压缩机曲轴

合集下载

空气压缩机曲轴的加工工艺及夹具设计概述

空气压缩机曲轴的加工工艺及夹具设计概述

空气压缩机曲轴的加工工艺及夹具设计概述空气压缩机曲轴是空气压缩机的核心部件之一,其加工工艺和夹具设计对于保证曲轴质量和生产效率至关重要。

本文将概述空气压缩机曲轴的加工工艺及夹具设计。

首先,空气压缩机曲轴的加工工艺通常包括下列步骤:1. 前期准备:包括材料选用、曲轴结构设计、加工工艺规程制定等。

2. 材料加工:根据曲轴的材料特性,选择合适的钢材,并进行锯切、钳工机械加工等预处理。

3. 粗加工:采用车床、铣床等机床进行曲轴的粗加工,主要包括车削曲轴的外轮廓和孔的加工等。

4. 热处理:对曲轴进行热处理,常用的方法有淬火、回火等,以提高材料的硬度和强度。

5. 精加工:采用磨床等机床进行曲轴的精加工,包括轴颈的研磨、曲轴平衡等工序。

6. 检验与测试:对加工后的曲轴进行尺寸和性能的检验与测试,以确认曲轴达到要求。

7. 表面处理:根据需要,对曲轴进行镀铬、抛光等表面处理,以增加曲轴的耐磨性和外观质量。

8. 组装和包装:将加工好的曲轴进行组装,并进行包装,以便运输和储存。

其次,夹具设计在空气压缩机曲轴加工过程中起到了关键作用。

夹具设计的主要目标是确保曲轴的精度、稳定性和操作性。

一般来说,夹具设计的要求如下:1. 紧固性:夹具的结构和材料要保证对曲轴进行稳固的夹持,避免加工过程中的移动和变形。

2. 刚性和稳定性:夹具需要具备足够的刚性和稳定性,以确保在高速切削过程中不产生震动和振动,影响曲轴加工质量。

3. 操作性:夹具的设计应该考虑到操作人员的便捷性和安全性,方便加工过程中的夹紧和释放。

4. 运动控制:夹具应具备精确的夹紧力控制和夹持位置控制,以确保加工与装夹质量的一致性。

综上所述,空气压缩机曲轴的加工工艺和夹具设计对于曲轴的质量和生产效率至关重要。

通过合理的加工工艺和夹具设计,可以确保空气压缩机曲轴的精度和稳定性,提高生产效率和产品质量。

空气压缩机曲轴的加工工艺和夹具设计对于保证曲轴质量和生产效率至关重要。

在空气压缩机曲轴的加工工艺中,前期准备是非常关键的一步。

固有频率计算和分析实例精讲-压缩机曲轴分析

固有频率计算和分析实例精讲-压缩机曲轴分析
缺点:精度相对有限,适用于简单形状和材料属 性。
实验法
优点
直接测量,精度较高。
缺点
测试条件和测试设备的限制,可能无法完全模拟实际工况。
03
压缩机曲轴的固有频率分析
曲轴模型建立
01
02
03
几何建模
根据压缩机曲轴的实际尺 寸和结构,建立曲轴的三 维几何模型。
简化处理
根据分析需求,对曲轴模 型进行适当的简化,如忽 略倒角、圆角等细部特征。
缺点:计算量大,需要较高 的计算机资源。
传递矩阵法
传递矩阵法是一种用于分析结构动力特性的数值 方法,通过将结构离散化为多个自由度系统,并 利用传递矩阵描述各自由度之间的相互作用关系 ,从而求解结构的固有频率和振型。
优点:适用于大型结构,计算速度快。
在固有频率计算中,传递矩阵法可以快速求解大 型结构的固有频率。
THANKS
感谢观看
固有频率计算和分析实例 精讲-压缩机曲轴分析
• 引言 • 固有频率计算方法 • 压缩机曲轴的固有频率分析 • 曲轴的振型分析 • 曲轴的优化设计 • 工程实例:某型压缩机曲轴分析
01
引言
主题简介
01
压缩机曲轴作为压缩机中的重要 组成部分,其固有频率的计算和 分析对于确保曲轴的稳定运行和 预防共振具有重要意义。
材料复合
采用复合材料或组合材料,如碳纤维增强塑料等,以实现轻量化、 高强度和耐高温等性能要求。
曲轴的动力学性能优化
模态分析
通过模态分析确定曲轴的固有频率和振型,为优化设计提供依据。
振动分析
分析曲轴在不同工况下的振动响应,找出振动的原因和规律,提出 相应的减振措施。
疲劳寿命分析
根据曲轴的工作条件和疲劳寿命要求,对曲轴进行疲劳寿命分析, 确定曲轴的安全使用寿命。

