矩阵与数值分析 误差分析

合集下载

矩阵与数值分析学习指导和典型例题分析

矩阵与数值分析学习指导和典型例题分析

第一章 误差分析与向量与矩阵的范数一、内容提要本章要求掌握 绝对误差、相对误差、有效数字、误差限 的定义及其相互关系;掌握 数 值稳定性 的概念、设计函数计算时的一些基本原则和误差分析 ;熟练掌握向量和矩阵范数 的 定义及其性质。

1 .误差的基本概念和有效数字 1) .绝对误差和相对误差 的基本概念设实数x 为某个精确值,a 为它的一个近似值,则 称x a 为近似值a 的绝对误差,简称x a为误差.当x 0时,=称为a 的相对误差.在实际运算中,精确值 x 往往是未知的,所x a以常把—匚作为a 的相对误差.2) .绝对误差界和相对误差界 的基本概念设实数x 为某个精确值,a 为它的一个近似值,如果有常数 e a ,使得此例计算中不难发现,绝对误差界和相对误差界并不是唯一的, 但是它们越小,说明a近似x 的程度越好,即a 的精度越好.3) .有效数字设实数x 为某个精确值,a 为它的一个近似值,写成ka 10 O.a i a 2 a n其中a i (i 1,2,)是0,1, ,9中的一个数字,q 0,k 为整数.如果x a - 10kn2则称a为x的具有n位有效数字的近似值.4) .函数计算的误差估计 如果yf(x 1,x 2, ,x n )为n 元函数,自变量*,X 2, ,X n 的近似值分别为a 1,a 2, ,a n ,称e a为a的绝对误差界或简称为误差界.称a是a的相对误差界它可以是有限或无限小数的形式, 如果a 有n 位有效数字,则a 的相对误差界满足:x a l a l1 2a 1101其中 丄_f(a 1,a 2, ,a n ),所以可以估计到函数值的误差界,近似地有Xk aXknf(X i ,X 2, ,X n ) f(a i ,a 2, ,a n ) e a取y f(x,x 2)为X i , X 2之间的四则运算,则它们的误差估计为,数相加或减时,其运算结果的精度不会比原始数据的任何一个精度高.如果x i 和X 2是两个十分接近的数,即 a i 和a 2两个数十分接近,上式表明计算的相对误差会很大,导致计算值 a i a 2的有效数字的位数将会很少。

第一章矩阵与数值分析

第一章矩阵与数值分析
以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。
这是由于
x a x a x a2
a
x
ax
a
(x a)2
a x
a
x
a
a
2
1
1 xa
x
a
2
a
a
是 x 的a平方项级,故可忽略不计。
a
相对误差也可正可负,其绝对值的上界叫做相对误差界
(限)。 当绝对误差界为 e时a ,相对误差界取为
ea
相对误差界(限)
a
例1 已知 e 2.71828182 ,其近似值 a 2.718,求 a
1.2.1 误差来源与分类
用计算机解决科学计算问题时经常采用的处理方式是将连 续的问题离散化、用有限代替无限等,并且用数值分析所处理 的一些数据,不论是原始数据,还是最终结果,绝大多数都是 近似的,因此在此过程中,误差无处不在.误差主要来源于以 下四个方面:
实际问题
模型误差

算 机 科 学 计Βιβλιοθήκη 数学模型主要内容包括:
数值代数
Ax b
f x 0
数值逼近 微分方程数值解法
f x f x
b
a
x
f
x
dx
u f t, u, ut0 u0
具体任务: 一、构造在计算机上可行的有效算法。 二、给出可靠的理论分析:进行误差分析,讨论数值算法的 收敛性和数值稳定性。

