矩阵分析第四章

合集下载

第四章 多重共线性

第四章 多重共线性
5
二、产生多重共线性的背景
多重共线性产生的经济背景主要有几种情形: 1.经济变量之间具有相同的变化趋势。 2.模型中包含滞后变量。 3.利用截面数据建立模型也可能出现多重共线性。 4.样本数据的原因。
6
第二节 多重共线性的后果
一、完全多重共线性产生的后果
1.参数的估计值不确定 2.参数估计值的方差无限大
Cov( ˆ2 ,
ˆ3 )

(1

r223 )
r23 2
x22i

x32i
随着共线性增加,r23趋于1,方差将增大。同样 协方差的绝对值也增大,它们增大的速度决定于
方差扩大(膨胀)因子(variance inflation factor, VIF)
VIF

1
1 r223
这时
Var(ˆ2 )
4.多重共线性严重时,甚至可能使估计的回归系数 符号相反,得出完全错误的结论。(如引例)
18
第三节 多重共线性的检验
本节基本内容: 简单相关系数检验法 方差扩大因子法 直观判断法 病态指数检验法 逐步回归法
19
一、简单相关系数检验法 简单相关系数检验法是利用解释变量之间的线性 相关程度去判断是否存在严重多重共线性的一种 简便方法。适用于只有两个变量的情形。

2

x32i 0

同理
ˆ3
这说明完全多重共线性时,参数估计量的方差将 变成无穷大。
9
关于方差的推导
Var(ˆ2 )

x32i (x22i ) (x32i )
(x2i x3i )2

2
1 X21 X 1 X22
1 X2n

第四章 矩阵分析及矩阵函数

第四章  矩阵分析及矩阵函数
第四章 矩阵分析及矩阵函数
4.1 矩阵分析 4.2 矩阵函数 4.3 线性常系数微分方程 4.4 变系数微分方程组
4.1 矩阵分析
4.1.1基本概念 4.1.1基本概念 定义4 定义 4.1.1 令 A 1 , A 2 , L 是 m× n的矩阵序 × 列 , 假 如 存 在 一 个 ×n m×
k →∞
令 A 1 , A 2 , L是 m× n 矩阵序列 , × 矩阵序列,
构造部分和序列 A 1 , A1 + A 2 , A 1 + A 2 + A 3 ,L 假如其收敛到 A , 记

∑A

k
= A
k =1
则级数∑ A k ,收敛到 A .
k =1
定理4 (Cauchy收敛准则 收敛准则) 定理4.1.3 (Cauchy收敛准则) 收敛, ∑ A 收敛,当且仅当矩阵序列

Ak
收敛, 收敛,则矩
k =1
特别地,对于方阵 A ,如果级数 ∑ 特别地, 收敛, 收敛,则矩阵幂级数 收敛. ∑ A 收敛.
k

Ak

k =1
k =1
定理4 定理 4.1.5
设幂级数


a k λk
的收敛半径 时 , 矩阵
k =0
是 R , 则当方阵 A 的范数 幂级数 ∑ a k A k 收敛。 收敛。
于是矩阵幂级数
1 1 2 1 3 I + A + A + A + LL 1! 2! 3!
1 2 1 4 I − A + A − LL 2! 4! 1 3 1 5 A − A + A − LL 3! 5!