空气压缩机曲轴零件

空气压缩机曲轴零件

4
专用夹具设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。
4.1 加工曲拐上端面油孔夹具设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.1.1 定位基准的选择· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.1.2 切削力的计算与夹紧力分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.1.3 夹紧元件及动力装置确定 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.1.4 钻套、衬套及夹具体设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.1.5 夹具精度分析· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2 加工曲拐上侧面油孔夹具设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2.1 定位基准的选择· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2.2 切削力的计算与夹紧力分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2.3 夹紧元件及动力装置确定 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2.4 钻套、衬套及夹具体设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.2.5 夹具精度分析· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.3 铣曲拐端面夹具设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.3.1 定位基准的选择· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.3.2 定位元件的设计· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.3.3 铣削力与夹紧力计算· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。 4.3.4 对刀块和塞尺设计· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 错误!未定义书签。

压缩机曲轴轴瓦间隙标准

压缩机曲轴轴瓦间隙标准

压缩机曲轴轴瓦间隙标准1. 引言1.1 研究背景压缩机曲轴轴瓦间隙是压缩机中非常重要的一个参数,直接影响到压缩机的工作效率和性能。

在压缩机运行过程中,曲轴轴瓦间隙的大小会受到各种因素的影响,例如工作温度、工作压力、润滑油质量等。

准确测量和控制曲轴轴瓦间隙对于压缩机的正常运行至关重要。

在过去的研究中,人们发现曲轴轴瓦间隙的不合适会导致压缩机工作时产生过大的摩擦和磨损,影响到压缩机的工作效率和寿命。

研究压缩机曲轴轴瓦间隙的标准要求和调整方法具有重要意义。

通过深入研究压缩机曲轴轴瓦间隙,我们可以更好地了解压缩机的工作原理和关键参数,为压缩机的设计、制造和维护提供更为科学的依据。

