电动机制动的方法
交流电动机制动方法

周学业
电气1313
机械制动
在切断电源后,利用机械装置使电机迅速停转的方法称为机械制动。 1、电磁抱闸 使用时其轴应与被制动 的电动机轴(或负载设 备的轴)通过联轴器相 联结。 利用调节装置调整弹簧 的压力,即可调节制动 力矩的大小
非制动状态。电磁铁的线圈不通电,其衔铁在弹簧的作用下保持不与静铁
其他制动方法
1.电容制动:电动机切断交流电源后.立即在电动机定子绕组的出线端接人电容器来迫使 电动机迅速停转的方法叫电容制动。其工作原理是当旋转着的电动机断开交流电源时, 转子内仍有剩磁。随着转子的惯性转动,有一个随转子转动的旋转磁场,这个磁场切割 定子绕组产生感生电动势,并通过电容器回路形成感生电流,该电流产生的磁场与转子 绕组中感生电流相互作用产生一个与旋转方向相反的制动转矩使电动机受制动而迅速停 转。
KV1、KV2分别为速度继 电器KV的正、反转动作 触头,接触器KM1、KM2、 KM3之间互锁,防止交流 电源、直流制动电源短路。 停车时按下停止按钮SB3, 复合按钮SB3的常闭先断 开切断正常运行接触器 KM1或KM2线圈,后接通 KM3线圈,KM3主、辅触 头闭合,交流电流经变压 器T,全波整流器VC通入 V、W相绕组直流电,产 生恒定磁场进行制动。RP 调节直流电流的大转子的运动方式相对于旋转磁场的切割磁 感线发生了根本的转变,从而保证转子电流、电磁转矩与电动运行的方向完全相反,电 动机产生的电磁力矩将转化为制动力矩。发电机:转子磁场较电子磁场超前。
电磁抱闸制动控制电路
2、电磁离合制动
电磁离合器:利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制 动。
利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合动铁芯克服 弹簧的拉力而满足工作现场的要求
他励直流电动机的制动方法

他励直流电动机的制动方法
他励直流电动机的制动方法1、回馈制动
回馈制动有两种方式可以实现,即位能负载拖动电动机或降低电压减速的过程,都会产生回馈制动。
在具有位能负载的拖动系统中,如提升机下放重物,电车下坡,当转速增大并超过理想空载转速时,电动机就由电动状态转变为回馈制动状态。
当突然降低电枢两端的电压时,在这瞬间,由于转速来不及变化,电枢电势也来不及变化,电枢电流反向,转矩也反向,使电机进入回馈制动状态。
在制动转矩作用下,电机迅速减速。
2、能耗制动
设电动机原处于电动状态运行,制动时,励磁绕组仍接于电源,但将电枢两端从电源断开,并立即把它接到一个附加的制动电阻上。
在这一瞬间,由于磁通与转速都未变,因此电动势没有变,但电枢已切断电源,电流方向改变,转矩方向也改变,成为制动转矩。
在制动过程中,电机由生产机械的惯性作用带动发电,把系统的动能变为电能消耗在电枢回路的电阻上,故称能耗制动,又叫动力制动。
3、反接制动
反接制动可以用两种方法实现,即转速反向与电枢反接。
他励直流电动机制动的特点1、能耗制动
停止时,切断供电,在保持有磁场的状态,把电枢经负载电阻接成闭合回路,此时电机处于发电状态,把电机的动能转化为电能,消耗在电枢和负载电阻的回路。
特点:线路简单,制动时间一般,需加制动接触器、制动电阻、和制动时间继电器。
2、反接制动
停止时,切断供电,经限流电阻改变电枢供电极性,使电枢产生反转力矩,在反转力矩的作用下,使电枢快速停止转动,当转速为零时立即切除反转供电。
特点:制动速度快,需。
讲述三相交流电动机的制动方式及工作原理

讲述三相交流电动机的制动方式及工作原理嘿,咱今儿就来讲讲三相交流电动机的制动方式及工作原理哈!你可别小瞧这电动机,它就像是机器世界里的大力士呢!咱先说说能耗制动吧。
这就好比是让电动机这位大力士突然停下脚步,然后把它运动的能量给消耗掉。
就好像你跑步的时候,突然让你停下来,那你的惯性不就还在嘛,这时候就需要把这股惯性的能量给散掉。
电动机也是这样,通过把它的绕组接到直流电上,产生一个磁场,让电动机的转子在里面转动,把动能转化成电能,再通过电阻消耗掉,达到制动的效果。
再说说反接制动呀。
这就像是给电动机来了个急刹车,还来了个反向的推动。
就好像你正向前跑呢,突然有人在后面使劲拉你,让你快速停下来。
当电动机正常运转的时候,突然把电源的相序给调换了,这时候电动机就会产生一个和原来转动方向相反的力矩,让它迅速停下来。
但这可得小心点哦,电流会变得很大呢,就像你急刹车的时候也会有点惊险呀!还有再生制动呢。
这就有点神奇啦!就好比电动机在减速的时候,还能把多余的能量送回电网去,就像一个会变魔术的大力士,不仅能停下,还能把能量变出来。