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第四章课后习题答案

第四章 矩阵分析4-1.(1)对矩阵A 只做初等行变换得到行简化阶梯形矩阵82100-55212311125141010551312114001-5582100-5521211251,0105513114001-55A B C A BC ⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-→⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦=取于是即为其满秩分解表达式(2)对矩阵A 只做初等行变换得到行简化阶梯形矩阵1101010-10-1011110111123131000001110-10-101,0111123A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(3)对矩阵A 只做初等行变换得到行简化阶梯形矩阵12101212101212213300112124314500000048628100000001112121012,2300112146A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=取于是即为其满秩分解表达式(4)对矩阵A 只做初等行变换得到行简化阶梯形矩阵120111012011036142360011-1024022270000016121757300000010101201103136,0011-1020270000016173A B C A BC ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=取于是即为其满秩分解表达式4-2.解:首先注意到A 的秩为1,同时计算出HAA 的特征值12=6=0λλ,,所以A 的奇异值1=6.σ然后分别计算出属于12λλ,的标准正交特征向量.]] []121211112121,1-1,1,.3111111=[,]T TH HU UV A UVV V VAηηηηη-====⎡⎤⎢⎥=∆==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎢⎢⎢⎢⎢⎢⎥⎢⎥⎣⎦⎤⎥==⎢⎥⎥⎣⎦,记,现在计算取于是r000003333HrA U V⎤⎥⎤=⎥⎥⎢⎣⎦⎥⎦⎥⎢⎥⎣⎦=∆=⎦⎥⎦或者4-3.解:(1)容易验证H H H HAA A A BB B B==,所以A,B是正规矩阵.(2)下面求A的谱分解:[][]21231123232323111(+1)(-2)=2==-1.=2=.==-1=10-1=1-0.=0=.TTTTTH E A A G λλλλλλλξλλααααξξξξ-===故的特征值为:,对于特征值,其对应的特征向量对于特征值,其对应的特征向量,,,,1,将,正交化和单位化得,,于是2223311133311133311133300111110636221210003331110226H H G ξξξξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢=+=+⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎣⎢⎥⎣⎦-⎡⎤-⎢⎥⎢⎥=+--⎢⎥⎢⎥-⎢⎥-⎣⎦122113331213331111236333=2A G G ⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦-因此即为其谱分解.矩阵B 的谱分解参照矩阵A 的谱分解方法. 4-4. 解:已知矩阵024102211042A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦[][][]21231212331231231(+1)(+2),==-1=-2==-1=-2,1,0,4,0,1=-2=4,2,1.244[,,]102011T TTE A A A P P AP λλλλλλλλααλααααααα--==---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦-=求得所以其对应的特征值为:,对应于特征值,其对应的特征向量对应于特征值,其对应的特征向量为:,,线性无关,所以矩阵可对角化,所以矩阵是单纯矩阵于是而且有:11231112223311161212100211010,()366002221333122112111=--=-=6331263126322433312263311212632T TTTT TT P G G βββαβαβαβ-⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦==取:,,,,,,,,令122433312263311212632A G G A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=-+故即为矩阵的谱分解表达式.4-5.解:[][][]12312i 20000-i 0000500000,=5==0000=51,0,02001,0,0,=1,0,0-i 00100H H H H TT T H HHA A AA AA AA U V A U A V λλλδληηη-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎡⎤⎢⎥==∆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎢=∆=⎢⎢⎣⎦,求出的特征值为,所以的奇异值为:求出对应于的特征根:==H⎡⎤⎥⎥⎥⎥⎢⎥⎣⎦4-6.解:()()()1231212112204002000i ,0100-i 000000(-1)(-4)=4,=1,=02=2,=1,14=1,0,04=0,1,010,0100H H H H T H TH A A AA E AA AA AA AA U λλλλλλλααμμμμ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦-=⇒⎡⎤∆=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎢⎣⎦,所以的奇异值为:特征值为的单位特征向量为:特征值为的单位特征向量为:于是1111100-i 102100110-i 00H H H HV A U A U V -⎥⎥⎡⎤=∆=⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦因此所以4-7.