热力学参数状态图

热力学参数状态图

热力学参数状态图

热力学基本状态参数

热力学基本状态参数 功和热量 1-1 工质和热力系 一、工质、热机、热源与冷源 1、热机(热力发动机):实现热能转换为机械能的设备。 如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。 2、工质:实现热能转换为机械能的媒介物质。 对工质的要求: 1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。如电厂中的水蒸汽;制冷中的氨气等。 问题:为什么电厂采用水蒸汽作工质? 3、高温热源:不断向工质提供热能的物体(热源)。 如电厂中的炉膛中的高温烟气 4、低温热源:不断接收工质排放热的物体(冷源) 如凝汽器中的冷却水 二、热力系统 1、热力系统和外界概念 热力系:人为划分的热力学研究对象(简称热力系)。 外界:系统外与之相关的一切其他物质。 边界:分割系统与外界的界面。在边界上可以判断系统与外界间所传递的能量和质量的形

式和数量。边界可以是实际的、假想的、固定的,或活动的。 注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。它可以是一个设备(物体),也可以是多个设备组成的系统。 如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。 2、热力系统分类 按系统与外界的能量交换情况分 1)绝热系统:与外界无热量交换。 2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。 注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。这种科学的抽象给热力学的研究带来很大的方便。 如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。状态及基本状态参数 状态参数特点 u状态参数仅决定于状态,即对应某确定的状态,就有一组状态参数。反之,一组确定的状态参数就可以确定一个状态。状态参数的变化量仅决定于过程的初终状态,而与达到该状态的途径无关。因此,状态参数的变化量可表示为(以压力p为例): 二、基本状态参数 1.表压与真空 表压力:当气体的压力高于大气压力时(称为正压),压力表的读数(pg),如锅炉汽包、主蒸汽的压力等。 有:pg=p-pb p的计算式:p=pg+pb 真空(度):当气体的压力低于大气压力时(称为负压),负压表(真空表)的读数(pv),

第二章 热力学第一定律

第二章热力学第一定律 思考题 1设有一电炉丝浸于水中,接上电源,通过电流一段时间。如果按下列几种情况作为系统,试问ΔU,Q,W为正为负还是为零? (1)以电炉丝为系统; (2)以电炉丝和水为系统; (3)以电炉丝、水、电源及其它一切有影响的部分为系统。 2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,ΔU,Q,W为正为负还是为零?(2)如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,ΔU,Q,W为正为负还是为零? 作业题 1 (1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热?(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干? [答案:(1) 吸收40J;(2) 16 570J] 2在一礼堂中有950人在开会,每个人平均每小时向周围散发出4.2xl05J的热量,如果以礼堂中的空气和椅子等为系统,则在开会时的开始20分钟内系统内能增加了多少?如果以礼堂中的空气、人和其它所有的东西为系统,则其ΔU=? [答案:1.3×l08J;0] 3一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了1 265 000J,试求算此过程中蓄电池将吸收还是放出多少热? [答案:放热401000J] 4 体积为4.10dm3的理想气体作定温膨胀,其压力从106Pa降低到105Pa,计算此过程所能作出的最大功为若干? [答案:9441J] 5 在25℃下,将50gN2作定温可逆压缩,从105Pa压级到2×106Pa,试计算此过程的功。如果被压缩了的气体反抗恒定外压105Pa作定温膨胀到原来的状态,问此膨胀过程的功又为若干? [答案:–1.33×104J;4.20×103J] 6 计算1mol理想气体在下列四个过程中所作的体积功。已知始态体积为25dm3终态体积为100dm3;始态及终态温度均为100℃。 (1)向真空膨胀; (2)在外压恒定为气体终态的压力下膨胀; (3)先在外压恒定为体积等于50dm3时气体的平衡压力下膨胀,当膨胀到50dm3(此时温度仍为100℃)以后,再在外压等于100 dm3时气体的平衡压力下膨胀; (4)定温可逆膨胀。 试比较这四个过程的功。比较的结果说明了什么问题? [答案:0;2326J;310l J;4299J] 习题10试证明对遵守范德华方程的1mol实际气体来说,其定温可逆膨胀所作的功可用下式求算。