数值分析1-误差及有效数字

数值分析1-误差及有效数字

(避免绝对值很大的数为乘数)
x1 1 x1 e e x ex 2 (避免 x2 为很小的数为除数) 1 2 x x x2 2 2
er x1 x2 x1 x2 er x1 er x 2 x1 x2 x1 x2
er x1 x2
这里,主要介绍计算机中浮点数的表示形式及 表示范围(4个参数):
x s p
其中, s =±0.a1a2a3………at 称为尾数∈[-1,1],
s 中的正负号用一位数字区分;
β为基数,如取2、10、8、16; p为阶数,有上限U和下限L, 由计算机存储字节长度决定。
1.4 误差危害的防止 (1)使用数值稳定的计算公式
数值稳定是指计算过程中舍入误差对计算影响不大的算法, 若第n+1步的误差en+1 与第n步的误差en满足
en 1 1 en
,则称该计算公式是绝对稳定的
例:建立积分In=

1
0
xn dx x5
(n=0,1.........,20)
递推关系式,并分析误差传播影响。
解: I +5I
n
n-1=
x 5x 0 x 5 dx
1 n n -1

1
0
x n-1dx
x n
n
1

0
1 n
I 0=
1 0 x 5dx
1
ln x 5
1 0
=ln6-ln5
1 In -5In -1 n ∴递推式: I 0 ln6 - ln5
2
x1 x 2
2
e x1 e x 2

数值分析误差限的计算公式

数值分析误差限的计算公式

数值分析误差限的计算公式1、误差x∗为 x 一个近似值绝对误差:e∗=x∗−x相对误差:e∗r=e∗x=x∗−xx,由于真值 x 总是不知道的,通常取e∗r=e∗x∗=x∗−xx∗误差限:|x∗−x|≤ε∗相对误差限:ε∗r=ε∗|x∗|ε(f(x∗))≈|f′(x∗)|ε(x∗)2、插值法记ωn+1(x)=(x−x0)(x−x1)⋯(x−xn)Lagrange 插值多项式系数:lk(xk)=(x−x0)⋯(x−xk−1)(x−xk+1)⋯(x−xn)(xk−x0)⋯(xk−xk−1)(x −xk+1)⋯(x−xn)Lagrange 插值多项式:Ln(x)=∑k=0nlk(x)yk=∑k=0nykωn+1(x)ω′n+1(xk)(x−xk) 余项:记 Mn+1=maxa≤x≤b|fn+1(x)|R(x)=fn+1(ξ)ωn+1(x)(n+1)!≤Mn+1(n+1)!|ωn+1(x)|均差与 NewTon 插值多项式一阶均差:f[x0,xk]=f(xk)−f(x0)xk−x0k 阶均差:f[x0,x1,⋯,xk]=f[x0,⋯,xk−2,xk]−f[x0,⋯,xk−2,xk−1]xk−xk−1f[x0,x1,⋯,xn]=f(n)(ξ)n!(x0,x1,⋯,xn,ξ∈[a,b])f[x0,x1,⋯,xk]=∑j=0kf(xj)ω′k+1(xj)NewTon 插值多项式:Pn(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+⋯+f[x0,x1,⋯,xn](x−x0)(x−x1)⋯(x−xn−1)余项:R(x)=f[x0,x1,⋯,xn]ωn+1(x)Hermite 插值Taylor 多项式:Pn(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)n余项:R(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1若已知 f(x0),f′(x1),f(x1),f(x2):P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中 A 由 P′(x1)=f′(x1) 可得余项:R(x)=14!f(4)(ξ)(x−x0)(x−x1)2(x−x2)两点三次 Hermite 插值多项式:H3(x)=αk(x)yk+αk+1(x)yk+1+βk(x)mk+βk+1(x)mk+1其中 mk=f′(xk),mk+1=f′(xk+1)⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧αk(x)=(1+2x−xkxk+1−xk)(x−xk+1xk−xk+1)2αk+1(x)=(1+2x−xk+1xk−xk+1)(x−xkxk+1−xk)2⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧βk(x)=(x−xk)(x−xk+1xk−xk+1)2βk+1(x)=(x−xk+1)(x−xkxk+1−xk)2余项:R(x)=f(4)(ξ)4!(x−xk)2(x−xk+1)2分段低次插值h=b−an对每个小区间使用对应插值公式求 Ih(x)余项对分段线性插值函数:maxa≤x≤b|f(x)−Ih(x)|≤M28h2对分段三次埃尔米特插值:maxa≤x≤b|f(x)−Ih(x)|≤M4384h43、数值积分代数精度定义:如果某个求积公式对于次数不超过 m 的多项式均能够准确成立,但对于 m+1 次多项式就不准确成立,则称该公式具有 m 次代数精度梯形公式公式与中矩形公式梯形公式:∫baf(x)dx≈b−a2f(a)+b−a2f(b)余项:R[f]=−(b−a)312f′′(η)(η∈(a,b))矩形公式:∫baf(x)dx≈(b−a)f(a+b2)余项:R[f]=(b−a)324f′′(η)(η∈(a,b))Newton-Cotes 公式将积分区间 [a,b] 分成 n 等分Simpson 公式(n=2):∫baf(x)dx≈b−a6f(a)+b−a6f(b)+2(b−a)3f(a+b2)余项:R[f]=−(b−a)5180∗24f(4)(η)(η∈(a,b))Cotes 公式(n=4):C=b−a90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]余项:R[f]=−2(b−a)7945∗46f(6)(η)(η∈(a,b))复合求积公式积分区间 [a,b] 分成 n 等分,步长 h=b−an复合梯形公式:Tn=h2[f(a)+2∑k=0n−1f(xk)+f(b)]余项:Rn(f)=−b−a12h2f′′(η)复合 Simpson 求积公式:Sn=h6[f(a)+2∑k=0n−1f(xk)+4∑k=1n−2f(x(k+1)/2)+f(b)] 其中 x(k+1)/2=xk+h2Rn(f)=−b−a180(h2)4f(4)(η)龙贝格求积算法T(0)0=h2[f(a)+f(b)]求梯形值 T0(b−a2k),利用递推公式求 T(k)0,递推公式:T2n=12Tn+h2∑k=0n−1f(xk+12)求加速值:T(k)m=4m4m−1Tk+1m−1−14m−1T(k)m−1k=1,2,⋯高斯-勒让德求积公式积分区间为 [−1,1]∫1−1f(x)dx≈∑k=0nAkf(xk)余项:n=1 时,R1[f]=1135f(4)(η)4、解线性方程组的直接方法列主元高斯消去法在每次消元时,选取列主元在最前面,列主元为该列最大值矩阵三角分解法如果 n 阶矩阵 A 的各阶顺序主子式 Dk(k=1,2,⋯,n−1) 均不为零,则必有单位下三角矩阵 L 和上三角矩阵 U,使得 A=LU,并且 L 和 U 是唯一的。