解:(1) 首先求出矩阵A 的特征多项式212322082(+2)(-6)06=-2==6A (6E-A)=14204206E-A=8400000000E A aa a λλλλλλλλλ---=--=---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以其特征值为:,由于是单纯矩阵,从而r 有此可知:a=0;(2) 由上知a=0;()21231212331112223220=820-(+2)(-6)006==6;=-2,==6=0 =001=-2=0125524551TT T H H A E A A G G λλλλλλλλααλαααααα⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⇒⎫⎪⎭⎫⎪⎭⎛⎫ ⎪ ⎪⎪=+== ⎪ ⎪ ⎪ ⎪⎝⎭所以,求出对应于的单位正交特征向量为:,,,求出对应于的单位特征向量为:因此,的投影矩阵,31212552455062H A G G α⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭=-4-8.解: (1)3i -13i -1-i 0i -i 0i -1-i 0-1-i 0,.HH H A A AA A A A ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=,所以是正规矩阵 (2)()()())()()()212311223312312314122 1.2==-1=0,-i,1,,=0.8801,0.3251i,0.3251,=0.4597,0.6280i 0.6280,=TTTTTE A λλλλλλλλαλαλααααηηη-=+-+=+==-===求出与求出与求出与对应的特征向量为:将单位化得到单位特征向量为:,111222333112233,,=TH H HG G G A G G G ηηηηηηλλλ⎛ ⎝⎭===++所以4-9.解:对矩阵A 只作初等行变换100071415610290102000147712401525001772655700000310007141102901020077,1245250017726500000.A ABC BC A -⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→→⎢⎥⎢⎥--⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦= 的秩为,且前三个列向量线性无关,故容易验证:4-10.解: 对矩阵A 只作初等行变换110130-331321421=261070013339311100000211012130-3321,210013333.2113210-361,93A A B C BC A A B C ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 的秩为,且第一,第三个列向量线性无关,故容易验证:的秩为,且第二,第三个列向量线性无关,故10992100133.BC A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=容易验证:4-11.解:()()1231231231231===0=00=0004400TTTH A Schmidt U R U A R ααααααυυυυυυ-⎛ ⎝⎛⎝⎛⎝⎡⎢⎢⎢==⎢⎢⎢⎢⎣⎡⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎣⎦将,,的列向量,,用方法标准正交化得,命,,,则111335---1444420111==-=--2222-1131=.H x R U b Ax b -⎥⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦不难验证4-12.解:5000000005,0,0A H H AA AA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦因为的特征值为,故4-13.解:2123111111202000202(-4),=4==0A=2=2.=4==,10111012HH HT T HHHAAE AA AAAA UV A Uλλλλλλαλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦-=∆=⎡⎤=∆=∙=⎢⎥⎢⎥⎣⎦⎢⎥所以的特征值,,的奇异值为,的特征值的单位特征向量u u因此:不难验1122124.3.443301001HHHHH HA U VAAUA AU A A VU=∆=⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎢⎢=⎢⎥⎢⎥⎣⎦=证这是定理表达形式.下面介绍定理..表述形式.又的零特征值所对应的次酉矩阵的零特征值所对应的次酉矩阵V于是AA的酉矩阵与的酉矩阵分别为V⎤⎥⎥=⎢⎥⎥⎢⎥⎥⎥⎦⎥⎦,且2000000HD A UDV ⎡⎤∆⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=不难验证4-14. 解:()()()12312111121111400010(1)(4),000=4=1=02=2=1=14=1001=01010==010010010=U V 010H HH H H H H H AA E AA AA A AA u AA u U u u V A U i A λλλλλλλαα-⎡⎤⎢⎥=-=--⎢⎥⎢⎥⎣⎦⎡⎤∆⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤=∆=⎢⎥⎣⎦∆=,的特征值,,所以的奇异值,,的特征值为的单位特征向量的特征值为的单位特征向量于是因此所以3222121010043300=0=110010(,)=010,V=V 0001100201001001000100HH Hi AA u U U U U i A UDV i ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦若要写成定理..形式还得计算U,V.