矩阵分析第四章.
第四章 矩阵分析及矩阵函数

4.1 矩阵分析 4.2 矩阵函数 4.3 线性常系数微分方程 4.4 变系数微分方程组
4.1 矩阵分析
4.1.1基本概念 4.1.1基本概念 定义4 定义 4.1.1 令 A 1 , A 2 , L 是 m× n的矩阵序 × 列 , 假 如 存 在 一 个 ×n m×
k →∞
令 A 1 , A 2 , L是 m× n 矩阵序列 , × 矩阵序列,
构造部分和序列 A 1 , A1 + A 2 , A 1 + A 2 + A 3 ,L 假如其收敛到 A , 记
∞
∑A
∞
k
= A
k =1
则级数∑ A k ,收敛到 A .
k =1
定理4 (Cauchy收敛准则 收敛准则) 定理4.1.3 (Cauchy收敛准则) 收敛, ∑ A 收敛,当且仅当矩阵序列
∞
Ak
收敛, 收敛,则矩
k =1
特别地,对于方阵 A ,如果级数 ∑ 特别地, 收敛, 收敛,则矩阵幂级数 收敛. ∑ A 收敛.
k
∞
Ak
∞
k =1
k =1
定理4 定理 4.1.5
设幂级数
∑
∞
a k λk
的收敛半径 时 , 矩阵
k =0
是 R , 则当方阵 A 的范数 幂级数 ∑ a k A k 收敛。 收敛。
于是矩阵幂级数
1 1 2 1 3 I + A + A + A + LL 1! 2! 3!
1 2 1 4 I − A + A − LL 2! 4! 1 3 1 5 A − A + A − LL 3! 5!
矩阵分析课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
矩阵分析第4章ppt课件.ppt

从而
A
P 1
Ir 0
D 0
Q
1
P 1
Ir 0
I
r
D Q 1
BC
其中
B
P 1
Ir
0
Crmr ,
C Ir
D
Q
1
C rn r
A BIr D Q1 B D Q1 AQ B D
所以B是A中r 个线性无关的列
例 :分别求下面三个矩阵的满秩分解
1 2 1 0 1 2
(1)
0 0
0 1 1 (2) A 2 0 0
解: (1)由于
1 2
AAH 0 0
0 0
1 2
0 0
0 0
5 AAH 0
0
0 0 0
0 0 0
显然 AAH 的特征值为5,0,0,所以 A 的
奇异值为 5
(2)由于
0 2
AAH
0 2
1 0
1 0
1 1
0 0
AAH
2 0
0 4
显然 AAH 的特征值为 2,4,所以 A 的
2
0
cnn
2
n Unnn ,
c11 c21
cn1
R
c22
cn
2
cnn
显然矩阵 R 是一个正线上三角矩阵。
A是列满秩也有
注:Ar 1 2
r
c11 c21
cr1
1 2
r
c22
cr
2
crr
UrR 矩阵 R 是一个正线上三角矩阵
下面考虑分解的唯一性。设有两种分解式
A UR UR
1
2
1 2
1
1 2
矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
矩阵分析 课件 第四章 矩阵分解

定理2.2:设
A
C mr r
,
则
A
可以唯一的分解为
A UR
U
U
mr r
R 是r 阶正线上三角阵
推论2.2:设
PAQ
Er 0
D
0
P
C mm m
Q
C nn n
A
P1
Er 0
D 0
Q1
P1
Er 0
Er
D Q1 BC
C
B
B
C mr r
,
C
C rn r
例题1.1, 1.2
矩阵的满秩分解是不唯一的,但是它们之间满足:
定理1.2:若 A BC B1C1 均为A的满秩分解,那么
(1)存在
C rR r
第8节 Hermite变矩阵、 Hermite二次齐式
对称矩阵,二次型
AH A AT A
定理8.1: 若A是n阶复矩阵,则,
(1)A是Hermite矩阵的充要条件是对任意 x Cn ,xH Ax是实数。 (2)A是Hermite矩阵的充要条件是对任意 S Cnn , S H AS 是 Hermite矩阵。
证明:
A
C nn n
A (1, 2 ,
, n )
主对角线元 素为正的
(1, 2 , , n ) 正交化 (1, 2 , , n ) 单位化 (v1, v2 , , vn )
1 1
2
2
(2 , 1) (1, 1)
1
3
3
(3, 1) (1, 1)
1
( 3 , (2,
2 ) 2)
2
1 1
2
(2 , 1) (1, 1)
数值分析第四章矩阵特征值与特征向量的计算

192.9996. 973
12
➢ 幂法的加速—原点移位法
应用幂法计算矩阵A的主特征值的收敛速度主要
由比值 r=|2/1|来决定, 但当r接近于1时, 收敛可能
很慢. 这时可以采用加速收敛的方法.