矩阵与数值分析部分习题解答

矩阵与数值分析部分习题解答

其具有6位有效数字。 故
*

y y* zz , 于是, y
*
1 4 1 1 k n 26 10 y y 10 10 2 2 2
y y* y z
* *
z z* z
*


0.5 104 0.5 106 59.9833 4.09407
可见,用公式 f ( x) ln x
k
k 2 k A A ( I A ) 5.证明ρ(A)<1时,

1 注意,绝对收敛的函数幂级数 f t t 1 t , t 1,则 证明(1): k 0 1 t k 1 k s t f t t f t kt kt 令 2 1 t 1 t 2 k 1 k 0
3 。 节点为: x1 h , x2 2h , x3 3h 4 8 8
相应的方程组为:
2 1 h 2 0 1 h 2 0 u1 h u2 1 2 2 u 3


2 先令 y x x 1 ,由于开方用六位函数表,则 y 的误差为已
知, 故应看成 z g ( y) ln( y) , 由 y的误差限
* ln( y ) ln( y )。 误差限
y y * 求g(y)的
解:当x=30时,求 y 30 302 1 , 用六位开方表得
xi a ih,
h 称为步长。
i 0,1,
,N, h
ba N
于是我们得区间 I=[a, b]的一个网格剖分。 xi称为网格节点,
h
a x0 x1