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

热力学基本状态参数

功和热量 1-1 工质和热力系 一、工质、热机、热源与冷源 1、热机(热力发动机):实现热能转换为机械能的设备。 如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。 2、工质:实现热能转换为机械能的媒介物质。 对工质的要求: 1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。如电厂中的水蒸汽;制冷中的氨气等。 问题:为什么电厂采用水蒸汽作工质? 3、高温热源:不断向工质提供热能的物体(热源)。 如电厂中的炉膛中的高温烟气 4、低温热源:不断接收工质排放热的物体(冷源) 如凝汽器中的冷却水 二、热力系统 1、热力系统和外界概念 热力系:人为划分的热力学研究对象(简称热力系)。 外界:系统外与之相关的一切其他物质。 边界:分割系统与外界的界面。在边界上可以判断系统与外界间所传递的能量和质量的形式和数量。边界可以是实际的、假想的、固定的,或活动的。 注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。它可以是一个设备(物体),也可以是多个设备组成的系统。 如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。 2、热力系统分类 按系统与外界的能量交换情况分 1)绝热系统:与外界无热量交换。 2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。 注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。这种科学的抽象给热力学的研究带来很大的方便。 如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。状态及基本状态参数 状态参数特点

饱和水蒸气温度-压力-密度-热力学参数对照表

当空气中所含水蒸气的量达到最大时就称这种空气为“饱和湿空气”,与饱和湿空气对应的压力称为“饱和水蒸气压力”,用符号Ps表示.水蒸气压力p与饱和水蒸气压力Ps的比值称为相对湿度Rh,与饱和水蒸气压力Ps 对应着的相对湿度为:Rh=100% 。 饱和水蒸气温度-压力-密度-热力学参数对照表 温度t ℃绝对压强p kPa 水蒸汽的密度ρ kg·m-3 焓H kJ·kg-1 汽化热r kJ·kg-1 液体水蒸汽 0 0.61 0.00 0.00 2491.10 2491.10 5 0.87 0.01 20.94 2500.80 2479.86 10 1.23 0.01 41.87 2510.40 2468.53 15 1.71 0.01 62.80 2520.50 2457.70 20 2.33 0.02 83.74 2530.10 2446.30 25 3.17 0.02 104.67 2539.70 2435.00 30 4.25 0.03 125.60 2549.30 2423.70 35 5.62 0.04 146.54 2559.00 2412.10 40 7.38 0.05 167.47 2568.60 2401.10 45 9.58 0.07 188.41 2577.80 2389.40 50 12.34 0.08 209.34 2587.40 2378.10 55 15.74 0.10 230.27 2596.70 2366.40 60 19.92 0.13 251.21 2606.30 2355.10 65 25.01 0.16 272.14 2615.50 2343.10

热力学参数表

Standard Thermodynamic Values Formula State of Matter Enthalpy (kJ/mol) Entropy (J mol/K) Gibbs Free Energy (kJ/mol) (NH4)2O (l) -430.70096267.52496 -267.10656 (NH4)2SiF6 (s hexagonal) -2681.69296280.24432 -2365.54992 (NH4)2SO4 (s) -1180.85032220.0784 -901.90304 Ag (s) 042.55128 0 Ag (g) 284.55384172.887064 245.68448 Ag+1 (aq) 105.57905672.67608 77.123672 Ag2 (g) 409.99016257.02312 358.778 Ag2C2O4 (s) -673.2056209.2 -584.0864 Ag2CO3 (s) -505.8456167.36 -436.8096 Ag2CrO4 (s) -731.73976217.568 -641.8256 Ag2MoO4 (s) -840.5656213.384 -748.0992 Ag2O (s) -31.04528121.336 -11.21312 Ag2O2 (s) -24.2672117.152 27.6144 Ag2O3 (s) 33.8904100.416 121.336 Ag2S (s beta) -29.41352150.624 -39.45512 Ag2S (s alpha orthorhombic) -32.59336144.01328 -40.66848 Ag2Se (s) -37.656150.70768 -44.3504 Ag2SeO3 (s) -365.2632230.12 -304.1768 Ag2SeO4 (s) -420.492248.5296 -334.3016 Ag2SO3 (s) -490.7832158.1552 -411.2872 Ag2SO4 (s) -715.8824200.4136 -618.47888 Ag2Te (s) -37.2376154.808 43.0952 AgBr (s) -100.37416107.1104 -96.90144 AgBrO3 (s) -27.196152.716 54.392 AgCl (s) -127.0680896.232 -109.804896 AgClO2 (s) 8.7864134.55744 75.7304 AgCN (s) 146.0216107.19408 156.9 AgF?2H2O (s) -800.8176174.8912 -671.1136 AgI (s) -61.83952115.4784 -66.19088 AgIO3 (s) -171.1256149.3688 -93.7216 AgN3 (s) 308.7792104.1816 376.1416 AgNO2 (s) -45.06168128.19776 19.07904 AgNO3 (s) -124.39032140.91712 -33.472 AgO (s) -11.4223257.78104 14.2256 AgOCN (s) -95.3952121.336 -58.1576 AgReO4 (s) -736.384153.1344 -635.5496 AgSCN (s) 87.864130.9592 101.37832 Al (s) 028.32568 0 Al (l) 8.6608835.22928 6.61072 Al (g) 326.352164.4312 285.7672 Al(BH4)3 (l) -16.3176289.1144 144.7664 Al(BH4)3 (g) 12.552379.0704 146.44 Al(CH3)3 (l) -136.3984209.4092 -10.0416