引进矩阵
B=A-0I
其中0为代选择参数. 设A的特征值为1, 2, …, n, 则B的特征值为1-0, 2-0, …, n-0, 而且A, B
10
2 1 0 例 用幂法求矩阵 A 0 2 1
0 1 2
的按模最大的特征值和相应的特征向量.
取 x(0)=(0, 0, 1)T, 要求误差不超过103.
解 y 0 x 0 0 ,0 ,1 T ,
x 1 A 0 0 y , 1 , 2 T , 1 m x ( 1 ) ) a 2 , x
y(1)
x(1)
1
(0,0.5,1)T
x ( 2 ) A ( 1 ) 0 . 5 y , 2 , 2 . 5 T ,2 m x ( 2 ) ) 12 1a . 5 ,
y(2)
x(2) 2
(0.2,0.8,1)T
x ( 3 ) A ( 2 ) 1 . 2 y , 2 . 6 , 2 . 8 T ,3 m x ( 3 ) ) 2 a . 8 ,
x
(
k
1
)
Ax
(k )
A k1 x (0)
在一定条件下, 当k充分大时:
1
x ( k 1) i
x
( i
k
)
相应的特征向量为: x(k1) 4
➢ 幂法的理论依据
n
对任意向量x(0), 有 x(0) tiui ,
i1
x(k1) Ax(k) Ak1x(0)
博士研究生入学《矩阵分析》考试大纲

博士研究生入学《矩阵分析》考试大纲第一章线性空间和线性映射1.1线性空间;1.2基变换与坐标变换;1.3线性子空间(概念,子空间的交,和,子空间的直和,补子空间);1.4线性映射(概念,线性映射的矩阵表示);1.5线性映射的值域,核;1.6线性变换的不变子空间;1.7特征值与特征向量;1.8 矩阵的相似对角形;第二章λ-矩阵与矩阵的Jordan标准形2.1λ-矩阵及标准形;2.2初等因子与相似条件;2.3矩阵的Jordan标准形;第三章函数逼近与曲线拟合3.1内积空间;3.2函数的最佳平方逼近;3.3正交多项式(用正交函数系作最佳平方逼近);3.4曲线拟合的最小二乘法;3.5三次样条插值;第四章数值积分4.1数值求积公式的基本概念;4.2牛顿-柯斯特公式;4.3复化求积公式及其收敛性;4.4高斯型求积公式;4.5数值微分;第五章常微分方程的数值方法5.1欧拉方法及其截断误差和阶;5.2龙格-库塔方法;5.3单步法收敛性与稳定性;5.4线性多步法;5.5预测-校正技术和外推技巧;第六章线性代数方程组的解法6.1预备知识(向量与矩阵范数,范数的连续性定理,范数等价性定理范数收敛性,矩阵的算子范数矩阵特征值的上界等);6.2高斯消去法,高斯主元素消去法;6.3矩阵分解及其在解方程组中的应用;6.4误差分析;6.5线性代数方程组的迭代解法;第七章线性代数方程组的解法7.1二分法;7.2简单迭代法;7.3迭代过程的加速;7.4Newton迭代法;7.5弦截法与抛物线法;第八章矩阵特征值与特征向量计算8.1幂法与反幂法;8.2Jacobi方法;8.3QR方法;。
矩阵分析第4章课件

矩阵满秩分解不唯一;但同一矩阵的两个满
秩分解的因式矩阵之间存在密切的关系( 见P153,定理4.1.2).