数值分析(01) 数值计算与误差分析

数值分析(01) 数值计算与误差分析

克莱姆算法步骤
1. 2.
D for 2.1. 2.2.
( j1 jn )
t ( 1 ) a1 j1 a 2 j2 a nj n
i 1 n Di
( i1 i n ) t ( 1 ) a i1 1 bi2 j a in n
Di xi D
N=[(n2-1)n!+n]flop
每周有课外练习,两周交一次作业, 一学期完成 3 个综合程序课题设计。 考试评分: 平时作业+程序占总成绩的30%,
期末考试占总成绩的70%,开卷考试。
Matlab_zm@ 密码 123456
数值分析
数值分析
第二节 数值问题与数值算法
求数学问题的数值解称为数值问题.
数值方法:适合在计算机上,按确定顺序依次进行计算 的计算公式,也就是通常所说的数值计算方法。 数值算法:从给定的已知量出发,经过有限次四则运算
有递推公式
注意
计算量 N n flop
Pn ( x) x( x( x( x(an x an1 ) an2 ) a1 ) a0
数值分析

sn an sk xsk 1 ak P n ( x) s0
k n 1,,2,1,0
数值分析
例3 矩阵乘积AB的计算量分析
第一节 数值分析的研究对象和特点
我们把在电子计算机上进行的科学工作称为科学计算。 科学研究的方法: 科学理论,科学实验,科学计算 科学计算的核心内容是以现代化的计算机及数学软件 为工具,以数学模型为基础进行模拟研究。
数值分析
数值分析
第一节 数值分析的研究对象和特点
科学计算的步骤:实际问题→数学模型→数值方法 →程序设计→上机计算→分析结果。 1、建立数学模型(实际问题数学化) 2、设计计算方案(数学问题数值化)

数值分析讲义

数值分析讲义

第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。

误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。

相对误差e r是误差e 与精确值x* 的比值,。

常用计算。

相对误差限是相对误差的最大限度,,常用计算相对误差限。

绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。

从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。

关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。

(4) 要求精确到10-3,取该数的近似值应保留4 位小数。

一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。

一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。

二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。

矩阵与数值分析

矩阵与数值分析

矩阵与数值分析学院电子信息与电气工程学部专业生物医学工程班级学号姓名刘江涛1:考虑计算给定向量的范数;输入向量T n x x x x ),,,(21 =,输出∞x x x ,,21,请编制一个通用程序,并用你编制的程序计算如下向量的范数:()TTn y n x ,,2,1,1,,31,21,1 =⎪⎭⎫ ⎝⎛=对1000,100,10=n 甚至更大的n 计算其范数,你会发现什么结果?你能否修改你的程序使得计算结果相对精确呢?通用求范数程序: function NORM(x) y1=sum(abs(x)); y2=(sum(x.^2))^(1/2); y3=max(abs(x));fprintf('1-范数=%g ; 2-范数= %g ; inf-范数=%g\n',y1,y2,y3); 例题的运行程序: function xianglaing(n) x=[]; y=[]; for i=1:n x(i)=1/i; y(i)=i; enddisp('x 的范数:'); NORM(x'); disp(' ')disp('y 的范数:'); NORM(y'); 运行结果如下表:根据上述的两个表的运行结果,我们可以得知无论n 的值如何变化,对于1=∞x 恒成立;n y =∞恒成立,其1-范数与2-范数随着n 的增大而增大,但是其变化越来越小,这是因为计算在进行数值计算时有误差存在,对于表达式(1)当n 很大时n1却很小,会出现“大数吃小数的现象”;修改方案:当n 很大时我们避免用n 做除数,因为当n 非常大时01→n成立;所以在求解其范数时我们从小数开始相加,无穷个非常小的数值相加也可能是个很大的数,从而可以避免两个数相加时出现“大数吃小数”的现象;2:考虑xx x f y )1ln()(+==,其中定义1)0(=f ,此时)(x f 是连续函数,用此公式计算当]10,10[1515---∈x 时的函数值,画出图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
称为近似值a 的相对误差。 相对误差也可正可负。 实际计算中,如果真值 x 未知时, 通常取
作为a的相对误差, 条件是
xa xa x a
xa 较小。 x
相对误差的绝对值上界叫做相对误差界(限), 记为:
xa a
ea a
相对误差界(限)