当电动机的转速高于同步转速的时候,它就会变成发电机,把能量回馈给电网,起到制动的作用。
你想想看,这些制动方式是不是很有意思呀?它们就像是电动机的各种小魔法,让电动机能按照我们的要求乖乖听话呢!电动机在我们的生活中可太重要啦,从工厂里的大机器到家里的小电器,都有它的身影。
没有它,那可真是没法想象我们的生活会变成啥样呢!所以呀,了解它的制动方式和工作原理,就像是掌握了它的小秘密,能让我们更好地利用它,让它为我们服务呢!咱可不能小瞧了这些知识哦,它们可是能帮我们解决很多实际问题的呢!你说是不是呀?。
电动机的制动方法

电动机的制动方法
电动机的制动方法可以分为以下几种:
1. 机械制动:通过机械装置使电动机停止运转,常见的机械制动方法包括刹车踏板制动和手动刹车制动。
2. 动态制动:将电动机的绕组对电源进行短接或连接电阻等,使电动机变为发电机运转,将电能转化为热能或反馈到电网中。
3. 降压制动:通过降低电动机的供电电压来减小电动机的转矩,从而实现制动目的。
4. 反接制动:改变电动机的电源接法,通过调换电动机绕组接线来改变电动机的旋转方向,从而制动电动机旋转。
5. 逆能制动:利用电机的逆变操作,将电机转换为发电机,将旋转能量转化为电能,并反馈到电网中。
需要注意的是,不同类型的电动机(如直流电动机、交流异步电动机等)可以使用不同的制动方法,具体选择适合的制动方法需要根据电动机的类型和实际需求进行确定。
三相异步电动机的三种制动方式

三相异步电动机的三种制动方式王海涛贺继荣三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。
它们的共同点是电动机的转矩M与转速n 的方向相反,以实现制动。
此时电动机由轴上吸收机械能,并转换成电能。
一、再生回馈制动再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。
再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。
以下是再生回馈制动存在:(1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。
如图1,当电机在电动状态下运行时工作于P1点,在突然变极或者变频时,电机的工作特性会突然在a线段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P2点为止,电机又回到电动状态。
图1(2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同步转速n0,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转矩(制动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P3点),此时电机以高于同步转速的速度运行。
在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。
图2二、反接制动反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。
(1)电源两相反接的反接制动:如图3所示,电机原在P1点稳定运行,为使电机停转,将定子三根电源线中的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。
当电机制动停止时,应及时将电机与电网分离,否则电机会反转。
电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。
图3(2)转速反向的反接制动当电机在位能负载(如吊车、提升机)的作用下,在电机的转子电路中串入较大电阻时,此时负载拉着电机在与转矩相反的方向旋转,电机起制动作用,电机能稳定运行在P2点。
电动机制动电路图和原理

电动机断电后,由于惯性作用,不会马上停止转动。
这种情况对于某些生产机械是不适宜的。
往往需要在电动机断电后采取某些制动措施。
制动的方法一般有两类,一是机械制动,二是电气制动。
1、机械制动利用外部的机械作用力使电动机转子迅速停止转动的方法称作机械制动。
应用较多的机械制动装置是电磁抱闸,它采用制动闸紧紧抱住与电动机同轴的制动轮来产生机械制动力。
由于结构上的区别,这种制动又有通电制动和断电制动两种方法。
即一种方法是电磁抱闸的线圈通电时产生制动作用,另一种方法是电磁抱闸的线圈断电时产生制动作用。
电磁抱闸的线圈虽然要受电源控制才能启动制动或解除制动,但制动力的产生和解除依赖于电磁抱闸装置的弹簧等机械结构,因此称作机械制动。