ACrmn r=rank A min{m,n} A的秩等于它的行秩、列秩或行列式秩。A的行( 列)秩是它的最大线性无关组的行(列)数;A 的行列式秩是它的非0子式的最大阶数。 A=BC rank A rank B & rank A rank C
1
初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变
换等价于左(右)乘A以可逆矩阵Pr,…,P1(P1,…,Pr).
③可适当选第一类初等矩阵的乘积P使PA(AP)的 行(列)是A的行(列)的任意排列.可适当选第三类 初等矩阵P(i,j(k))中的k使P(i,j(k))A的(i,j) 元变为0.可适当选第二类初等矩阵P(i(k))中的k 使P(i(k))A的非零(i,i)元变为1.综合起来推出: Er 0 存在初等矩阵的乘积P和Q,使 PAQ= 0 0 m n 其中r=rank A.一般地,ACr 都 Er 0 存在m,n阶可逆阵P和Q使 PAQ=
a11 a1n AB ann
b11 b1n a11b11 * bnn annbnn
a11 a1n 1/ a11 * 1 1 A , aii 0 det A 0 A det A a 1/ a nn nn
1 C11 1 2 C21 1 C22 2 n Cn1 1 Cn 2 2 ... Cnn n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B1(θ1θ2)C1 = B1C1
因此有:
B1HB1(θ1θ2)C1C1H = B1HB1C1C1H
其中B1HB1, C1C1H都是可逆矩阵, 因此
θ1θ2 = E ⇒ θ2 = θ1−1
(2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
第二节 矩阵的正交三角分解(UR, QR分解)
0 0 0 0 0
0 0 0 0 0
1 3 0 −1/ 3 10 / 3
r1←r1 −2r2 → 0 0 1 2 / 3 1/ 3
0 0 0 0
0
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1,
3 3
而C就是变换后的前2行,即
C
=
1 0
3 0
β1 k β 21 1
+
β
2
Lα3L=Lk31β1 + k32β2 + β3
α r = kr1β1 + kr2 β2 + L + kr,r−1βr−1 + βr
并设 ν1 =|| β1 ||−1 β1,ν 2 =|| β2 ||−1 β2 , L,ν r =|| βr ||−1 βr , 则:
α1 = k1′1ν1 α 2 = k2′1ν1 + k2′2ν 2 α3 = k3′1ν1 + k3′2ν 2 + k3′3ν 3
A = U1RLU2.
证明: 自己练习
− 2 1 − 2
例1:求矩阵A的UR分解, 其中
1 1 1
A=
1 1
−1 −1
0 1
解:设A = (α1, α2, α3), 用Schmidt方法将α1, α2, α3标准正交
化得:
ν1
=
− 2
3 3
,
1 23
,
1 23
,
1 23
T
ν 2 = 0,
2 ,− 6
因为 rankC = rank(CCH) (见本章第三节引理), CCH∈Crr×r, 由 上式得:
B = B1C1CH(CCH)−1 = B1θ1, 其中 θ1 = C1CH(CCH)−1.
同理可得:
C = (BHB)−1BHB1C1 = θ2 C1, 其中: θ2 = (BHB)−1BHB1.