特征值为的单位特征向量故所以4-15.解:242-24-2422-4-2-2-2252-2-5H i i A i i i i A i i i i -⎡⎤⎡⎤⎢⎥⎢⎥==-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由于所以A 是反Hermite 矩阵.2123121233111222-424+22==(+6i)(-3i)-22A ==-6i =3i.==-6i =0==3i 221=i -33354i2i -999-TTT H H iE A i i iA G λλλλλλλλλλλααλααααα+-=⎛ ⎝⎛⎫ ⎪⎝⎭=+= 的特征值,属于特征值的正交单位特征向量,属于特征值的正交单位特征向量,,因此的正交投影矩阵为233124i529992i 2899944i 2i 9994i 429992i 219996i 3i H G A A G G αα⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦=-所以的谱分解式为:+4-16..解:130i 2202031-i 022HA A ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦由于所以A 是Hermite 矩阵.()21231212331112213--i 220-20==(-2)(+1)31-i 0-22A ==2=-1.==2=010=0=-1=01i 022010i 1-022TTTH H E A A G G λλλλλλλλλλλααλααααα-=⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎣⎦ 的特征值,属于特征值的正交单位特征向量,,,属于特征值的正交单位特征向量因此的正交投影矩阵为233121i 0-22010i 10222-H A A G G αα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦=所以的谱分解式为:4-17. . .解:先求A 的特征值和特征向量,由21234-603+50=(-1)(+2)36-1==1=-2.E A A λλλλλλλλλ--=故的特征值为:,()()()()1231212331123=1-3-60360=0360=2-1,0=0,0,1=-2-3-60360=0360=-11,1201111,,101()=122011010TTT Tx x x x x x P P λααλαααα-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎡⎤⎡⎢⎥==--⎢⎥⎢⎥⎣⎦⎣当时,由方程组求得特征向量为:,,当时,由方程组求得特征向量为:,所以,()()()1231112223312=1,1,0,=-1,-2,1,=1,2,022*******,1201211202TTTT TT G G A A G G βββαβαβαβ⎤⎢⎥⎢⎥⎢⎥⎦--⎡⎤⎡⎤⎢⎥⎢⎥=+=--==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦=-因此于是所求投影矩阵为的谱分解表达式为4-18.解: 因为()()1122r r 1122r 20112012012r 11122r r 1122r r 220111011201=+++=++++=++++=(G +G ++G )+()++()=(++++)G +(++++)G ++(+k k k k r s s ss s s s s s A G G G A G G G f a a a a f A a E a A a A a A a a G G G a G G G a a a a a a a a a a λλλλλλλλλλλλλλλλλλλλλλλ=+++++++++ 若则()()()211122+++)=G +G ++s s r ra a f f f G λλλλλ 4-19.解:方法一:A 是单纯矩阵()()()()()31234123123441234-1-11-11-1=(-1)(+3)-11-11-1-1===1=-3.===1=1100=101,0=-100,1=-3=1-1-1,111-11100-1,,,=010-10011T T TTE A A P λλλλλλλλλλλλλλαααλααααα-=⎡⎤⎢⎢=⎢⎢⎣故的特征值为:,属于特征值的正交单位特征向量,,,,,,,,,属于特征值的正交单位特征向量,,所以1123411122331111-44443111--4444,()=1311--44441131444413111131=-=-4444444411131111=-=--44444444314+T TTT TT TT P A G ββββαβαβαβ-⎡⎤⎢⎥⎢⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎥⎢⎥⎦⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=+=因此,,,,,,,,,,,,,,因此的正交投影矩阵为11444131144441131444411134444⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦244121111-4444111144441111--444411114444-3H G A A G G αβ⎡⎤-⎢⎥⎢⎥⎢⎥--⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:方法二:A 是正规矩阵.由方法一中已知A 的特征值1234===1=-3λλλλ,,把1234αααα,,,Schmidt 方法标准正交化得123441112233244=00=0=1111=--22223111444413114444+113144441113444411-44T T TTT T TH G G υυυαυυυυυυυυυ⎫⎫⎛⎪⎪ ⎭⎝⎭⎛⎫⎪⎝⎭⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦-==,,,把单位化得 ,,,正交投影矩阵121144111144441111--444411114444-3A A G G ⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦=所以的谱分解式为:。