物理化学第二章热力学第一定律

第二章热力学第一定律 一.基本要求 1.掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。 2.能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的Q,W, U和 H的值。 3.了解为什么要定义焓,记住公式U Q V , H Q p的适用条件。 4.掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不可逆的等温、等压和绝热等过程中, U, H, W, Q的计算。 二.把握学习要点的建议 学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒 定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一 些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习 题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。 例如,功和热,它们都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变化的过 程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地 上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨” 是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递 的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外, 其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是热力学能从一种形式变 为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热)的。例如在 不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、 燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所 以 Q 0, W 0, U 0 。这个变化只是在系统内部,热力学能从一种形式变为

工程热力学基本概念及重要公式

工程热力学基本概念及 重要公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一章基本概念1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

工程热力学基础简答题

工程热力学基础简答题

————————————————————————————————作者:————————————————————————————————日期:

1、什么是叶轮式压气机的绝热效率? 答: 2、压缩因子的物理意义是什么? 它反映了实际气体与理想气体的偏离 程度,也反映了气体压缩性的大小,Z>1表示实际气体较理想气体难压缩,Z<1表示实际气体较理想气体易压缩。 3、准平衡过程和可逆过程的区别是什么? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 4、什么是卡诺循环?如何求其效率? 答:卡诺循环包括四个步骤:等温吸热,绝热膨胀,等温放热,绝热压缩。 5、余隙容积对单级活塞式压气机的影响? 答:余隙容积的存在会造成进气容积减少,所需功减少。余隙容积过大会使压缩机的生产能力和效率急剧下降,余隙容积过小会增加活塞与气缸端盖相碰撞的危险性 6、稳定流动工质焓火用的定义是如何表达的?

答:定义:稳定物流从任意给定状态经开口系统以可逆方式变化到环境状态,并只与环境交换热量时所能做的最大有用 功。 7、写出任意一个热力学第二定律的数学表达式、 答: 8、理想气体经绝热节流后,其温度、压力、热力学能、焓、熵如何变化? 答:温度降低,压力降低,热力学能减小、焓不变、熵增加。 9、冬季室内采用热泵供暖,若室内温度保持在20度,室外温度为-10度时,热泵的供暖系数理论上最高可达到多少? 答: 10、对于简单可压缩系统,实现平衡状态的条件是什么?热力学常用的基本状态参数有哪些? 答:热平衡、力平衡、相平衡;P、V、T 11、简述两级压缩中间冷却压气机中,中间冷却的作用是什么?如何计算最佳中间压力? 答:减少高压缸耗功,利于压气机安全运行,提高容积效率, 降低终了温度;中间压力: 12、混合理想气体的分体积定律是什么?写出分体积定律 的数学表达式。

热力学与统计物理第二章知识归纳

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 ?焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分

(4) 从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P)

