拉弯、压弯构件
第六章 拉弯和压弯构件

6.5 实腹式压弯构件的截面设计
6.5.1 截面形式
受力大小
选择截面
使用要求 构造要求 宽肢薄壁 平面内和平面外稳定性相等原则
6.5.2 截面选择及验算
1.初选截面:
根据轴力 N、弯矩 M和构件的计算长度 l0x、 l0y初步确定截面的尺寸,然后验算,参考已有 类似设计进行估算。
压弯构件,当承受的弯矩较小时其截面形式与 一般的轴心受压构件相同。当弯矩较大时,宜 采用弯矩平面内截面高度较大的双轴或单轴对 称截面。
H
N H
Af fy (A) (B) (C)
ηh ηh h-2ηh
Af
fy
fy
fy
ቤተ መጻሕፍቲ ባይዱfy
Aw
hw
h
fy
(D)
由于全截面达到塑性状态后,变形过大, 因此规范对不同截面限制其塑性发展区 域为(1/8-1/4)h
Mx N f An xWnx
上式即为规范给定的在N、Mx作用下的强度计算公式。
对于在N、Mx 、My作用下的强度计算公式,规范采用 了与上式相衔接的线形公式:
N Ey N N 1 1 N N Nz Ey Ey Mx M crx 0
2
可以画出相关曲线如图所示。
如偏安全地取 N z / N Ey =1.0,则上式成为
Mx N 1 N Ey M crx
Mcrx b f yW1x
0 1.0
0 1.0
h0 235 15 tw fy
h0 235 18 tw fy
6.4 压弯构件的计算长度 端部约束条件比较简单的单根压弯构件,利用计 算长度系数可直接得到计算长度。 对于框架柱,平面内的计算长度需通过框架整体 稳定分析得到,平面外的计算长度则需根据支撑 点的布置情况确定。
拉弯和压弯构件

2 2
Mx N + =1 N Ey M crx
用
N Ey = y Af y
M crx = bW1x f y 并引入非均
匀弯矩作用时的等效弯矩系数,箱形截面的截面影响 系数以及抗力分项系数
拉弯和压弯构件
压弯构件的稳定
一、弯矩作用平面内的稳定
y
X
y
X
X y Mx X y
1、边缘纤维屈服准则
m M x N + fy x A Wx (1 x N / N E )
适用于实腹式压弯构件在弹性阶段的稳定计算及格构式 压弯构件。 对实腹式压弯构件,截面可发展一定塑性,通过对11种 200多个常见截面形式构件的计算比较,规范采用下列公式:
0 2.0 时
拉弯和压弯构件的强度
1、强度
(1) 工作阶段
弹性阶段
N
弹塑性阶段
塑性阶段
N
图6.1 压弯构件
图6.3 压弯构件截面应力的发展过程
当截面出现塑性铰时, 根据力平衡条件可得轴 心压力与弯矩的相关方程, 绘出曲线, 为简化计算 且偏于安全, 采用直线作为计算依据。
2、强度公式
N + M =1 Np Mpn
2
拉弯和压弯构件
可求出弯扭屈曲临界力 以
N
N z / N Ey 的不同比值代入,可绘出 N / N Ey 和
之间的相关曲线
M x / M crx
外凸, 对常用的双轴对称工字 形截面,
N z / N Ey 越大,曲线越 N z / N Ey 1.0
偏于安全地取
N z / N Ey = 1.0
第六章 拉弯和压弯构件

§6-2 拉弯和压弯构件的强度和刚度
一、强度条件 N/An±Mx/(γxWnx)≤f 对双向拉弯或压弯构件: 对双向拉弯或压弯构件: N/An±Mx/(γxWnx)±My/(γyWny)≤f 二、刚度条件
λ max ≤ [λ]
当以弯矩为主、轴力较小时,或有其他需要时, 当以弯矩为主、轴力较小时,或有其他需要时,还需计算 挠度或变形,使其不超过容许值。 挠度或变形,使其不超过容许值。