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。

该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。

本文主要介绍该书第四版中的课后练习题及其答案。

提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。

其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。

内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。

本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。

第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。

本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。

第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。

本章习题主要涉及矩阵运算的基本操作和应用。

第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。

本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。

第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。

本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。

结语本文介绍了矩阵分析引论第四版课后练习题及其答案。

对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。

本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。

同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。

计算方法(5)第四章 矩阵特征值和特征向量的计算

计算方法(5)第四章 矩阵特征值和特征向量的计算

n
使得u 0

i xi
i 1
n
n
uk Auk1 Aku0 Ak (i xi ) iik xi
i 1
i 1

1k [1x1

n i2
( i 1
)k i xi ]
由1 0, 1 i (i 2, 3,L , n) 得
lim(
对矩阵A1用乘幂法得 uk

A-1u
k

1
因为A1 的计算
比较麻烦,而且往往不能保持矩阵A 的一些好性质
(如稀疏性),因此,反幂法在实际计算时以求解
方程组
Auk

u
k
,代替迭代
1
uk
A-1uk1求得uk,每
迭代一次要解一线性方程组。 由于矩阵在迭代过
程中不变,故可对A 先进行三角分解,每次迭代只 要解两个三角形方程组。

2 p 2 n
2 n
2 n 2
1 p 21 2 n 1 n 1 2 1 n 1
因此,用原点平移法求1可使收敛速度加快。
三、反幂法
反幂法是计算矩阵按模最小的特征值及特征向 量的方法,也是修正特征值、求相应特征向量的最 有效的方法。
0
0.226

0.975
做正交相似变换后得到
3.366
A3 =R2 AR2T


0.0735
0.317
0.0735 1.780
0
0.317
0

1.145
雅可比方法是一个迭代过程,它生成的是一个矩阵的
序列 Ak,当k越大时Ak就越接近于对角矩阵,从而

第四章特殊变换及其矩阵

第四章特殊变换及其矩阵
矩阵 U 或正交矩阵 Q ,使得 U H AU = U- 1 AU = B

QT AQ = Q- 1 AQ = B
则称 A 酉相似(或正交相似)于 B 。
定义2 酉空间 V 上的线性变换 T 称为 V上的一个
正规变换,如果存在 V的标准正交基 ε1,ε2 ,L , εn 及对角矩阵 D º diag(d1,d2 ,L , dn ) 满足
U3U H U2U H (UU H )2
因此
3
2 ,即

3 i


2 i
,故 i 0 或 1.
从而 2 ,故
A2 U2U H UU H A.
课后思考
1、实正规矩阵是否正交相似于实 对角矩阵?
2、实正规矩阵是否正交相似于复 对角矩阵?
3、实正规矩阵正交相似于什么 样的“简单”矩阵?
(η1,η2 ,L , ηn ) = (ε1,ε2 ,L , εn )U
显然过渡矩阵 U 是酉矩阵(请试试自己证明一下)
因为 (η1,η2 ,L , ηn ) B
= (T (η1 ), T (η2 ),L , T (ηn )) = (T (ε1 ), T (ε2 ),L , T (εn ))U = (ε1,ε2 ,L , εn ) AU = (η1,η2 ,L , ηn )U H AU 所以 B = U H AU ,结论成立。
| ti i |2 | ti n |2 | t1i |2 | ti i |2 当 i 1 时,有 | t11 |2 | t12 |2 | t1 n |2 | t11 |2
可知 t1 j 0 ( j 2, 3, , n)
对 i 施行归纳法,可得 ti j 0 (i j) ,证毕。