有两个量 x=3.000, a=3.100, 则其绝对误差: x a 0.1 绝对误差 其相对误差为: x a 0.1 0.333 101 , x 3.00 又有两个量 x 300.0 , a 310.0, 则其绝对误差:
1.1验并列为三大科学方法。
我们所学习的内容属于一门新学科——科学计算。
即现代意义下的计算数学。 主要研究在计算机上可计算的有效算法及相关理论。
本课程主要研究用计算机求解各种数学问题
的数值计算方法及其理论与软件实现
主要内容包括: 数值代数
Ax b
到x的前几位近似值a, 例如
x π 3.14159265
a1 0.00159265 取5位: a2 3.1416, a2 0.00000735
取3位: a1 3.14, 那么,它们的误差界的取法应为:
1 π 3.14 10 2 , 2
近似的,因此在此过程中,误差无处不在。
计 算 机 科 学 计 算 的 流 程 图
实际问题 数学模型 数值计算方法
编程实现算法 计算机数值结果
模型误差

方法误差或称为 截断误差 观测误差
舍入误差
1.模型误差 由实际问题抽象出数学模型,要简化许多 条件,这就不可避免地要产生误差.实际问题的解与数学模 型的解之间的误差
26!=4.0329×1026(次)
若使用每秒百亿次的串行计算机计算, 一年可进行的运算应为:
365(天) × 24(小时) × 3600(秒) × 1010 ≈ 3.1536 × 1017 (次) 共需要耗费时间为:
26 4.0329 10

3.1536 1017
9 1.2788 10
矩阵与数值分析
大连理工大学工科硕士研究生数学公共基础课程
大连理工大学研究生教育大楼
授课教师基本信息
• • • •
姓 名:董波 工作单位:数学科学学院 办公地点:创新园大厦(大黑楼)B1113室 EMAIL: dongbodlut@
创业园大厦
主 讲 教 材
参考书目 (Reference)
什么是有效算法?

考察线性方程组的解法
a11x1 a12 x2 a1n xn b1
a21x1 a22 x2 a2n xn b2

an1 x1 an 2 x2 ann xn bn
Cramer求解法则(18世纪)
xi
D

Di D
i 1, 2 ,
一、构造计算机可行的有效算法
二、给出可靠的理论分析,即对任意逼近达到精度要求,保证
数值算法的收敛性和数值稳定性,并可进行误差分析。 三、有好的计算复杂性,既要时间复杂性好,是指节省时 间,又要空间复杂性好,是指节省存储量,这也是建立算法要 研究的问题,它关系到算法能否在计算机上实现。 四、数值实验,即任何一个算法除了从理论上要满足上述 三点外,还要通过数值试验证明是行之有效的。
1 x a 10 k n 2
则称a为x的具有n位有效数字的近似值。
(1-15)
有 对于 e 2.71828182 ,下面的各个值的有效数字的位数。 效 1 取 a 2.718 10 0.2718 ,其绝对误差界为 数 1 3 k n 3 n 4, 10 , 字 e a 0.0003 2 位 a 是 e 的具有4位有效字的近似值。 数 1 与 取 a1 2.7182 10 0.27182 , 其绝对误差界为 小 1 3 10 , e a1 0.00009 数 2 点 故 a1是 e 的具有4位有效数字的近似值。 的 取 a 0.02718 101 0.2718 作为 x 0.0271828182 位 的近似值, 1 置 x a 0.000002 105 k n 5 n 4 。 无 2 也具有4位有效数字。 关
1.2 误差分析与数值方法的稳定性
1.2.1 误差来源与分类 1.2.2 误差的基本概念和有效数字
1.2.3 函数计算的误差估计
1.2.4 数值方法的稳定性和避免误差危害的基本原则
1.2.1 误差来源与分类
用计算机解决科学计算问题时经常采用的处理方式是将连
续的问题离散化、用有限代替无限等,并且用数值分析所处理 的一些数据,不论是原始数据,还是最终结果,绝大多数都是
(1)如果 a 有 n 位有效数字,则其相对误差界满足
1 xa 1 n 10 , 2a1 a
(2)如果其相对误差界满足
1 xa 1 n 10 , 2(a1 1) a
则 a 至少具有 n 位有效数字。