针对压缩机曲轴轴瓦间隙的标准化也可以为压缩机行业的发展提供技术支持和保障。

对压缩机曲轴轴瓦间隙进行深入研究具有重要的理论和实际意义。

1.2 研究意义压缩机曲轴轴瓦间隙是指压缩机曲轴与轴瓦之间的间隙,是保证曲轴能够正常运转的重要参数之一。

研究压缩机曲轴轴瓦间隙标准的意义在于确保压缩机的性能和可靠性。

准确的轴瓦间隙可以保证曲轴与轴瓦之间的摩擦力达到合理的范围,避免过大或过小的间隙导致的摩擦增大或不足的问题。

正确的轴瓦间隙可以保证曲轴运转时的稳定性和平衡性,减少振动和噪音,提高设备的使用寿命。

规范的轴瓦间隙标准还可以减少因间隙过大或过小引起的设备故障和损坏,提高设备的工作效率和可靠性。

对压缩机曲轴轴瓦间隙标准进行研究具有重要的实际意义和工程价值。

通过深入研究与实践,不断提高对压缩机曲轴轴瓦间隙标准的认识,将为压缩机制造行业的发展和进步提供有力的支撑。

2. 正文2.1 压缩机曲轴轴瓦间隙的定义压缩机曲轴轴瓦间隙是指在压缩机工作时,曲轴与轴瓦之间的间隙距离。

这个间隙的大小直接影响着压缩机的性能和稳定性。

压缩机曲轴轴瓦间隙的大小是由曲轴的直径和轴瓦的内径决定的。

通常情况下,间隙越小,摩擦阻力越小,但是也容易导致磨损加剧;间隙越大,摩擦阻力增大,但是润滑效果好,磨损轻。

旋转压缩机 曲轴设计-概述说明以及解释

旋转压缩机 曲轴设计-概述说明以及解释

旋转压缩机曲轴设计-概述说明以及解释1.引言1.1 概述引言部分是全文的开篇,需要对旋转压缩机曲轴设计这一主题进行概括和介绍。

在概述部分,我们可以简要介绍旋转压缩机和曲轴的基本概念,并提出曲轴设计在旋转压缩机中的重要性。

模板如下:在旋转压缩机中,曲轴作为一个关键部件承担着传递动力、减震平衡和转动运动的重要任务。

旋转压缩机是一种通过转子的旋转运动来压缩气体或液体的装置。

其中,曲轴作为旋转压缩机的关键组成部分,起到了至关重要的作用。

曲轴是一种具有强度和刚度的中空轴,可以通过连杆将往复运动转化为旋转运动。

在旋转压缩机中,曲轴通过连杆与活板、叶片等动力元件连接,使其能够顺畅地旋转。

曲轴的设计质量和性能直接影响着旋转压缩机的运行效果和稳定性。

曲轴设计的要点包括曲轴结构、材料选择、轴承定位、平衡性能等方面。

在曲轴结构设计中,需要考虑到轴的直径、长度、传动装置等参数的合理选择,以满足旋转压缩机的运行需求。

同时,在材料选择中,要考虑到曲轴的强度和耐磨性,以确保其能够承受较大的应力和工作环境的长期磨损。

此外,曲轴的轴承定位也是曲轴设计的一个重要方面。

合理的轴承定位可以有效减少轴的振动和摩擦,提高旋转压缩机的工作效率和使用寿命。

同时,曲轴的平衡性能也是影响旋转压缩机运行的关键因素之一。

合理设计曲轴的平衡性能可以减少震动和噪音,提高设备的稳定性和可靠性。

综上所述,旋转压缩机中曲轴设计的合理与否直接关系到设备的性能和寿命。

了解曲轴的基本概念和重要性,以及曲轴设计的要点,将有助于我们更好地理解和应用旋转压缩机中的曲轴设计原则。

在接下来的文章中,我们将进一步探讨曲轴设计的要点,以期为旋转压缩机的设计和应用提供有益的参考。

1.2文章结构1.2 文章结构本文将围绕旋转压缩机曲轴的设计展开讨论。

首先,引言部分将给出一个关于旋转压缩机曲轴设计的概述,简要介绍其设计目的和要点。

接下来,正文部分将详细探讨曲轴设计的两个重要要点,分别是曲轴设计要点1和曲轴设计要点2。

活塞式压缩机的运动部件

活塞式压缩机的运动部件

活塞式压缩机的运动部件第一部分曲轴组件一、概念曲轴组件,包括曲轴、平衡铁及两者之间的连接件等。

曲轴如图(1)所示由三部分组成,即主轴颈、曲柄和曲轴销。