矩阵分析第4章课件

矩阵分析第4章课件

矩阵满秩分解不唯一;但同一矩阵的两个满
秩分解的因式矩阵之间存在密切的关系( 见P153,定理4.1.2).
ACrmn r=rank A min{m,n} A的秩等于它的行秩、列秩或行列式秩。A的行( 列)秩是它的最大线性无关组的行(列)数;A 的行列式秩是它的非0子式的最大阶数。 A=BC rank A rank B & rank A rank C
1
初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变
换等价于左(右)乘A以可逆矩阵Pr,…,P1(P1,…,Pr).
③可适当选第一类初等矩阵的乘积P使PA(AP)的 行(列)是A的行(列)的任意排列.可适当选第三类 初等矩阵P(i,j(k))中的k使P(i,j(k))A的(i,j) 元变为0.可适当选第二类初等矩阵P(i(k))中的k 使P(i(k))A的非零(i,i)元变为1.综合起来推出: Er 0 存在初等矩阵的乘积P和Q,使 PAQ= 0 0 m n 其中r=rank A.一般地,ACr 都 Er 0 存在m,n阶可逆阵P和Q使 PAQ=
a11 a1n AB ann
b11 b1n a11b11 * bnn annbnn
a11 a1n 1/ a11 * 1 1 A , aii 0 det A 0 A det A a 1/ a nn nn
1 C11 1 2 C21 1 C22 2 n Cn1 1 Cn 2 2 ... Cnn n

线代第四章之实对称矩阵

线代第四章之实对称矩阵
线代第四章之实对称矩阵
目录
• 实对称矩阵基本概念与性质 • 实对称矩阵的相似对角化 • 特征值与特征向量在实对称矩阵中的应用 • 正交变换在实对称矩阵中的应用 • 线性方程组在实对称矩阵中的解法探讨 • 总结回顾与拓展延伸
01
实对称矩阵基本概念与性质
定义及性质
性质:实对称矩阵 具有以下性质
不同特征值对应的 特征向量正交;
拓展延伸:其他类型矩阵简介
反对称矩阵
反对称矩阵是一个方阵,其转置等于它本身的相反数,即$A^T = -A$。反对称矩阵在量 子力学和刚体动力学等领域有着重要应用。
正交矩阵
正交矩阵是一个方阵,其逆等于它本身的转置,即$A^{-1} = A^T$。正交矩阵在保持向 量长度和角度不变的线性变换中扮演着重要角色。
举例说明
例子1
例子2
例子3
矩阵$A=begin{pmatrix} 1 & 2 2 & 1 end{pmatrix}$是一个实对称矩阵 ,因为$A^T=A$。
矩阵$B=begin{pmatrix} 1 & 2 -2 & -1 end{pmatrix}$不是一个实对称 矩阵,因为$B^T neq B$。
应用正交变换求解
03
04
05
首先,通过正交变换将 然后,根据对角矩阵
矩阵$A$化为对角矩阵, $D$的元素即为原实对
即求解$P^{-1}AP = D$, 称矩阵的特征值,求得
其中$D$为对角矩阵, 特征值为$lambda_1 =
$P$为正交矩阵;
1, lambda_2 = 4$;
最后,根据特征值求得 对应的特征向量,并构 造正交矩阵$P = begin{pmatrix} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} frac{sqrt{2}}{2} & frac{sqrt{2}}{2} end{pmatrix}$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−1
Er m× r r×n ( ) 其中 : B = P ∈ C , C = E D ∈ C r r r 0
若A的前r个列线性相关, 则∃P∈Cmm×m, Q∈Cnn×n使
D −1 E r −1 ( ) ⇒ A = P E D Q = BC r 0 0 −1 E r m× r −1 r ×n ( ) 其中 : B = P ∈ C , C = E D Q ∈ C r r r 0
Er PAQ = 0
1 3 2 1 4 1 3 2 1 4 r ←r −r −r → 2 6 1 0 7 例 1: A = 2 6 1 0 7 3 9 3 1 11 0 0 0 0 0
3 3 2 1
1 3 2 1 4 1 3 2 1 4 r ←r − 2r ( −1 / 3) r − − → 0 0 − 3 − 2 − 1 − − → 0 0 1 2 / 3 1 / 3 0 0 0 0 0 0 0 0 0 0
令 k1AHx1 + k2AHx2 + L + kpAHxp = 0 上式两边左乘A, 得: λi(k1x1 + k2x2 + L + kpxp) = 0 ⇒ k1 = k2 = L = kp = 0 表明AHxj, j = 1, 2, L, p是线性无关的. 因此, AAH的p重特征值也是 AHA的p重特征值. 再由AAH 与AHA的大于零的特征值个数相同, 可知: λi = µi > 0, i = 1, 2, L, r. 定义:设 定义: 设A∈Crm×n, AAH的正特征值为λi, AHA的正特征值为 µi. 称
2 2 1 2
1 3 0 − 1 / 3 10 / 3 r ←r − 2r → 0 0 1 2 / 3 1 / 3 0 0 0 0 0
1 1 2
取第1列和第3列构成E2, 则B由A的第1列和第3列构成, 即
1 2 B = 2 1 , 3 3
将上两式代入BC = B1C1,得: B1(θ1θ2)C1 = B1C1 因此有: B1HB1(θ1θ2)C1C1H = B1HB1C1C1H 其中B1HB1, C1C1H都是可逆矩阵, 因此 θ 1θ 2 = E ⇒ θ 2 = θ 1− 1 (2) 将(1)的结果代入CH(CCH)−1(BHB)−1BH即可得到.
1 A= 1 1
1 −1 −1
1 0 1
解:设A = (α1, α2, α3), 用Schmidt方法将α1, α2, α3标准正交 化得:
−3 1 1 1 ν1 = , , , 2 3 2 3 2 3 2 3 2 1 1 ν2 = ,− ,− 0, 6 6 6 1 1 ν3 = , 0, 0, − 2 2