式中,α0=(σmax-σmin)/σmax,称为应力梯度; 式中, =(σ max,称为应力梯度; σmax---腹板计算高度边缘的最大压应力; ---腹板计算高度边缘的最大压应力 腹板计算高度边缘的最大压应力; σmin---腹板计算高度另一边缘的应力,压应力取正值, ---腹板计算高度另一边缘的应力 压应力取正值, 腹板计算高度另一边缘的应力, 拉应力取负值; 拉应力取负值; λ---构件在弯矩作用平面内的长细比。 ---构件在弯矩作用平面内的长细比 构件在弯矩作用平面内的长细比。 30时 30; 100时 100。 当λ<30时,取λ=30;当λ>100时,取λ=100。
式中, ---受拉侧最外纤维的毛截面模量 受拉侧最外纤维的毛截面模量; 式中, W2X---受拉侧最外纤维的毛截面模量; y1 γ2X---与W2X相应的截面塑性发展系数。 ---与 相应的截面塑性发展系数。
y2
二、实腹式压弯构件在弯矩作用平面外的稳定性
当压弯构件的弯矩作用在截面最大刚度平面内( 当压弯构件的弯矩作用在截面最大刚度平面内(即绕 强轴弯曲) 由于弯矩作用平面外截面的刚度较小, 强轴弯曲)时,由于弯矩作用平面外截面的刚度较小,构件 有可能向弯矩作用平面外发生侧向弯扭屈曲失稳。 侧向弯扭屈曲失稳 有可能向弯矩作用平面外发生侧向弯扭屈曲失稳。 规范采用下列实用计算公式 实用计算公式计算压弯构件在弯矩作用 规范采用下列实用计算公式计算压弯构件在弯矩作用 平面外的整体稳定性: 平面外的整体稳定性:
第七章拉弯和压弯构件

压弯构件
拉弯构件
拉弯和压弯构件也可按其截面形式分为 实腹式构件和格构式构件两种
➢ 当受力较小时,可选用热轧型钢或冷弯薄壁 型钢截面
➢ 当受力较大时,可选用钢板焊接组合截面或 型钢与型钢、型钢与钢板的组合截面
➢ 当构件计算长度较大且受力较大时,为提高 截面的抗弯刚度,采用格构式截面
➢ 对称截面一般适用于所受弯矩值不大或正负 弯矩值相差不大的情况
例7.1 如下图所示拉弯构件,承受的荷载的设计 值为:轴向拉力800kN,横向均布荷载7kN/m。 试选择其截面,设截面无削弱,材料为Q235钢。
解:
试采用普通工字钢I28a,截面面积A=55.37cm2, 自重0.43kN/m,Wx=508cm3,ix=11.34cm,iy=2.49cm。 构件截面最大弯距Mx=(7+0.43×1.2)×62/8=
§7-2 拉弯和压弯构件的强度
拉弯和压弯构件以截面出现塑性铰为其强度极限 轴向力不变而弯距增加,截面应力发展过程:
边缘纤维的最大应力达到屈服点
最大应力一侧塑性部分深入截面
两侧均有部分塑性深入截面 全截面进入塑性
强度极限 状态
全截面屈服准则
➢ 中和轴在腹板范围内(N≤AWfy)时
(7.3)
➢ 中和轴在翼缘范围内(N>AWfy)时
N
Mx
x A
Wpx
1
0.8
N N Ex
fy
Wps—截面塑性模量
仅适用于弯距沿杆长均匀 分布的梁端铰支压弯构件
(7.11)
❖ 7.3.1.3 规范规定的实腹式 压弯构件整体稳定计算式
采用等效弯距bmxMx(Mx为最大弯距,bmx≤1) 考虑其他荷载作用情况
采用Wps=gxW1x考虑部分塑性深入截面 引入考虑分析系数gR
第6章-拉弯和压弯构件

第6章 拉弯与压弯构件
压弯(拉弯)构件——同时承受轴向力和弯矩的构件
弯矩的产生
轴向力的偏心作用 端弯矩作用 横向荷载作用
压弯构件
拉弯构件
拉弯构件:
应用:屋架下弦 截面形式:受拉为主,和一般轴心拉杆一样。 受弯为主,采用在弯矩作用平面内有较大 抗弯刚度的截面。 破坏形式:强度破坏,即截面出现塑性铰。
6.2.1 压弯构件在弯矩作用平面内 的失稳现象
(a)
在确定压弯构件弯矩作用平面内极限承载力时, 可用两种方法。 一种是边缘屈服准则的计算方法
通过建立平衡方程,引入等效弯矩系数m=Mmax /M,其中
1 1 N / NE
N E 2 EI / l 2
mM N fy x A Wx (1 x N / N E )
第6章 拉弯与压弯构件
