; • 可以进行活体连续取样,从而能够获得较为真实的浓度一 时间曲线,对阐明药物在体内的代谢和转化过程具有积极 的意义; • 可以在生物体不同部位同时取样,从而研究药物在体内的 分布情况; • 可用于靶向给药,将药物加入灌流液中,直接进入组织器 官,从而可对药物的局部作用和代谢情况进行评价; • 获得不含蛋白质等生物大分子的样品,可以测定游离态药 物的浓度,还可以直接与检测器相联接,实现在线检测。
3、微透析系统~ 探针
探针的类型:
a线性探针:其微透析膜暴露在中间某一区域,探针的两边 用环氧树脂黏合覆盖,可将透析膜部分充分包埋在靶组织里; b同轴探针:其灌流液通过探 针是同轴的,其取样时仅有单 独的取样点,确保微透析取样时对体内有关组织造成最小损伤;

体内药物分析常用生物样品处理方法和方法学验证

体内药物分析常用生物样品处理方法和方法学验证1.血浆血浆样品处理方法主要包括离心、超滤、蛋白沉淀和固相萃取。

首先,通过离心将血清和细胞分离,并将上清液收集。

然后,使用超滤技术去除高分子物质,如蛋白质,以得到更纯净的血浆样品。

接下来,可以使用蛋白沉淀方法去除血浆中的蛋白质,以便进一步分析非蛋白质药物。

最后,固相萃取是常用的药物浓度测定方法,可以通过固相材料吸附目标药物,然后用洗脱液洗脱和浓缩样品,最后定量分析。

2.尿液尿液样品处理方法常采用固相萃取、pH调节、加入稳定剂等技术。

固相萃取可以去除尿液中的杂质,并将药物萃取到固相材料上,然后用洗脱剂将药物洗脱出来。

pH调节可以使药物离子化或去离子化,以提高其固相萃取的效率。

此外,加入稳定剂可以保持样品的稳定性,防止药物分解或降解。

3.组织和细胞组织和细胞样品处理方法包括离心、组织切割、细胞溶解和蛋白沉淀等技术。

首先,通过离心将组织或细胞分离,并收集上清液。

然后,使用组织切割技术将组织样品切成适当的大小。

对于细胞样品,可以使用细胞溶解剂将细胞完全裂解。

最后,蛋白沉淀可以去除样品中的蛋白质,以便进一步分析非蛋白质药物。

方法学验证是为了确保分析方法的准确性和可靠性而进行的步骤和操作流程的验证。

主要包括以下几个方面:1.线性范围验证:验证方法在一定浓度范围内,药物浓度与测定结果之间的关系是否呈线性。

2.灵敏度验证:验证方法的最低检测限、最低定量限和测定范围等指标,以评估方法对药物浓度的敏感度。

3.精密度和准确度验证:通过重复测定和与参考方法比较等方法验证方法的重复性和准确性。

4.选择性验证:验证方法对样品中其他可能存在的干扰物的选择性,以保证药物的测定不受干扰。

5.稳定性验证:验证样品在不同温度、时间、pH条件下的稳定性,以评估样品的保存期限和条件。

综上所述,体内药物分析常用的生物样品处理方法包括血浆的离心、超滤、蛋白沉淀和固相萃取,尿液的固相萃取、pH调节和加入稳定剂,组织和细胞的离心、组织切割、细胞溶解和蛋白沉淀等。