α 1 = β1 α 2 = k 21 β1 + β 2 α 3 = k 31 β1 + k 32 β 2 + β 3 LLL α r = k r1 β1 + k r 2 β 2 + L + k r , r −1 β r −1 + β r
并设 ν 1 =|| β1 ||−1 β1 , ν 2 =|| β 2 ||−1 β 2 , L , ν r =|| β r ||−1 β r , 则:
R∈Crr×r 正线上三角
由R1, R2均为正线上三角矩阵可得: R1 = R2, 从而U1 = U2. 推论1:设A∈Crr×n, 则∃唯一的U∈Urr×n和r阶正线下三角矩 阵L使 A = LU. 证明: 自己练习
推论2:设A∈Cnn×n, 则∃唯一的U1∈Un×n和n阶正线上三角矩 阵R使 A = U1R; ∃唯一的U2∈Un×n和n阶正线下三角矩阵L使 A = LU2. 证明: 自己练习 推论3:设A∈Crm×n, 则∃唯一的U1∈Urm×r, U2∈Urr×n, r阶正线 上三角矩阵R, 及r阶正线下三角矩阵L使 A = U1RLU2. − 2 1 − 2 证明: 自己练习 例1:求矩阵A的UR分解, 其中
定理:设 定理: 设A∈Crm×n, λi是AAH的特征值, µi是AHA的特征值, λi, µi都是实数。另设 λ1 ≥ λ2 ≥ L ≥ λr > λr+1 = λr+2 = L = λm = 0, µ1 ≥ µ2 ≥ L ≥ µr > µr+1 = µr+2 = L = µn = 0, 则: λi = µi > 0, i = 1, 2, L, r. 证明:设 证明 :设x1, x2, L, xp是AAH (正规矩阵)对应于特征值λi≠0的 线性无关特征向量, 则: AAHxj = λixj, j = 1, 2, L, p. ⇒ (AHA)(AHxj) = λi(AHxj), j = 1, 2, L, p. 表明AHxj, j = 1, 2, L, p是AHA(正规矩阵)的对应于特征值 λi≠0的特征向量(但还不能认为λi = µi ). 下证它们也是线性 无关的.
δ i = λi = µ i , i = 1, 2, L, r
为矩阵A的正奇异值, 简称为奇异值.
• 若A本身为正规阵, 即AAH = AHA, 则: A = Udiag(λ1, λ2, L, λn)UH ⇒ ⇒ ⇒ AH = Udiag(λ1, λ2, L, λn)UH AAH = Udiag(λ1λ1, λ2λ2, L, λnλn)UH A的奇异值的奇异值,先介绍两个引理。 引理:∀A∈Cm×n, rank(AHA) = rank(AAH) = rank(A) 定理:先证 定理: 先证rank(AHA) = rank(A). 只需证: N(AHA) = N(A), 因为∀A∈Cm×n, dimN(A) = n − dimR(A) = n − rank(A). 设x∈Cn是AHAx = 0的解, 则xHAHAx = 0, 即(Ax)HAx = 0, 从而Ax = 0; 反之, 设x∈Cn是Ax = 0的解, 则AHAx = 0. 所以, N(AHA) = N(A). 又因∀A∈Cm×n: rank(A) = rank(AH), 从而有 rank(AHA) = rank(AAH) = rank(A) 引理:∀A∈Cm×n, AHA及AAH都是正半定Hermite矩阵
β1 = α 1
(α 2 , β1 ) β2 = α2 − β1 ( β1 , β1 )
β3 = α3 −
LLL
(α 3 , β1 ) (α , β ) β1 − 3 2 β 2 ( β1 , β1 ) (β 2 , β 2 )
(α r , β1 ) (α r , β 2 ) (α r , β r −1 ) βr = αr − β1 − β2 − L − β r −1 ( β1 , β1 ) (β 2 , β 2 ) ( β r −1 , β r −1 )
1
所以,也可取第2列和第3列构成E2, 则B由A的第2列和第3列 构成, 即
3 2 B = 6 1 , 9 3
而C就是再次变换后的前2行,即
1 / 3 1 0 − 1 / 9 10 / 9 C = 0 0 1 2 / 3 1/ 3
定理: 定理 :若A = BC = B1C1均为A的满秩分解,则: (1) ∃θ∈Crr×r满足B = B1θ, C = θ −1C1; (2) CH(CCH)−1(BHB)−1BH = C1H(C1C1H)−1(B1HB1)−1B1H . 证明: 证明 :(1) 由BC = B1C1有: BCCH = B1C1CH 因为 rankC = rank(CCH) (见本章第三节引理), CCH∈Crr×r, 由 上式得: B = B1C1CH(CCH)−1 = B1θ1, 其中 θ1 = C1CH(CCH)−1. 同理可得: C = (BHB)−1BHB1C1 = θ2 C1, 其中: θ2 = (BHB)−1BHB1.
第四章 矩阵分解 矩阵分解
第一节 矩阵的满秩分解
定理:设 定理 :设A∈Crm×n, 则∃B∈Crm×r, C∈Crr×n使 A = BC 证明:设 证明 :设A的前r个列线性无关, 则∃P∈Cmm×m, 使

