大连理工大学矩阵与数值分析第1章-矩阵与数值分析1

合集下载

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。

第1章--1(矩阵与数值分析)

第1章--1(矩阵与数值分析)

,而
a1010.2718, kn3 n4 ,所以它是
e2.7182 8的1具8 有2 4位有效字的近似值。
如果取近似值 b 2 .7 1 8 2 1 0 1 0 .2 7 1 8 2 ,因
eb0.000091103 2
b 也只是 e 的具有4位有效数字的近似值。 同样我们可以分析出 a1010.271作8为 x0.02718 28
以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。
特别地,当 n时2,
f(x 1 ,x 2 ) f(a 1 ,a 2 ) x f1 A x 1 a 1 x f2 A x 2 a 2
现将上述估计式应用到四则运算.
(1)加法
fx1,x2x1x2
x1 x2 (a1 a2 ) x1 a1 x2 a2
两个近似数相加,其运算结果的 精度不比原始数据的任何一个精度高。
的绝对误差界和相对误差界。
解:ea0.000 28 ,因1此8 其绝2对误差界为:
e a 0.0003
相对误差界为: ea 0.00030.00011103705.0002。
a 2.718
此例计算中不难发现,绝对误差界和相对误差界并不唯一。 我们要注意它们的作用。
“四舍五入” 时误差界的取法
当准确值 位x数比较多时,常常按四舍五入的原则取
b0
,则有 x1 baab bb

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

大连理工大学矩阵与数值分析上机作业代码

大连理工大学矩阵与数值分析上机作业代码
则方程组有解 x = (1,1,⋯ ,1) 。 对 n = 10 和 n = 84 , 分别用 Gauss 消去法和列主元消去法解
T
方程组,并比较计算结果。
1.1 程序
(1)高斯消元法 n=10 时, >> [A,b]=CreateMatrix(10) A= 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6
1.3 M 文件
.m 1.3.1 CreateMatrix CreateMatrix.m function [A,b]=CreateMatrix(n) %用于存放习题1的题目信息,并建立构造题目中矩阵的函数 %对矩阵A赋值 A1=6*ones(1,n); A2=ones(1,n-1); A3=8*ones(1,n-1); A=diag(A1)+diag(A2,1)+diag(A3,-1); %对向量b赋值 b=15*ones(n,1); b(1)=7; b(n)=14;
10
,迭代次数上限取默认值
50,使用 Jacobi 法进行迭代。 >> test2 >> b=ones(20,1) >> x0=zeros(20,1) >> [x,n]=JacobiMethod(A,b,x0) x= 0.2766 0.2327 0.2159 0.2223 0.2227 0.2221 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2221 0.2227 0.2223 0.2159 0.2327 0.2766

大连理工大学研究生课程表模板

大连理工大学研究生课程表模板

数理方程
研教楼103 丛洪滋 3-18周上(3学时)
第9-11小节 18:00~18:45 18:55~19:40 19:50~20:35
自然辩证法概论
研教楼304 王子彦 3-9周上(3学时)
ห้องสมุดไป่ตู้
晚 上
班级:建工1403
星期四
中国特色社会主义理论与实践研究
研教楼104 徐成芳 12-20周上(4学时)
星期五
高等土力学
研教楼103 唐小微 3-15周上(2学时)
1-20周 星期六
星期日
时间
第一小节 8:00~8:45 第二小节 8:55~9:40
中国特色社会主义理论与实践研究
研教楼104 徐成芳 12-20周上(4学时)
矩阵与数值分析
研教楼204 孟兆良 3-15周上(2学时)
第三小节 10:05~10:50 第四小节 11:00~11:45
第五小节 13:30~14:15 第六小节 14:25~15:10
第七小节 15:20~16:05 第八小节 16:15~17:00
上课班级表 班级:建工1403
2014-2015学年第一学期 节 次 第 一 上 大 节
口语交流 I (基础口语表达) 矩阵与数值分析
研教楼204 孟兆良 3-15周上(2学时)
星期一
星期二
星期三
高等土力学
研教楼103 唐小微 3-15周上(2学时)
第 二 午 大 节
教室506 马莉 3-11周上(2学时)
结构动力学
论文写作与学术规范
研教楼304 王贤文 16-19周上(4学时)
结构动力学
研教楼102 刘君(水利) 3-15周上(2学时)