生物体内药物分析方法的选择及应用


2.2 体内药物分析方法设计与建立的一般步骤
总的原则:
根据被测药物的性质 药物浓度的大致范围(经验估计) 仪器设备条件 对药物和研究目的的理解程度
灵敏 专一 简捷 可行
初步分析方法的预试
优化
确认
以药物进行测定 空白生物介质(杂质)
空白生物介质 + 药物
给药后的生物样品 (有无药物?产物?)
考虑内标的选择
2. 体内药物分析方法设计与建立
2.1 体内药物分析方法设计的主要依据
2.1.1 明确分析方法设计的目的要求
a. 临床药物监护:
简便、快速、批量测定
b.药代动力学研究:
是否要求原形药物与代谢物同时测定 注意整个浓度变化的范围 样品量多, 方法尽可能简便
c. 配合新药设计合成、药理、毒理学的研究:
回收率:
分析过程的提取效率,以样品提取和处理过程前后分析 物含量百分比表示。
选择性:
分析方法测量和区分共存组分中分析物的能力。这些共 存组分可能包括代谢物、杂质、分解产物、介质组分等
定量范围:
包括定量上限(ULOQ)和定量下限(LLOQ)的浓度范 围,在此范围内采用浓度-响应关系能进行可靠的、可重 复的定量,其准确度和精密度可以接受。
定量分析 定性分析(半定量)
Distribution Metabolism
Absorption Excretion
生物样品中药物的分析测定是定量描述药物体内过程、 获得药代参数的重要手段之一。
1.2 方法学类型及特点:
体内药物分析方法大致可归为主要的五类:
1. 光谱分析法 2. 色谱法 3. 毛细管电泳法 4. 免疫分析法 5. 同位素法 (……)
Accuracy of the method, defined by the percent relative error ( %RE = (standard observed concentration-nominal concentration) ÷ ( nominal concentration )×100)

体内药物分析方法(精)


1. 标准曲线的建立 (1) 系列标准溶液: n≥6(不包括0点); 等比系列(2~3);
通常为100~1000倍
(2) 内标溶液: 浓度相当于系列标准溶液的几何平均浓度 (二 ) (3) 系列标准样品 : 空白生物介质, 加入系列标准溶液 (4) 标准曲线的绘制: 药物浓度, 以单位体积(如血浆)或
①辅助试剂的使用 乙醚(1.2%水): 氯化钠 ②混合溶剂的使用
溶剂 正己烷 环己烷
紫外截止波长 (nm) 210 210
沸点(℃) 69 81
甲苯
↓ 极 性 增 加 ↓ 异丙醚* 乙醚* 醋酸戊酯
285
220 220 285
111
68 35 149
三氯甲烷
甲基异丁基酮 醋酸乙酯 正丁醇
245
230 260 215
(4) 自动化固相萃取法
对于单个样品处理, SPE操作省时 对于大量样品的处理 半自动SPE: 萃取过程机械化
全自动化仪器: 通过柱切换技术
实现固相萃取与HPLC联用
(5) 自动化固相萃取法 柱切换: 固相萃取-LC/MS/MS
3. 超滤法 ultrafiltration是一种膜分离技术
体液
血液; 唾液
脑脊液;胃液; 胆汁;乳汁;精 液;泪液
排泄物
尿液
粪便; 汗液
组织
胃;肠;肝;肾;肺, 脑;肌肉;头发
二、体内样品的采集与制备
1. 血样的采集
静脉, 1-5ml ≤1/10 TDM测定S代替P 进行临床监测
50-60% 2. 血浆的制备
抗凝剂, 1000g离心 5-10min 淡黄色上清液
提取1次
若提取回收率较低(低于50%), 提取2~3次 脂溶性干扰物, 可进行小体积水溶液反提取

8种常见的药物分析方法(附药物分析中各种定量方法的优缺点 )

药物分析是以药品质量标准为依据,对药物中的相关成分、含量进行检测与分析,以对药品质量的优劣及真伪做出评定。

药物分析的主要方法包括化学物理的以及生物分析等方法。

汇总了药物分析中常用的8种检测方法,希望你能对你有所帮助。

药物分析是以药品质量标准为依据,对药物中的相关成分、含量进行检测与分析,以对药品质量的优劣及真伪做出评定。

药物分析检测可研究药品及其制剂的组成、理化性质、真伪鉴别、纯度检查及测定其有效成分的含量,并保证人们用药安全、合理、有效。

开展药物分析之前,需要配备适用的药品质量检测设备等仪器,这是保证药品质量检验工作开展的基础。

在进行药物分析时,需要严格遵守检验操作流程,保证药品质量检测结果准确可靠。

药品质量检验的样品包括药材原材料样品、辅料样品、半成品、包装材料、生产过程中产生的废物以及与药品直接或间接关系的材料等。

检验样品和方法需要经过相关授权人员和药品检验人员按规定操作验证,记录并完成检验报告后及时送审。

药物分析检测对于药物研发至关重要,通过药物分析方法可以了解药物的药效、主要成分及理化性质等。

药物分析的主要方法包括化学物理的以及生物分析等方法。

化学检验则是药品在化学分析仪器等一系列化学反应条件下所表现出来的化学性质、反应强度及其影响等,是现今药品质量检验检测中应用最为广泛、最主要的方法,能够综合全面的分析和评价药品的质量与效果。