同(2)式相比有 由得(8) (3)F(T,V) 同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

热力学概论之状态与状态函数

1.1 热力学概论(1)状态与状态函数 1.1.1体系和环境 我们用观察、实验等方法进行科学研究时,必须先确定所要研究的对象,把要研究的那部分物质与其余的分开(分隔面可以是实际的,也可以是想象的),这种被划定的对象就称为体系,而体系以外,与体系密切相关,影响所及的部分则称为环境。 例如:一个热机气缸中的气体,一个反应器中的物质,一个原电池中的物料,这些都是热力学体系,而这些体系以外的部分为环境。体系又可分为如下几种: (1)隔离体系(或孤立体系):体系和环境之间既没有物质交换,也没有能量交换。 (2)封闭体系:体系和环境之间没有物质交换,但有能量交换。 (3)敞开体系:体系和环境之间既有物质交换,也有能量交换。 如一个盖着的热水瓶可近似地认为是一个隔离体系;一个盖着的,但不保温的热水瓶可认为是一个封闭体系;一个没盖的,也不保温的热水瓶可认为是一个敞开体系。 1.1.2 状态和状态函数 1.1. 2.1 状态函数与状态函数法 ? 状态:某一热力学系统的状态指体系的物理性质和化学性质的综合表现。 ? 体系的性质:描述体系状态的一些变量,如体积、压力和温度等称为性质。这些性质又可分为两类: (1)广度性质(或容量性质):广度性质的数值与体系物质的数量成正比,如体积、内能和熵等。广度性质具有加和性。 (2)强度性质:强度性质的数值与体系物质的数量无关,如温度、压力、密度和粘度等。强度性质不具有加和性。 两个广度性质相除就成了强度性质,如摩尔体积和密度等。 ? 状态函数:在热力学中,把体系的性质称为状态变量或状态函数. 如:温度、压力、体积、密度和粘度等。 状态函数的特点:状态函数的数值只与体系现在所处的状态有关,而与其过去的历史无关。如:一大气压下25℃的水,它的密度和粘度都有确定的值,不管这水是由0℃升温来的,还是由100℃降温来的。 1.2.2.2 状态函数法:状态函数的增量只与体系的始末态有关,而与状态变化的过程无关。如果体系状态变化循环一周,则状态函数的增量为0。从数学上来说,状态函数的微分是全微分,全微分沿封闭路径积分一周结果为0。 ?=-=?0 (12dV V V V 体积) ?=-=?0(dU V V U 初态 末态内能) X X X X X X X X X ?=-==??始末末 始末始)(途径)(途径对于任意状态函数:d 2d 1

工程热力学思考题答案整理完成版

2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以 开口系不可能是绝热系。这种观点对不对,为什么?答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 3.平衡状态与稳定状态,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b应是“当地环境介质” 的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。 5.温度计测温的基本原理是什么? 答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。 6.经验温标的缺点是什么?为什么? 答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。这便是经验温标的根本缺点。 7.促使系统状态变化的原因是什么?举例说明。 答:分两种不同情况:⑴若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高, 最终系统从热不平衡的状态过渡到一种新的热平衡状态; ⑵若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。 8.图1-16a、b所示容器为刚性容器: 图1-16思考题8附图

第十一章 热力学参数状态图

第十一章 热力学参数状态图 §11-1 化合物生成自由能??F 对T 关系图 第一章图1-1提供了氧化物的生成自由能??F 的关系图(Ellingham [1] )。关于利用溶解自由能,溶于金属液中各元素的氧化??F 对T 的关系图,我们在其应用方面已进行过多次的讨论。这里再就纯氧化物的生成自由能对T 的关系图作些补充讨论。 从表1-1查出: T F NiO O Ni s s 3.40114000;22) (2)(+-=??=+(11-1) 在T=0时即绝对温度为零时,卡1114000-=??H (图11-1)。??F 线abc 的斜率等于??S ;例如在点b, ? ?=? ?-??= = S T F H ad bd 斜率

T F O Al O Al s l 2.51267800 ;3 23 4)(322)(+-=??= + 当生成CO 时,其??S 为正值,而当其他氧化物生成时,其??S 都是负值,所以CO 的??F 线与其他氧化物的??F 线相交。 利用氧化物的??F 对T 的关系图,可以通过列线图直接读出该氧化物在某一温度下的分解压。以铝的氧化反应为例: ((11-2) 2 1 ln O p RT F -=?? 当p O2=10 -20 大气压,则T=1877K (1604℃)。 在图11-2内式(11-2)以线ab 表示。绘出T=1604℃的垂直线与ab 线相交于m 。在绝对零的温度线上,取0=??F 的“O”点,连接“O”与m ,则线“O”m 代表下列反应:

) 10 (2) 1(220 -2 2 ===O O p p O O 亦即氧由1大气压转变为10-20 大气 压的自由能。 T RT F F 5.911 10 ln -20 -=+??=? 将O m 线延长交于KML 线,,在该线上的相交点标明10-20 。同样可作出其他类似的列线,并标明氧的平衡分压值。因此,利用KLM 线即可读出任何温度氧化物的平衡氧分压值,亦即其分解压值。 用图11-2仍可读出式(11-4)中的CO/CO 2比。 T F CO O CO 1.40133400 ;2222+-=??=+(11-4) 线“C“e 表示式(11-4)的标准自由能 对T 的关系图,而”C”f 则表示式(11-4)在非标准状态下??F 对T 的关系图。因为