1.1 数域~1.2 矩阵和运算1(13秋季,林鹭)

1.1 数域~1.2 矩阵和运算1(13秋季,林鹭)

展开和式
4
4
(1) a2i (2) 2i
i 1
i 1
22
(3) aij i1 j1
(4)
aij
1i j3
特殊矩阵及其元素表示_4
• 基础矩阵Eij
0



0
1
Eij



0



j列
i行 0 mn
1 k i且l j ekl 0 其他
A (aij )mn
m i 1
a E n
j1 ij ij
小结
✓ 数域的定义 ✓ 矩阵的概念
– 特殊矩阵
✓ 矩阵的相等、加法和数乘
下节
• 矩阵的乘法(难点、重点) • 矩阵的转置
• 作业 §1.1 Ex. 1, 2; §1.2 Ex. 1
补充: 用 表示下列式子
(1) a1b2 a3b4 ... a b 2n1 2n2 (2) a1bn a2bn1 ... anb1 (3) a1b1 a1b2 a1b3 a2b2 a2b3 a3b3
• n阶方阵A: A的行数=列数= n
矩阵的相等
• A = (aij)m×n,B = (bij)s×t 则A = B 必须同 时满足如下两个条件
✓ m = s, n = t ✓ aij = bij i=1, 2, …, m; j = 1, 2, …, n
特别提示 具有不同行列数的零矩阵代表不同 的矩阵。如 O2×3≠O1×6 ≠O3×2
第一章 矩阵 Matrix
§1.1-1.2 目的要求
• 掌握数域的定义, 正确判断数域;
• 熟练掌握矩阵的定义、两矩阵的相 等概念;

大连理工大学矩阵分析matlab上机作业

x=zeros(n,1); %为列向量 x 预分配存储空间 y=1:n; %定义行向量 y y=y'; %把行向量 y 改成列向量 for i=1:n
x(i)=1/i; %按要求给向量 x 赋值,其值递减 end normx1=norm(x,1); %求解向量 x 的 1 范数 normx1 normx2=norm(x,2); %求解向量 x 的 2 范数 normx2 normxinf=norm(x,inf); %求解向量 x 的无穷范数 normxinf normy1=norm(y,1); %求解向量 y 的 1 范数 normy1 normy2=norm(y,2); %求解向量 y 的 2 范数 normy2 normyinf=norm(y,inf); %求解向量 y 的无穷范数 normyinf z1=[normx1,normx2,normxinf]; z2=[normy1,normy2,normyinf]; end
for i=2:n
for j=i:n U(i,j)=A(i,j)-L(i,1:i-1)*U(1:i-1,j);

%Doolittle 分解计算上三角矩阵的公
L(j,i)=(A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i); %Doolittle 分解计算下三角矩 阵的公式
end
1 1 1 ������ x = (1, 2 , 3 , … , ������) ,
������ = (1,2, … , ������)������.
对n = 10,100,1000甚至更大的n计算其范数,你会发现什么结果?你能否修改
你的程序使得计算结果相对精确呢?
1.1 源代码
function [z1,z2]=norm_vector(n) %向量 z1 的值为向量 x 的是三种范数,向量 z2 的值为向量 y 的三 种范数,n 为输入参数