拉弯与压弯构件实际上就是轴力与弯矩共同作用的构件, 也就是为轴心受力构件与受弯构件的组合,典型的三种拉、 压弯构件如下图所示。 同其他构件一样,拉、压弯构件也需同时满足正常使用及 承载能力两种极限状态的要求。 正常使用极限状态:满足刚度要求。 承载能力极限状态:需满足强度、整体稳定、局部稳定三 方面要求。 截面形式:同轴心受力构件, 分实腹式截面与格构式截面 实腹式:型钢截面与组合截面 格构式:缀条式与缀板式
mx M x
N 1xW1x 1 0.8 ' N Ex
f
y
y1
x
f
y
x
y2
N A
mx M x
N 2 xW2 x 1 1.25 ' N Ex
W1x — 受压区边缘的毛截面抵 抗矩,W1x I x y1 ; W2 x — 受拉区边缘的毛截面抵 抗矩,W2 x I x y2 ;
《金属结构设计》第五章 拉弯和压弯构件

mx ——等效弯矩系数。
5. 拉弯和压弯构件
§5.3.1弯矩作用平面内的稳定计算(续6) 上式中的等效弯矩系数应按下列规定采用。 ① 框架柱和两端支承的构件:
a.无横向荷载作用:
mx
0.65 0.35
率(无反弯点)时取同号,使构件产生反向曲率(有反弯点)时取异号, M1 M 2 ;
5. 拉弯和压弯构件
§5.1拉弯和压弯构件的特点(续2)
进行拉弯和压弯构件设计时,应同时满足: 承载能力极限状态和正常使用极限状态的要求。 拉弯构件:需要计算强度和刚度(限制长细比); 压弯构件:需要计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳 定)、局部稳定和刚度(限制长细比)。 拉弯构件的容许长细比和轴心拉杆相同,压弯构件的容许长细比和轴心压杆相同。
N A
mx M x
N xW2 x 1 1.25 / N Ex
f
(5-12)
式中:W1x——受拉侧最外纤维的毛截面模量。 式中的系数1.25是经过与理论计算结果比较后引进的修正系数。
5. 拉弯和压弯构件
§5.3.2弯矩作用平面外的稳定计算 开口薄壁截面压弯构件的抗扭刚度及弯矩作用平面外的抗弯刚度通常较小,当构件 在弯矩作用平面外没有足够的支撑以阻止其产生侧向位移和扭转时,构件可能因弯扭屈 曲而破坏。 《钢结构设汁规范》采用的实腹式压弯构件弯矩作用平面外稳定计算的相关公式 M N tx x f (5-13) y A bW1x 式中:Mx——所计算构件段范围内(构件侧向支承点间)的最大弯矩; βtx——等效弯矩系数,应根据两相邻支承点间构件段内的荷载和内力情况确定, 取值方法与弯矩作用平面内的等效弯矩系数βmx相同; η——截面影响系数,闭合截面η=0.7,其他截面η=1.0; fy——弯矩作用平面外的轴心受压构件稳定系数; fb——均匀弯曲受弯构件的整体稳定系数,采用近似计算公式计算,这些公式 已考虑了构件的弹塑性失稳问题,因此当fb大于0.6时不必再换算。 对闭口截面 fb=1.0;
钢结构——拉弯构件和压弯构件

钢结构——拉弯构件和压弯构件钢结构是指采用钢材作为主要构造材料的建筑结构。
在钢结构中,常见的构件有拉弯构件和压弯构件。
拉弯构件主要承受拉力,而压弯构件则主要承受压力。
本文将分别介绍拉弯构件和压弯构件的特点、设计和应用。
拉弯构件是指同时承受拉力和弯矩的构件。
它们常常用于桥梁、塔架等需要抵抗拉力的结构中。
拉弯构件受力时,在受拉面上会产生拉应变,而在另一侧会产生压应变。
拉弯构件的设计目标是在满足强度和刚度的要求下,最大程度地减小构件重量。
为了实现这一目标,拉弯构件通常采用I型、H型或者箱型截面,这些截面具有较大的截面面积和惯性矩,能够提供足够的强度和刚度。
拉弯构件的设计需要考虑以下几个因素:首先是受力情况。
拉弯构件在受力时,应根据实际情况确定构件的截面形状和尺寸,以满足承受拉力和弯矩的要求。
其次是构件的材料选择。
常见的拉弯构件材料有普通碳素钢和高强度钢。