物理检测方法是指通过电、热、光等常规物理条件作用下对药品的物理机械性能进行检验。

生物技术方法主要包括电泳技术和PCR技术等。

常见的药物分析方法如下:1、重量分析法重量分析法是药物分析检测中化学分析的基础方法,指的是称取一定重量的试样,用适当的方法将被测组分与试样中其他组分分离后,转化成一定的称量形式,称重,从而求得该组分含量的方法。

根据分离方法的不同,重量分析法通常分为沉淀重量法、挥发重量法、提取重量法和电解重量法,其优点是直接采用分析天平称量的数据来获得分析结果,在分析过程中不需要标准溶液和基准物质,也就不需要容量器皿引入数据,这样引入的误差较小,因此分析结果准确度较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体内药物分析方法(精选)
体内药物分析方法(精选)
随着现代医学的发展,药物在疾病治疗中起到了至关重要的作用。

对于新药物的研发、药物代谢的了解以及用药的个体化,需要使用合适的体内药物分析方法。

本文将介绍几种常用的体内药物分析方法。

一、液相色谱-质谱联用法(LC-MS)
液相色谱-质谱联用法(LC-MS)是一种将液相色谱(LC)和质谱技术(MS)结合起来的分析方法。

它通过将待测样品进行分离,利用质谱技术对分离后的成分进行快速、准确的鉴定和定量。

LC-MS在药物代谢动力学研究、药物相互作用分析、药物残留检测、药物中间体的筛选等方面具有广泛的应用。

二、气相色谱-质谱联用法(GC-MS)
气相色谱-质谱联用法(GC-MS)是一种将气相色谱(GC)和质谱技术(MS)结合起来的分析方法。

它通过将待测样品在高温条件下蒸发,然后在气相色谱柱上进行分离,最终通过质谱技术对分离后的物质进行鉴定和定量。

GC-MS在药物代谢研究、毒物学研究、药物滥用检测以及环境污染物分析等方面具有重要的应用价值。

三、原子吸收光谱法(AAS)
原子吸收光谱法(AAS)是一种通过测量原子在特定波长的光束中吸收光的强度来定量分析样品中金属元素的方法。

AAS广泛用于测定
药物中的微量金属元素。

例如,铁、锰、铜、锌等微量金属元素在生物体内被广泛应用。

AAS具有灵敏度高、准确性好等优点,成为体内药物分析中的重要技术手段。

四、高效液相色谱法(HPLC)
高效液相色谱法(HPLC)是一种将液相色谱技术与高压技术结合起来的分析方法。

它通过将待测样品在高压下通过色谱柱进行分离,然后通过检测器对分离后的组分进行定性和定量。

HPLC广泛应用于药物代谢、药物溶出度的测定、药物杂质的分析等方面。

五、电感耦合等离子体质谱法(ICP-MS)
电感耦合等离子体质谱法(ICP-MS)是一种将电感耦合等离子体技术与质谱技术结合起来的分析方法。

它利用高温等离子体对待测样品中的元素进行电离和激发,然后通过质谱技术进行分析。

ICP-MS在测定药物中的金属杂质、药物在体内的代谢等方面具有广泛的应用。

通过以上几种常用的体内药物分析方法,医学研究人员可以更加全面地了解药物在体内的代谢过程、药物的副作用、个体差异等方面的信息。

这不仅有助于新药的研发,也有助于制定更加安全有效的用药策略。

总结起来,液相色谱-质谱联用法、气相色谱-质谱联用法、原子吸收光谱法、高效液相色谱法以及电感耦合等离子体质谱法等体内药物分析方法已经成为现代医学研究中不可或缺的工具。

在未来,随着科
技的进一步发展,体内药物分析方法将会更加完善,为药物研发、临床用药提供更多有力支持。

相关文档
最新文档