[理学]矩阵与数值分析-第1章li-Chapter1


什么是有效算法?
考察,线性方程组的解法
⎧a11 x1 + a12 x2 + L + a1n xn = b1 ⎪a x + a x + L + a x = b ⎪ 21 1 22 2 2n n 2 ⎨ M ⎪ ⎪ ⎩an1 x1 + an 2 x2 + L + ann xn = bn
早在18世纪Cramer已给出了求解法则:
2001. 数值线性代数,徐树方、高立、张平文,北京大学出版 社,2000. 数值逼近,王仁宏,高等教育出版社,1999. 数值逼近方法,南京大学数学系计算数学专业编,科学出 版社,1978. 微分方程数值解法,李荣华、冯果忱,高等教育出版社, 1996. 微分方程数值方法,胡健伟、汤怀民,科学出版社,1999. 矩阵分析引论,罗家洪、方卫东,华南理工大学出版社, 2006. 矩阵分析,同济大学应用数学系,同济大学出版社,2005.
本课程的成绩考核标准
1、平时的课后作业 2、数值试验报告 (Matlab,C) 3、期末考试 ≈ 70%
课程网站 /numerical/
≈ 30%
第1章


1.1 计算机科学计算研究对象与特点
科学计算、理论计算和实验并列为三大科学方 法。现代意义下的计算数学主要研究在计算机上计 算的有效算法及其相关理论,从而使它成为一门新 学科——科学计算。
矩阵与数值分析
大连理工大学工科硕士研究生基础学位课程
李崇君
(主讲) 作者:张宏伟、金光日、李崇君 大连理工大学数学科学学院
从一个小例子开始
问题: 在一个正方形的桌面上(边长为a), 分别在四个角有 四只小虫,它们同时向着逆时针方向的另一只小虫移动, 求 它们的运动轨迹.

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --=Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()(超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

大连理工大学矩阵与数值分析试卷-2013

13 ) 设 求 积 公 式
1 0 0 0
3 ⎞ ⎛2 5 ⎟ T ⎟ ; LL 分解中 L= ⎜ ⎜3 4 ⎜ − ⎟ ⎟ ⎝2 5⎠
1 1 2 2
0 ⎞ ⎟ 7 ⎟。 ⎟ 2 ⎠
Gauss 求 积 公 式 , 则
1 ∫ x + 1 f (x ) dx ≈ A f (x ) + A f (x ) + A f (x ) 为
2)为使二点数值求积公式 积节点和求积系数应为 (A) x0 = −

1
f ( x) 1 − x2
.
−1
dx ≈ A0 f ( x0 ) + A1 f ( x1 ) 具有最高的代数精度,其求
B
2 2 π 1 1 1 , x1 = ; A0 = A1 = ; (B) x0 = − , x1 = ; A0 = A1 = ; 2 2 2 2 2 2
⎛ ⎜ 即 V = ( v1 v2 ) = ⎜ ⎜ ⎜ ⎝ ⎛ ⎜ V1 = V = ⎜ ⎜ ⎜ ⎝ 1 2 1 2 1 ⎞ ⎛ ⎟ ⎜ 2⎟ 或 V = ( v1 v2 ) = ⎜ −1 ⎟ ⎜ ⎟ ⎜ 2⎠ ⎝ 1 2 1 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ −1 ⎞ 2⎟ ⎟ ,因 rank(A)=1,故有 1 ⎟ ⎟ 2⎠ 1 ⎞ ⎛ 1 ⎞ ⎟ ⎜ ⎟ 2⎟ (1) = ⎜ 2 ⎟ , 由 U = (U1U 2 ) , 则 1 ⎟ ⎜ 1 ⎟ ⎟ ⎜ ⎟ 2⎠ ⎝ 2⎠
17). 为了减少运算次数,应将表达式.
4 x3 − 3x 2 − 2 x − 1 改写为 x4 + x2 + x − 1
( ( 4 x − 3) x − 2 ) x − 1 ; ( ( ( x + 0 ) x + 1) x + 1) x − 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果 f ( x1 , x 2 , , x n ) 为 n 元函数,自变量
x1 , x 2 , , x n
的近似值分别为
a1 , a 2 , , a n ,则
n
f f ( x1 , x2 , , xn ) f (a1 , a2 , , an ) ( xk a k ) x k 1 k A
第1章
1.1