高强度钢具有较高的强度和刚度,能够减小构件的截面尺寸和重量。
最后是构件的连接方式。
拉弯构件的连接方式有焊接、螺栓连接和铆接等,设计时需要选择适合的连接方式以满足受力要求。
压弯构件是指同时受到压力和弯矩作用的构件。
它们通常用于承担压力的柱子和梁等结构中。
压弯构件在受力时,产生的主要应力是压应力和弯曲应力。
与拉弯构件相比,压弯构件的设计更加复杂,需要考虑稳定性问题。
在设计过程中,需要根据实际情况确定构件的截面形状和尺寸,以满足承受压力和弯矩的要求,并保证构件的稳定性。
常见的压弯构件截面有角钢、工字钢和管材等。
与拉弯构件相比,压弯构件的设计更注重稳定性。
在设计压弯构件时,需要考虑构件的临界压弯强度,即其能够承受的最大弯矩和压力。
为了提高构件的稳定性,常见的设计方法有增大截面尺寸、采用合适的截面形状、设置剪力加强构件等。
此外,还需要考虑构件的支撑条件和边界约束等因素,以保证压弯构件在受力过程中不发生屈曲或失稳。
拉弯构件和压弯构件在钢结构设计和应用中都起着重要的作用。
钢结构工程施工单元5 拉弯和压弯构件计算

5.2 拉弯、压弯构件的强度和刚度
• 《钢结构设计规范》(GB50017—2003)中的计算公式:
•
N M f
An Wn
(5-1)
• (2)对于直接承受动力荷载的实腹式拉弯、压弯构件,截面塑性发
展后的性能研究还不够成熟,因此《钢结构设计规范》(GB500
17—2003)规定以截面边缘屈服状态作为强度极限状态。对于
上一页 返回
5.2 拉弯、压弯构件的强度和刚度
• 5.2.1 拉弯、压弯构件的强度
• 拉弯构件和不致整体及局部失稳的压弯构件,其最不利截面(最大弯 矩截面或有严重削弱的截面)最终将形成塑性铰而达到承载能力极限。
• 以简单的矩形截面构件来讨论这一问题。图5-5所示为一受轴力N和
弯矩M共同作用的矩形截面构件。设N为定值而逐渐增加M。当截面边
下一页 返回
5.3 实腹式压弯构件的整体稳定性
• 5.3.1 压弯构件在弯矩作用平面内的稳定 性
• 实腹式压弯构件在弯矩作用平面外的抗弯刚度较大,或截面抗扭刚度 较大,或有足够的侧向支承可以阻止弯矩作用平面外的弯扭变形时, 将发生弯矩作用平面内的失稳破坏。确定压弯构件弯矩作用平面内稳 定承载能力的方法很多,可分为两类:一类是边缘屈服准则的计算方 法,一类是极限承载能力准则的计算方法。
缘纤维最大应力
N M An Wn
f y时,截面达到边缘屈服状态。当M继续增加,
最大应力一侧的塑性区将向截面内部发展,随后另一侧边缘达到屈服
并向截面内部发展,最终以整个截面屈服形成塑性铰而达到强度承载
能力极限。
下一页 返回
5.2 拉弯、压弯构件的强度和刚度
• 由于拉弯、压弯构件的截面形式和工作条件不同,故其强度计算方法 所依据的应力状态亦分为如下两种:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6-4实腹式构件在弯矩平面外的稳定
压弯构件弯矩作用平面外整体稳定的计算公式
考虑抗力分项系数,规范验算公式:
N tx M x f y A bW1x
式中
——截面影响系数:箱形截面 =0.7,其他截面 =1.0; y ——弯矩作用平面外的轴心受压构件稳定系数,对于单轴
对称截面,采用换算长细比 确定 b——均匀弯曲的受弯构件的整体稳定系数
对工字形截面和T形截面的非悬臂构件可按受弯构件整
体稳定系数的近似公式计算;对闭口截面 b=1.0。
§6-5 实腹式压弯构件的局部稳定
6.5.1.受压翼缘板的宽厚比限值
规范对压弯构件翼缘宽厚比的限制规定如下:
外伸翼缘板 b / t 13 235 / f y
两边支承翼缘板 b0 / t 40 235/ f y
①边缘屈服准则,截面边缘纤维屈服的弹性受力阶段 极限状态作为强度计算的承载能力极限状态。