由(1-14)可得到
k 1 a1 10k 1 a (a1 1) 10
sx
近似代替函数 e , 则数值方法的误差是
e 2 n 1 x , Rn x e sx n 1!
x2
x2
x 2
截 断 误 差
0 1
3. 观测误差 初始数据大多数是由观测而得到的。由于观 测手段的限制,得到的数据必然有误差
4. 舍入误差 以计算机为工具进行数值运算时,由于计算 机的字长有限,原始数据在计算机上的表示往往会有误差,在 计算过程中也可能产生误差 产生的误差 例如, 用1.4142近似代替 2 ,
如果一个近似值是由精确值经四舍五入得 到的,那么,从这个近似值的末尾数向前数 起直到再无非零数字止,所数到的数字均为 有效数字
一般来说,绝对误差与小数位数有关, 相对误差与有效数字位数有关
定理
设实数 x 为某个精确值,a 为它的一个近似值,
k 其表达形式如 a 10 0. a1a2 an
13(亿年)
它远远超出目前所了解的人类文明历史!
Cramer 算法是“实际计算不了”的。
而著名的 Gauss消元法,它的计算过程已作根本改进,
成为有效算法,使得可在不到一秒钟之内即可完成上述计算 任务。 随着科学技术的发展,出现的数学问题也越来越多样化, 有些问题用消去法求解达不到精度,甚至算不出结果,从而 促使人们对消去法进行改进,又出现了主元消去法,大大提 高了消去法的计算精度。 这就是研究数值方法的必要性
n n n 1 n n 1 n 2 n n 1 3 2
n!
利用Cramer法和Laplace展开定理来求解一个n阶线性方程组,所 需的乘法运算次数就大于
(n 1)n! (n 1)!
求解25阶线性方程组
总的的乘法运算次数将达:
1.2.2 误差的基本概念和有效数字
定义 设 x 为精确值,a 为 x的一个近似值, 称
xa
通常准确值 定义
绝对误差(误差)
为近似值 a 的绝对误差, 简称误差。 误差 x a 可正可负。
x 是未知的, 因此误差 x a 也未知。
设 x 为精确值, a为 x 的一个近似值, 若有常数
ea 使得
1 π 3.1416 10 4. 2
定义
设 x 为精确值, a为x 的一个近似值,表示为:
a 10k 0. a1a2 an
(1-14)
其中 ai(i=1,2,…,n)是0到9中的 可以是有限或无限小数形式, 一个数字,a1 0, k为整数,n为正整数,如果其绝对误差界
2. 截断误差 从数学问题转化为数值问题的算法时所产 生的误差,如用有限代替无限的过程所产生的误差
例如, 给定
x求e
x2
的值的运算,我们可用无穷级数:
e
x2
4 6 2n 2 n 1 x x x x = 1 x2 2! 3! n! n 1!
我们可用它的前 n 1 项和
764.5 x 765.5,
结果说明x在区间[764.5,765.5]内。 对于一般情形 x a ea , 即可以表示为
也可以表示为
a ea x a ea ,
x a ea 。
但要注意的是,误差的大小并不能完全表示近似值的好坏。
定义
若 x 0, 则将近似值的误差与准确值的比值 xa 相对误差(误差)
的绝对误差界和相对误差界。
解: e a 0.00028182 其绝对误差界为:
相对误差界为:
ea a

e a 0.0003
0.0003 0.0001110375 0.0002。 2.718
绝对误差界和相对误差界并不是唯一的
误差界的取法
当准确值x位数比较多时,人们常常按四舍五入的原则得
占20%; 占10%;
占70%;
第1章 绪 论
作业:P27 2、3、7、8、10、12(3)、13
3、(2)x2 2c b b 4ac
2
x2
2c b b2 4ac
第1章 绪 论
1.1 计算机科学计算研究对象与特点 1.2 误差分析与数值方法的稳定性
1.3 向量与矩阵的范数

an1
b2
bn
ann
理论非常漂亮 线性方程组的求解
实际计算困难(运算量大得惊人)
计算n+1个n阶行列式 Laplace展开定理
设计算 k 阶行列式所需要的乘法运算的次数为 mk ,则
mk k k mk 1
相关文档
最新文档