计算机科学计算研究对象与特点
科学计算----现代意义下的计算数学,主要研 究在计算机上计算的有效算法及其相关理论。 科学计算、理论计算和实验----三大科学方法。
计算数学-----研究用计算机求解各种数
学问题的数值计算方法及其理论与软件实现。 主要内容包括:
Ax b
f x 0
a 138.00,
解:
4 c 0 . 86 10 b 0.0312,
a 0.13800 10 ,
3
b 0.312101 ,
c 0.86 10 .
则由
4
1 x a 10 2 2

3 n 2
n5
a 有5位有效数字;
1 x b 10 2 2
观测误差通常也归结为舍入误差。
1.2.2 误差的基本概念
定义
设 x 为精确值,a 为 x 的一个近似值, 称
xa
绝对误差(误差)
为近似值的绝对误差, 简称误差。 误差 x a 可正可负。
通常准确值 x是未知的, 因此误差 x a也未知。 定义
ea ,使得
设 x 为精确值,a为 x的一个近似值,若有常数 绝对误差界(限)
从理论上讲Cramer法则是一个求线性方程组的数值方法,
且对阶数不高的方程组行之有效。但是理论正确的数值方法在 计算机上是否实际可行呢? 以求解20阶线性方程组为例,如果用Cramer法则求解, 在算法中的乘、除运算次数将大于
21!(约9.7×1020次)
使用每秒一亿次的串行计算机计算,完成运算耗时约30万年!
Cramer算法是“实际计算不了”的。为此,人们研究出著 名的Gauss消去法,它的计算过程已作根本改进,使得上述 例子的乘、除运算仅为3060次,这在任何一台电子计算机上 都能很快完成。 随着科学技术的发展,出现的数学问题也越来越多样化,
有些问题用Gauss消去法求解达不到精度,甚至算不出结果,
矩阵与数值分析
大连理工大学工科硕士基础课 程 任课教师:金光日(1班)
计 算 机 科 学 计 算
(第二 版)
张宏伟 金光日 施吉林 董波 编
高等教育出版社
课程须知
• 学时:48 • 学分:3 • 基础:微积分、线性代数、程序设计语言
(建议掌握 Matlab 或 C 语言) • 环节: 课堂授课 + 课外上机实验 • 考核:期末考试70%; 平时作业20%; 数值实验10%.
有效数字位数与小数点的位置无关。 如果一个近似值是由精确值经四舍五入 得到的,那么,从这个近似值的末尾数向前 数起直到再无非零数字止,所数到的数字均 为有效数字。 一般来说,绝对误差与小数位数有关, 相对误差与有效数字位数有关。
下列近似值的绝对误差限均为0.005,问它 例2 们各有几位有效数字?
1 e b 0.00009 103 2 b 也只是 e 的具有4位有效数字的近似值。
1 a 10 0.2718 作为 x 0.0271828182 同样我们可以分析出
的近似值,也具有4位有效数字。这是因为: 1 x a 0.000003 105 , k n 5 n 4 2
xa a 1 101 n , 2a1
(1-4)
(2)如果
xa a 1 2(a1 1) 101 n ,
(1-5)
则 a 至少具有 n 位有效数字。

因为
a1 10k 1
a (a1 1) 10k 1
所以如果 a 有 n 位有效数字,那么
xa a xa
x a ea
则 ea 叫做近似值的误差界(限)。
例如,用毫米刻度的米尺测量一长度 x,读出和该长度
接近的刻度
a