曲柄和曲柄销构成的弯曲部分称之为曲拐。

根据实际需要,一根曲轴可以由一个或几个曲拐组成。

图(1)曲轴的组成1-主轴颈2-曲柄3-曲柄销二、曲轴结构与尺寸1、曲轴结构型式压缩机的曲轴有三种基本型式,即曲柄轴、曲拐轴(简称曲轴)和偏心轮轴。

大型合成氨企业所使用的压缩机,大多采用曲拐轴结构,所以本文省略曲柄轴和偏心轮轴,着重介绍曲拐轴。

曲拐轴一般两端支承,刚性较曲柄轴好。

曲拐数现在可多达8个。

它可制成整体的,也可制成分段组合的。

曲轴的支承方式有两种:全支承是每个曲拐两侧均设有主轴承。

非全支承是每2-3个曲拐的两侧用两个主轴承。

前者对曲轴的刚性,以及机身系列设计时采用奇数列有利。

在对动式压缩机中,多采用后者。

2、曲轴结构设计要点(1)曲轴定位为防止曲轴产生轴线方向的游动,曲轴需要轴向定位。

压缩机多用功率输入端的第一道主轴承定位,因此主轴的相应处设计成具有轴肩的形式。

定位处的端面间隙取决于曲轴的尺寸,一般取0.1-0.5mm,以保证各列运动件的相互位置不因热膨胀或偶然的轴向力而互相错开,以免妨碍机器正常运转。

设置在功率输入第一道主轴承处和定位,还可保证电动机的轴向位置不受上述因素的影响。

除定位的主轴承外,其余的轴承,视曲轴长度不同,制造时的轴颈长度应比轴承宽度长2-5mm,作为必要的热间隙,可以根据温升100℃时每米伸长量为0.6-1.0mm的经验数据去计算选取.但为了制造及检修方便,各轴承端间隙应取一致,且等于最大间隙值.(2)轴颈指主轴颈和曲柄销.铸造曲轴的轴颈,除特殊原因外,如为了减轻重量,增加刚度及疲劳强度,一般都制成实心的圆柱体。

铸造曲轴颈,一般铸成空心形式,内孔径为外径的一半左右。

空心结构可以提高曲轴的疲劳强度,减轻曲轴重量,减少铸造时产生的质量缺陷。

往复压缩机主要部件详细介绍

往复压缩机主要部件详细介绍

压缩机主要部件结构简介1基本部分基本部分主要包括:机身、曲轴、连杆、十字头,其作用是连接基础与气缸部分并传递动力。

1.1机身曲轴箱与中体铸成一体,组成对动型机身。

两侧中体处设置十字头滑道,顶部为开口式,便于主轴承、曲轴和连杆的安装。

十字头滑道两侧开有方孔,用于安装、检修十字头,顶部开口处为整体盖板,并设有呼吸器,使机身内部与大气相通,机身下部的容积做为油池,可贮存润滑油。

主轴承采用滑动轴承,为分体上下对开式结构,瓦背为碳钢材料,瓦面为轴承合金,主轴承两端面翻边,用来实现主轴承在轴承座中的轴向定位;上半轴承翻边处有两个螺孔,用于轴承的拆装;轴承盖内孔处拧入圆柱销,用于轴承的径向定位;安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。

轴承盖与轴承座连接螺栓的预紧力数值见说明书机身在出厂时已组装对中完成,并整体包装出厂,用户在安装时应整体进行,不得随意将对接机身解体。

1.2曲轴曲轴的一个曲拐主要由主轴颈、曲柄销和曲柄臂三部分组成,其相对列曲拐错角为1800,多列时相列曲拐错角见表3。

曲轴功率输入端带有联轴法兰盘,法兰盘与曲轴制成一体,输入扭矩是通过紧固联轴盘上螺栓使法兰盘连接面产生的摩擦力来传递的。

曲轴轴向定位是由功率输入端第一道主轴颈上的定位台与带有翻边的主轴承来完成,以防止曲轴的轴向窜动,定位端留有轴向热膨胀间隙。

曲轴为钢件锻制加工成的整体实心结构,轴体内不钻油孔,以减少应力集中现象1.3连杆连杆分为连杆体和连杆大头瓦盖两部分,由二根抗拉螺栓将其连接成一体,连杆大头瓦为剖分式,瓦背材料为碳钢,瓦面为轴承合金,两端翻边做轴向定位,大头孔内侧表面镶有圆柱销,用于大头瓦径向定位,防止轴瓦转动;连杆小头及小头衬套为整体式,衬套材料为锡青铜。