②全截面屈服准则,截面塑性受力阶段极限状态作为 强度计算的承载能力极限状态,形成塑性铰。
③部分发展塑性准则,截面部分塑性发展作为强度计 算的承载能力极限状态
单向拉弯、压弯构件按下式计算截面强度:
N Mx f
An xWnx
N
N
N
e
M1
F
M2 e
N
N
N
拉弯构件
2.应用
墙架柱 工作平台柱 支架柱 单层厂房结构
3.按其截面形式分类 ①实腹式 ②格构式
常用的截面形式:
压弯构件计算内容
(1)强度 (2)弯矩作用平面内的稳定
弯矩作用平面外的稳定 (3)板件的局部稳定 (4)刚度
§6-2 拉弯、压弯构件的强度
6.2.1 拉弯、压弯构件的强度计算
时,h0
tw
480
0.5
26.2
235 fy
式中 ——构件在弯矩作用平面内的长细比,当 <30时,取 =30;当 >100时,取 =100。
柱脚的主要组成部分与轴心受压柱柱脚一样,包括底板、 靴梁、隔板、肋板、锚栓等。
§6-3 实腹式构件在弯矩平面内的稳定
6.3.1 失稳形式
单向压弯构件的整体失稳分为:
弯矩作用平面内和弯矩作用平面外两种情况
(弯曲屈曲)
(弯扭屈曲)
6.3.2 单向压弯构件弯矩作用平面内的整体稳定
3.压弯构件弯矩作用平面内整体稳定的计算公式
单向压弯构件弯矩作用平面内整体稳定验算公式为:
绕虚轴( x 轴)弯曲的格构式压弯构件
和弱支撑框架柱,mx =1.0。
(2)框架柱和两端支承的构件:①无横向荷载作用时, mx =0.65+0.35M2/M1,M1和M2是构件两端的弯矩,|M1|≥|M2|; 当两端弯矩使构件产生同向曲率时取同号,使构件产生反向
曲率(有反弯点)时取异号。②有端弯矩和横向荷载同时作
用时,使构件产生同向曲率取mx =1.0。使构件产生反向曲率 取mx=0.85。③无端弯矩但有横向荷载作用时,mx =1.0。
b
b b0 b
t
t
hw
hw
h
tw
h
tw
t
t
6.5.2.腹板的高厚比限值
1.工字形和H形截面的腹板
腹板的局部稳定问题受剪应力的影响不大,引入应
力梯度 0来考虑不均匀压力的影响,为此定义:
0
max min max
当 0 0 1.6
时,
h0 tw
160
0.5 25
235 fy
当 1.6 0 2
一.工作阶段
在轴心压力和绕主轴弯矩的共同作用下,截面上应力
发展过程,构件中应力最大的截面可能发生强度破坏。
hw h ηh (1-2 η)h ηh
A f =b×t
x Mx
x
A w= h w× tw
fy
fy
fy
fy
fy
H
fy
N
H
fy
(a)
(b)
(c)
fy (d)
压弯构件截面应力的发展过程
二.强度计算准则:
对这种情况,除计算外,尚应补充如下计算:
N
mxM x
f
A
xW2x (1 1.25 N
N
/ Ex
)
式中W2x——弯矩作用平面内受压较小翼缘(或无翼
缘端)的毛 截面模量。
以上各式中
N
/ Ex
可按以下规定采用:
2EA 1.12x
。等效弯矩系数 mx
(1)悬臂构件和在内力分析中未考虑二阶效应的无支撑框架
第6章 拉弯、压弯构件
§6-1 应用和截面形式 §6-2 强度 §6-3 实腹式构件在弯矩平面内的稳定 §6-4 实腹式构件在弯矩平面外的稳定 §6-5 实腹式压弯构件局部稳定
§6-1 应用和截面形式
1.压弯(或拉弯)构件
承受轴心压(或拉)力和绕截面形心主轴的弯矩作用
N
N
N
M1
F
M2
N
N
N
压弯构件
N
mxM x
f
x A
W1x (1 x N
N
/ Ex
)
实腹式压弯构件和绕实轴弯曲的格构式压弯构件
N
mxM x
x A xW1x (1 0.8 N
N
/ Ex
)
f
对于单轴对称截面(如T形截面)压弯构件,当弯矩作
用在对称轴平面内且使较大翼缘受压时,有可能在较小翼
缘(或无翼缘)一侧产生较大的拉应力而出现受拉破坏。