上图为通电制动的电磁抱闸控制电路。
电动机通电运行时,电磁抱闸线圈YB断电,起制动作用的闸瓦和闸轮分离,不影响电动机的正常运行。
当电动机断电停止运行时,电磁抱闸的线圈YB得电,闸瓦紧紧抱住闸轮使电动机迅速停车,实现了制动。
电动机被制动停车后,电磁抱闸的线圈处于断电状态。
这时操作人员可用手动方法扳动传动轴调整工件或进行对刀操作。
具体操作与动作的顺序如下,首先合上电源开关QS,之后如果准备起动电动机,则按下起动按钮SB2,交流接触器KM1线圈通电,接触器KM1的常开辅助触点闭合自锁,同时,其主触点闭合,电动机M得电起动运转。
电动机停机制动时,按下复合按钮SB1,其常闭触点首先断开,接触器KM1的线圈断电,常开辅助触点断开,KM1的自锁解除,主触点断开,电动机M断电停机;之后SB1的常开触点迅即闭合,接触器KM2线圈得电,主触点闭合,电磁抱闸线圈YB通电,电磁抱闸的闸瓦紧紧抱住闸轮使电动机迅速停车,实现制动。
电动机制动停转后,松开复合按钮SB1,接触器KM2线圈断电,电磁抱闸线圈YB断电,抱闸松开。
上图为断电制动的电磁抱闸控制电路。
它是在电源切断时才起制动作用,机械设备在停止状态时,电磁抱闸的闸瓦紧紧抱住闸轮使电动机可靠停车。
直流电机制动方式
直流电机制动方式直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。
反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。
1、能耗制动。
指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。
由于电压和输入功率都为0,所以制动平衡,线路简单;2、反接制动。
为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。
制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。
3、倒拉反转反接制动适用于低速下放重物。
制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。
由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。
反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。
4、回馈制动。
电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n >n0、Ea >U、 Ia 反向,电机由驱动变为制动。
从能量方向看,电机处于发电状态——回馈制动状态。
正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源;反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。
重物拖动电机超过给定速度运行,电机处于发电状态。
电磁功率反向,功率回馈电源。
三相异步电动机能耗制动的方法
三相异步电动机能耗制动的方法三相异步电动机能耗制动是一种常用的制动方法,它通过改变电动机的工作方式来实现制动效果。
在实际应用中,三相异步电动机能耗制动具有以下几种方法。
首先是电阻制动。
电阻制动是通过将外接电阻与电动机绕组连接,形成一个回路,使电动机产生额外的电阻,从而减小电动机的转速。
当电动机停止供电时,外接电阻会吸收电动机的旋转能量,使其转速逐渐减小,最终停止转动。
这种方法简单易行,成本较低,但能耗较大。
其次是逆变器制动。
逆变器制动是通过控制逆变器的输出频率和电压来实现制动效果。
逆变器是一种将直流电转换为交流电的装置,通过改变输出频率和电压,可以改变电动机的工作方式和转速。
在制动过程中,逆变器会逐渐降低输出频率和电压,使电动机的转速逐渐减小,最终停止转动。
这种方法能耗较小,但需要较复杂的控制系统。
再次是反接制动。
反接制动是通过改变电动机的供电方式来实现制动效果。
在正常工作时,三相异步电动机是通过三相交流电源供电的,而在反接制动时,将两个相序反接,使电动机的旋转方向发生改变,从而实现制动效果。
这种方法简单易行,成本较低,但对电动机的损伤较大。
最后是短路制动。
短路制动是通过将电动机的两个绕组短路连接来实现制动效果。
当短路连接后,电动机会产生额外的电流,并形成一个磁场,从而产生制动力矩,使电动机的转速逐渐减小,最终停止转动。
这种方法能耗较小,但对电动机的损伤较大。
综上所述,三相异步电动机能耗制动有多种方法可选择,每种方法都有其优缺点。