工程热力学基本概念及重要公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。 广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。 准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。 可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。 膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。 热量:通过热力系边界所传递的除功之外的能量。 热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。

氯化钙热力学物性参数

氯化钙热力学物性参数 1氯化钙理化性质及其应用 氯化钙的相对密度为2.15g/cm3,熔点782℃、沸点 1600℃以上。具有极强的吸湿性,暴露于空气中极易潮解。易溶于水,同时放出大量的热。文献[1]详细介绍了氯化钙的应用和生产工艺:氯化钙的应用按级别分为:工业级氯化钙[2]和食品级氯化钙[3]。 1.1工业级氯化钙 工业级氯化钙具有遇水发热且凝点低的特点,可用于融雪和除冰[4-6]。并有吸水性强的功能,还可用作干燥剂,如用于氮气、氧气、氢气等气体的干燥。还是港口消雾[7]和路面集尘[8]、织物防火的最佳材料[9]。氯化钙水溶液是冷冻机用和制冰用的重要制冷介质[10]。另外氯化钙还可当作脱水剂、防冻剂、絮凝剂及生产色淀颜料的沉淀剂等。 1.2食品级氯化钙应用 在食品生产中,氯化钙可用于食品加工的稳定剂、稠化剂、吸潮剂、口感改良剂等。在医药领域,氯化钙还可用于药物合成的原料。 1.3氯化钙用于热泵 氯化钙主要是用于化学热泵(Chemical Heat Pump 简称CHP),它是利用不同条件下的一对耦合的可逆化学反应所产生的吸收放热现象来实现热量的传递的,它是一种将热能转化为化学能,从而将

蓄热机和热泵机合二为一的新型节能技术[11]。文献[11]研究了化学热泵为CaCl2/CH3OH体系,它利用了如下化学反应: 该反应是一个气固两相的可逆络合反应,反应的正方向是放热反应。以CaCl2/CH3OH体系设计的化学热泵的工作原理图如下: 下面是氯化钙的部分热力学性质图表:

1溶解度[12](温度0~100℃) 2粘度[12](温度-50℃~20℃,质量分数0~30%) 表一

热力学基本概念

潍坊职业学院教案案首

3)孤立体系(isolated system ) 体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑 注意: 可见,体系与环境的划分并不是绝对的,实际上带有一定的人为性。原则上说,对于同一问题,不论选哪个部分作为体系都可将问题解决,只是在处理上有简便与复杂之分。因此,要尽量选便于处理的部分作为体系。一般情况下,选择哪一部分作为体系是明显的,但是在某些特殊场合下,选择方便问题处理的体系并非一目了然。 2 、状态函数

体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数(state function)。 状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。 状态函数在数学上具有全微分的性质。 体系的性质-状态函数性质 用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。可分为两类: 广延性质(extensive properties) 又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。它在数学上是零次齐函数。指定了物质的量的容量性质即成为强度性质,如摩尔热容。 3.过程与途径 (1)体系状态的任何变化称过程(process)。 始态————————————————→终态 过程(具体可通过不同的途径来实现) (2) 实现状态变化的具体步骤称为途径(path)。 根据过程有无相变及化学反应分: 简单状态变化过程:T,p,V变化 化学变化过程 相变过程 常见的变化过程 ◆恒温过程:T始=T终=T外=常数 ◆恒压过程: p始=p终=p外=常数

第二章 热力学第一定律

第二章 热力学第一定律 英文习题 1. Cooling of a hot fluid in a tank A rigid tank contains a hot fluid that is cooled while being stirred by a paddle wheel. Initially, the internal energy of the fluid is 800 kJ. During the cooling process, the fluid loses 500 kJ of heat, and the paddle wheel does 100 kJ of work on the fluid. Determine the final internal energy of the fluid. Neglect the energy stored in the paddle wheel. 2. Heating of a gas by a resistance heater A piston-cylinder device initially contains 0.5 m 3 of nitrogen gas at 400 kPa and 27℃. An electric heater within the device is turned on and is allowed to pass a current of 2 A for 5 min from a 120-V source. Nitrogen expands at constant pressure, and a heat loss of 2800 J occurs during the process. Determine the final temperature of nitrogen. 3. Cooling of an iron block by water contains 0.5 A 50-kg iron block at 80℃ is dropped into an insulated tanks that equilibrium m 3 of liquid water at 25℃. Determine the temperature when thermal is reached. 4. Deceleration of air in a diffuser Air at 10℃ and 80 kPa enter the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m 2 . The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine (a) the mass flow rate of the air and (b) the temperature of the air leaving the diffuser. 5. Energy balance in turbine Consider a gas turbine power plant with air as the working fluid, Air enters at 100 kPa, 20oC (ρ=1.19 kg/m 3 ), with a velocity of 130m/s through an opening 0.112 m 2 cross-sectional area. After being compressed, heated and expanded through a turbine, the air leaves at 180 kPa, 150oC (ρ=1.48 kg/m 3 ), through an opening of 0.100 m 2 cross-sectional area. The power output of the plant is 375 kW. The internal energy and enthalpy of the air are given in kJ/kg by U=0.717T and h=1.004T, where T is temperature on the Kelvin scale. Determine the net amount of heat added to the air in kJ/kg. FIGURE 2-1 FIGURE 2-2 FIGURE 2-3 FIGURE 2-4 2 113 111112 .0/130/19.120100m A s m c m kg C T kPa p f ===?==ρ21 1 2 Ws Q 2 23 222100.0/48.1150180m A m kg C T kPa p ==?==ρFIGURE 2-5