Er D PA = (即对A做初等行变换 ) 0 0 D −1 E r −1 E r A=P 0 0 =P 0 (E r D ) = BC
而C就是变换后的前2行,即
1 3 0 − 1 / 3 10 / 3 C = 0 0 1 2 / 3 1/ 3
1 / 3 1 0 − 1 / 9 10 / 9 r /3 A → 0 0 1 2 / 3 1 / 3 0 0 0 0 0
− 2/ 3 4/ 3 4 / 6 1/ 6 0 1/ 2
例2:设A∈Cnm×n, b∈Cn, 证明方程组 Ax = b 有解, 并求其解 证明: 对A∈Cnm×n, 一定∃唯一的U∈Unm×n和n阶正线上三角 矩阵R, 使得: A = UR. 从而: URx = b ⇒ UHURx = UHb 由于UHU = En, ⇒ Rx = UHb ⇒ x = R−1UHb
− 2 1 − 2 1 x1 1 1 0 1 练习:求方程组 :求方程组 练习 x2 = 的解。 1 −1 0 − 2 x3 1 1 −1 1
第三节
矩阵的奇异值分解

′ k11 A = (α 1 , α 2 , L, α r ) = (ν 1 , ν 2 , L, ν r )
U∈Urm×r A = UR
′ L k r′1 k 21 ′ O k 22 M O k r′, r −1 ′ k rr
相关文档
最新文档