在实际应用中,需要根据具体情况选择合适的方法来实现制动效果,并在能耗和设备损伤之间做出权衡。
同时,随着科技的发展和技术的进步,三相异步电动机能耗制动方法也在不断创新和改进,以提高能耗效率和减小设备损伤。
直流他励电动机的三种制动方法
直流他励电动机的三种制动方法嘿,朋友们,今天咱们聊聊直流他励电动机的制动方法。
这个话题一听可能觉得有点高深,但其实一点都不复杂,咱们就像喝茶一样,轻松聊聊。
直流他励电动机在咱们的生活中可不算稀罕物,像电动车、风扇之类的家伙,都是它的“亲戚”。
那么,制动这事儿,咱们有啥好方法呢?让我来给你捋一捋。
1. 自然制动1.1 什么是自然制动?首先,咱们得说说自然制动,这就像你走路时,突然停下来的感觉。
电动机在停下来时,如果不加任何外力,转子就会因为摩擦和空气阻力慢慢减速。
这种制动方法简单得让人惊讶,基本上就靠“慢慢来”。
当然,这种方法制动比较慢,特别是在大负载的情况下,像你拽着一辆小车,得慢慢使劲,才能停下来。
1.2 自然制动的优缺点这自然制动有它的好处,省电、简单、几乎不用费什么力气。
但缺点也明显,制动时间长,等你等得花儿都谢了,电动机才停下来。
特别是要快速停止的场合,简直让人抓狂!所以,虽说是个好方法,但并不是所有场合都能派上用场。
2. 反向制动2.1 反向制动的原理接下来,咱们聊聊反向制动,听起来有点酷吧?其实,它就是通过让电动机反向转动来实现制动。
就像开车时,你猛踩刹车,车子会往后滑。
这种方法能够让电动机迅速停下,效率极高,特别适合需要快速停止的场合。
2.2 反向制动的优缺点反向制动的好处是速度快,能让电动机瞬间停下,特别适合大负载情况下的制动。
但是,要是使用不当,有可能会对电动机造成损伤,甚至影响它的寿命。
就像你打球时,如果太猛,容易伤到自己。
所以,用这招的时候,得小心翼翼,别让电动机“受伤”。
3. 动态制动3.1 动态制动的方式最后,咱们来看看动态制动,这可是个“高科技”的玩法!动态制动就是在电动机停止的时候,利用电动机本身的能量,通过电阻把它转化成热量来实现制动。
简单来说,就是让电动机“自己玩”,自己把自己给停下来。
3.2 动态制动的优缺点这种制动方法可谓是“稳稳的幸福”,能快速停下,还能保护电动机,减少损伤。
3.3直流电动机的制动
改变制动电阻 RB的大小可以改变能耗制动特性曲线的斜率, RB越小,特性曲 从而可以改变制动转矩及下放负载的稳定速度。 线的斜率越小,起始制动转矩越大,而下放负载的速度越小。
制动电阻越小,制动电流越大。选择制动电阻的原则是不 超过额定电流的2-2.5倍
Ea RB Ra ( 2~2.5 ) I N
Ra RB
倒拉反转反接制动时的机械特性方程就是电动状态时电枢 串电阻时的人为特性方程。由于串入电阻很大,有
Ra RB n n0 TL 0 2 Ce CT ΦN
倒拉反转反接制动时的机械特性曲线就是电动状态时电枢 串电阻时的人为特性在第四象限的部分。
三某种条件下会出现 n n情况, 0 此时 Ea U ,I a 反向,Tem 反向,由驱动变为制动。从能量方向看, 电机处于发电状态——回馈制动状态。 回馈制动时的机械特性方 程与电动状态时相同。
其中Ea 为制动瞬间的电枢电动势。
能耗制动操作简单,但随着转速下降,电动势减小,制动电流和 制动转矩也随着减小,制动效果变差。若为了尽快停转电机,可在 转速下降到一定程度时,切除一部分制动电阻,增大制动转矩。
二、 反接制动 1、电压反接制动 电压反接制动时接线如图所示。 开关S投向“电动”侧时,电枢接正极电 压,电机处于电动状态。进行制动时,开关 投向“制动”侧,电枢回路串入制动电阻 RB 后,接上极性相反的电源电压,电枢回路内 产生反向电流: Ia U Ea U Ea I aB Ra RB Ra RB 反向的电枢电流产生反向的电磁转矩,从而 产生很强的制动作用——电压反接制动。
U
电动
S
I aB
RB
M
制动
Ea
Tem
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机制动的方法
主要有以下几种电动机制动的方法:
1. 电阻制动:通过外接电阻将电动机的绕组短接,使电动机产生电流,通过对电流的调节可以实现制动效果。
2. 制动电阻器制动:将电动机转子的能量耗散成热量,通过调节制动电阻器的阻值控制制动力。
3. 逆变器制动:通过逆变器将电动机的运行频率调整为负值,使电动机反向运转,产生制动力。
4. 励磁制动:逆转电动机的励磁电流,产生制动力。
5. 机械制动:通过机械装置,如制动器或刹车盘,对电动机进行制动。
这些方法可以根据具体的应用场景和要求进行选择和组合,实现电动机的制动功能。