热力学基础汇总

第十二章 往复式空压机的工作理论 一、学习目的和要求 通过本章学习,掌握往复式空压机的工作性能、工作参数及两级压缩理论。 二、重点与难点 (1)空压机的工作循环、热力学基础、保持空压机工作性能的途径。 (2)空压机的工作参数及两级压缩理论。 三、课程内容 第一节 热力学基础 一、气体的状态参数 在热力学中,我们用压力p 、比容v 、温度T 来描述气体状态,称p 、v 、T 为气体的状态参数,又称其为基本状态参数。 1.压力p 容器内气体分子对容器壁单位面积上的垂直作用力,称为压强(本书称为压力),也就是气体的绝对压力。2.比容v 单位质量的气体所占有的容积,称为比容。比容的单位为m 3 /kg 。显然,比容的倒数就是密度。 若M (kg)质量的气体,占有的容积为V(m 3 ),则 M V v = ;V M =ρ ν ρ1= 3.温度T 温度是标志物体冷热程度的参数。温度的高低,反映了气体内部分子热运动的强弱程度。在热力学计算中,采用热力学温度T (又称绝对温度),其单位为K 。它与摄氏温度t ℃的关系为 T =t +273, 二、理想气体状态方程式 1.波义耳—马略特定律 一定质量的气体,当温度保持不变时,其体积和压力成反比。即 2 112p p V V =或=pV 常数 式中 V ——质量为M (kg)的气体所具有的体积,V=Mv ,m 3 。 对1kg(单位质量)气体而言 2 112p p v v =或=pv 常数 2.盖-吕萨克定律 一定质量的气体,当压力保持不变时,其体积与绝对温度成正比,即 2 1 21T T V V =

对1kg(单位质量)气体而言 2 1 21T T v v = 3.理想气体状态方程式 2 2 111T v p T v p = 或=T v p 常数 对1kg 气体进行研究时,常数用R 表示,所以 =T v p R 或RT pv = 式中 R ——气体常数。它表示在一定压力下,1kg 气体被加热后,温度升高1K 时所做的膨 胀功,其单位为J/(kg ·K)。对于不同的气体,R 有不同的数值;但对于同一种气体,不论压力、温度、比容如何变化,其值都是相同的。空气的气体常数为287J/(kg ·K)。 对于质量为M kg 的气体,公式的两边应乘以M ,因而得 MRT pvM = MRT pV = 三、内能 气体内部所具有的各种能量的总和,称为气体的内能。理想气体的内能u 只与温度T 有关,即 )(T f u = 内能的单位是焦耳,用J 表示。它与功的单位相同。 四、热力学第一定律 热力学第一定律是能量守恒与能量转换定律在热力工程中的具体应用,即热能与机械能可以相互转换,但转换前后的总能量保持不变。 l u u q +-=12 (18-8) 式中 q —— 加给气体的热量,J/kg ,气体从外界获得热量时,q 取正值,反之取负值; u 1——初始状态时气体的内能,J/kg ; u 2——终了状态时气体的内能,J/kg ; l ——气体膨胀功J/kg ,气体对外作功时,l 取正值,反之取负值。 对于质量为M(kg)的气体,则 L U U Q +-=12 就是热力学第一定律的数学表达式,它适用于任何气体的任何热力过程,所以又称为热力学基本方程式。 五、气体的比热容 所谓比热容,就是单位质量的气体,温度变化1K 时,吸收或放出的热量。比热容又简

相关文档
最新文档