a 是 x的近似值, 它的误差限是 0.5mm , 于是
x a 0.5mm.
绝对误差界(限)
如读出的长度为 765mm , 则知 x 765 0.5 . 虽然从这个不等式不能知道准确的 x 是多少,但可知
f f f ( x1 , x2 ) f (a1 , a2 ) x a x2 a2 1 1 x x 1 A 2 A
现将上述估计式应用到四则运算. (1)加法
f x1, x2 x1 x2
x1 x2 (a1 a2 )
(1-5)
则称 a 为 x 的具有 n 位有效数字的近似值。
在例1中, 由于
a 101 0.2718,
e a 0.0003
1 103 2
,而 ,所以它是
k n 3
n4
e 2.71828182 的具有4位有效字的近似值。
如果取近似值
b 2.7182 101 0.27182 ,因
其中
f f x k A xk
.
( a1 , a2 ,, an )
所以可以近似估计误差界:
n
f f ( x1 , x2 , , xn ) f (a1 , a2 ,, an ) xk ak x k 1 k A
特别地,当 n 2 时,
764.5 x 765.5,
结果说明 x 在区间 [764.5, ห้องสมุดไป่ตู้65.5]内.
对于一般情形
x a ea , 即
a ea x a ea ,
也可以表示为
x a ea .
但要注意的是,绝对误差的大小并不能完全表示近似值的 好坏.
定义 若 x 0 , 则将近似值的误差与准确值的比值
2
1 xa xa a 1 x a a a
xa 是 的平方项级,故可忽略不计。 a
相对误差也可正可负,其绝对值的上界叫做相对误差界 (限)。 当绝对误差界为 ea 时,相对误差界取为 ea 相对误差界(限) a
例1 已知 e 2.71828182 ,其近似值 a 2.718 ,求 的绝对误差界和相对误差界。 解:e a 0.00028182 ,因此其绝对误差界为:
xa x
相对误差(误差)
称为近似值 a 的相对误差。 实际计算中, 如果真值 x 未知时, 通常取
xa xa x a
作为 a 的相对误差, 条件是
xa 较小。 a
这是由于
x a x a x a a x ax
2
2
( x a)2 a a x a
从而促使人们对Gauss消去法进行改进,又出现了Gauss主元 消去法,大大提高了消去法的计算精度。 寻求新的数值方法----计算机科学计算生命力的来源。
1.2 误差分析与数值方法的稳定性
1.2.1 误差来源与分类
用计算机解决科学计算问题时经常采用的处理方式是将连
续的问题离散化、用有限代替无限等,并且用数值分析所处理
n 11 n
xa
a1
由定义1.3知,a 至少具有 n 位有效数字。
1.2.3 函数值计算的误差估计
设一元函数 f ( x) 具有二阶连续导数, 自变量 x 的一个 近似值为 a , 如果用 f (a) 近似f ( x) , 则可用Taylor展开的 方法来估计其误差。 从而 即有 2 2 '' f '' ( ) x f ( )x a a ' '
a
e a 0.0003
相对误差界为:
ea a 0.0003 0.0001110375 0.0002。 2.718
此例计算中不难发现,绝对误差界和相对误差界并 不是唯一的。我们要注意它们的作用。
误差界的取法
当准确值 x位数比较多时,常常按四舍五入的原则取
x 的前几位得到近似值 a , 例如
的一些数据,不论是原始数据,还是最终结果,绝大多数都是 近似的,因此在此过程中,误差无处不在.误差主要来源于以 下四个方面:
计 算 机 科 学 计 算 的 流 程 图
实际问题
模型误差

数学模型

数值计算方法
截断误差或称为 方法误差 观测误差

编程实现算法

计算机数值结果
舍入误差
模型误差和观测误差不在本课程的讨论范围。 这里主要讨论算法的截断误差与舍入误差,而截断 误差将结合具体算法讨论。
什么是有效算法?
考察线性方程组的解法
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 an1 x1 an 2 x2 ann xn bn
早在18世纪Cramer已给出了求解法则:
x π 3.14159265
取3位 a1 3.14, 它们的误差界的一种取法:
π 3.14 1 10 2 , 2
a1 0.00159265
取5位 a2 3.1416, a2 0.00000735
1 10 4. 2
π 3.1416
1 1 1 1 n 1 10 , k n 10 a 10k 1 2a1 a 1 2
结论(1)成立。 再由(1-5),
1 (a1 1) 10k 1 1 n 10 k n , 10 xa 10 10 2 (1a 1) 2 (a1 1) a 1) 1 a 2(2
相关文档
最新文档