将上两式代入BC = B1C1,得:
第四章 矩阵分解
第一节 矩阵的满秩分解
定理:设A∈Crm×n, 则∃B∈Crm×r, C∈Crr×n使 A = BC
证明:设A的前r个列线性无关, 则∃P∈Cmm×m, 使
PA
=
Er 0
D 0
(即对A做初等行变换)
⇒
A
=
P −1
Er 0
D 0
=
P
−1
Er 0
(Er
D) =
BC
( ) 其中:
B
=
P
−1
1 ,− 6
1 6
T
ν 3 = 0, 0, −
1, 2
1 2
T
令U = (ν1, ν2, ν3), 则UHU = E3. 由 A = UR得
例 1: A = 2 6 1 0 7 r3 ←r3 −r2−r1 → 2 6 1 0 7
3 9 3 1 11
0 0 0 0 0
1 3 r2 ←r2 −2r1
2
1
4 (−1/ 3)r2 1 3 2 1
4
− − → 0 0 − 3 − 2 −1 − − → 0 0 1 2 / 3 1/ 3
证明: 自己练习
A = LU.
推论2:设A∈Cnn×n, 则∃唯一的U1∈Un×n和n阶正线上三角矩 阵R使
A = U1R; ∃唯一的U2∈Un×n和n阶正线下三角矩阵L使
A = LU2. 证明: 自己练习
推论3:设A∈Crm×n, 则∃唯一的U1∈Urm×r, U2∈Urr×n, r阶正线 上三角矩阵R, 及r阶正线下三角矩阵L使
Er 0
∈
C m×r r
,
C=
Er
D
∈
C
r r
×n
若A的前r个列线性相关, 则∃P∈Cmm×m, Q∈Cnn×n使
PAQ
=
Er 0
D 0
⇒
A=
P
−1
Er 0
(Er
)D Q−1
=
BC
( ) 其中:
B
=
P
−1
Er 0
∈
C m×r r
,
C=
Er
D
Q −1
∈
C
r r
×n
1 3 2 1 4
1 3 2 1 4
1 0
0 1
− 1/ 9 2/3
10 / 9 1/ 3
定理:若A = BC = B1C1均为A的满秩分解,则:
(1) ∃θ∈Crr×r满足B = B1θ, C = θ −1C1;
(2) CH(CCH)−1(BHB)−1BH = C1H(C1C1H)−1(B1HB1)−1B1H .
证明:(1) 由BC = B1C1有: BCCH = B1C1CH
定理:设A∈Crm×r, 则∃唯一的U∈Urm×r和r阶正线上三角矩阵 R使 A = UR
证明:存在性. 设A = (α1, α2, L, αr), 其中α1, α2, L, αr线性无 关, 可用Schmidt方法对其正交化为β1, β2, L, βr, 则:
β1 = α1
β2
=
α2
−
(α 2 , β1) (β1, β1)
LLL
,
其中ki′i
=
βi>0来自α r = kr′1ν1 + kr′2ν 2 + L + ν k ′r,r−1 r−1 + kr′rν r
⇒
U∈Urm×r
k1′1 k2′1 L kr′1
A = (α1, α 2 , L, α r ) = (ν1,ν 2 , L,ν r )
k2′2
O O
M
kr′,r −1 kr′r
⇒ A = UR 唯一性. 设A = U1R1 = U2R2, 则:
R∈Crr×r 正线上三角
AHA = (U1R1)HU1R1 = R1HR1 = R2HR2.
由R1, R2均为正线上三角矩阵可得: R1 = R2, 从而U1 = U2.
推论1:设A∈Crr×n, 则∃唯一的U∈Urr×n和r阶正线下三角矩 阵L使
β1
β3
=
α3
−
(α3 , β1) (β1, β1)
β1
−
(α3 , β2 ) (β2, β2 )
β2
LLL
βr
= αr
−
(α r , β1) (β1, β1)
β1
−
(α r , β2 ) (β2, β2 )
β2
−L−
(α r , βr−1 ) (β r−1, βr−1 )
β r −1
⇒
αα12
= =
0 1
−1/ 3 2/3
110//33
1/ 3 1 0 −1/ 9 10 / 9
A r1 /3→ 0 0 1 2 / 3 1/ 3
0 0 0 0
0
所以,也可取第2列和第3列构成E2, 则B由A的第2列和第3列
构成, 即
3 2
B = 6 1,
9 3
而C就是再次变换后的前2行,即
C = 10/ 3