连杆体沿杆体轴向钻有油孔,并与大小头瓦背环槽连通,润滑油可经环形槽并通过轴瓦上的径向油孔实现对十字头销和曲柄销的润滑。

为确保连杆安全可靠地传递交变载荷,连杆螺栓必须有足够预紧力,其预紧力的大小是通过专用液压紧固工具实现的,打压数值见本说明书附录B。

压缩机4M16曲轴动平衡仿真分析

压缩机4M16曲轴动平衡仿真分析

压缩机4M16曲轴动平衡仿真分析文/王孝磊朱峰赵大帅某公司因为使用需要,接到任务要求开发一款转速n=1470r/mim,最大活塞力P=160kN,4M 型基础件。

这对高转速、4M型的曲轴提出更高的精度要求。

相关人员分析研究后拟利用SolidWorks进行曲轴动平衡仿真,使曲轴达到国际标准ISO1940规定的平衡精度,并选取曲轴精度等级G6.3,依据动平衡原理(要求惯性力和惯性力矩都达到平衡),设计出基于SolidWorks的4M16曲轴动平衡仿真分析报告,并具体提出几种分析方法,以供参考施行研究。

方法一:Simulation有限元分析法a)夹具:在曲轴两轴承端设置固定铰链,如图1所示。

b) 外部载荷:在旋转轴上添加旋转速度n=1470r/min,方向顺时针(从电机端往曲轴方向看去)如图2所示。

c) 网格化:对曲轴进行网格化,如图3所示。

d)运行并显示结果:如图4所示。

图中显示两端轴承受力情况,得出的合力即为旋转不平衡力F1=221.09N。

方法二:Motion运动分析法a)新建运动算例,将曲轴两端设好的点分别与机身旋转轴(Z轴)重合。

b)设置旋转马达,转速n=1470r/min,方向顺时针,如图5所示。

c)添加重力:将Y轴正向设为重力方向(因为研究水平轴X方向受力,可以不设置重力),如图6所示。

d)点击计算按钮,输出两端支反力作用曲线图,如图7所示。

e)将左右两侧支反力进行矢量叠加,获得的曲线图如图8所示。

这是一条类正余弦曲线,其极值F2=221N(在水平方向0°和180°)。

方法三:传统计算法a)原理:具有一定转速的转子,由于材料组织不均性、零件外形误差、装配误差以及结构形状局部不对称性(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不重合,因而旋转时,转子产生不平衡离心力,其值如下式所示:式中:m为转子的重量(kg);ω为转子角速度(rad/s);n为转子速度(r/min);e为转子重心对旋转轴线的偏移,即偏心距(mm)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲轴
• 曲轴式往复式活塞式 压缩机的重要运动部 件,外界输入的转矩 要通过曲轴传给连杆、 十字头,从而推动活 塞作往复运动。它又 承受从连杆传来的周 期变化的气体力与惯 性力等
曲轴结构图
• 曲轴的基本结构如图所示,每个曲轴由主轴颈(安 装主轴承部位)、曲柄销(与连杆大头相连部位)、 曲柄及平衡铁所组成。根据气缸数及气缸排列形式 的不同,要求单拐曲轴或多拐曲轴。曲轴结构图如 下:
曲轴结பைடு நூலகம்图
• 曲轴各部分几何形状应尽量避免形状突变,使应力 分布均匀,提高抗疲劳强度。压缩机用得较多是中 碳钢锻造曲轴,现在球墨铸造曲轴的应用越来越多, 特别在中、小型压缩机中广泛使用。 • 曲轴运转中,主轴颈与轴瓦、曲柄销与连杆大头瓦 间由于相对运动而产生磨损,故应有良好的润滑。 所需压力润滑油的油道,多在曲轴内钻成。由曲轴 轴头润滑油泵将压力润滑油分别送到主轴瓦和曲柄 销处。 • 曲轴上只有两点轴承时,可用滚动轴承,如图所示 是国产L型空压机的一个曲轴,常用双列球面向心 轴承。多曲拐轴采用多点支撑时,必须用滑动轴承。 一般在相邻两主轴承间,只配置1~2个曲拐以免曲 轴产生过大绕度而导致轴承的不均匀磨损。曲柄上 装有平衡铁,用以平衡惯性力和惯性力矩。
曲轴结构图
相关文档
最新文档