大连理工大学09级矩阵与数值分析试题

合集下载

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大连理工大学《矩阵与数值分析》2005-2009年真题答案

大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。

2000-9年大连理工大学高等代数考研试题

2000-9年大连理工大学高等代数考研试题

v ∈ Rn 使得 A = uv ' .
十.(15 分) 若 A 是实对称正定矩阵,则存在实对称正定矩阵 B,使得 A = B2 . 十一.(15 分) 证明:设 f (x) 是整系数多项式,且 f (1) = f (2) = f (3) = p < p 为素数>, 则不存在整数 m ,使 f (m) = 2 p .
大连理工大学 2004 年硕士生入学考试<<高等代数>>试题 说明:填空题的括号在原试题中均是横线 一.填空题(每小题四分)
1.设f (x), g(x)是有理系数多项式,且f (x), g(x)在复数域内无公共根,则f (x), g(x)在有理数域 上的最大公因式是 =()
⎡ 1 1 " 1 2 − n⎤
⎜⎝ 0 0 3⎟⎠
则向量β
=
2α1
+ 3α 2

α
的长度为()
3
二:(24 分)设 R,Q 分别表示实数域和有理数域,f(x),g(x)属于 Q[x].证明:
(1) 若在 R[x]中有 g(x)|f(x),则在 Q[x]中也有 g(x)|f(x)。 (2) f(x)与 g(x)在 Q[x]中互素,当且仅当 f(x)与 g(x)在 R[x]互素。 (3) 设 f(x)是 Q[x]中不可约多项式,则 f(x)的根都是单根。
2,β
3可又向量组α
1,α
2,α
线性表示:
3
β1 = α1 + 4α 2 + α3
β2 = 2α1 + α 2 −α3
β3 = α1 − 3α3
则β1,β 2,β 3线性()
5.设A是n阶矩阵,如果r( A) = n −1,且代数余子式A11 ≠ 0,则齐次线性方程组Ax = 0 得通解是()

大连理工大学矩阵与数值分析上机作业

大连理工大学矩阵与数值分析上机作业
s=s+abs(x(i));
end
case2%2-范数
fori=1:n
s=s+x(i)^2;
end
s=sqrt(s);
caseinf%无穷-范数
s=max(abs(x));
end
计算向量x,y的范数
Test1.m
clearall;
clc;
n1=10;n2=100;n3=1000;
x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]';
xlabel('x');ylabel('p(x)');
运行结果:
x=2的邻域:
x =
1.6000 1.8000 2.0000 2.2000 2.4000
相应多项式p值:
p =
1.0e-003 *
-0.2621 -0.0005 0 0.0005 0.2621
p(x)在 [1.95,20.5]上的图像
程序:
[L,U]=LUDe.(A);%LU分解
xLU=U\(L\b)
disp('利用PLU分解方程组的解:');
[P,L,U] =PLUDe.(A);%PLU分解
xPLU=U\(L\(P\b))
%求解A的逆矩阵
disp('A的准确逆矩阵:');
InvA=inv(A)
InvAL=zeros(n);%利用LU分解求A的逆矩阵
0 0 0.5000 -0.2500 -0.1250 -0.0625 -0.0625
0 0 0 0.5000 -0.2500 -0.1250 -0.1250
0 0 0 0 0.5000 -0.2500 -0.2500

大连理工大学矩阵分析matlab上机作业

大连理工大学矩阵分析matlab上机作业
x=zeros(n,1); %为列向量 x 预分配存储空间 y=1:n; %定义行向量 y y=y'; %把行向量 y 改成列向量 for i=1:n
x(i)=1/i; %按要求给向量 x 赋值,其值递减 end normx1=norm(x,1); %求解向量 x 的 1 范数 normx1 normx2=norm(x,2); %求解向量 x 的 2 范数 normx2 normxinf=norm(x,inf); %求解向量 x 的无穷范数 normxinf normy1=norm(y,1); %求解向量 y 的 1 范数 normy1 normy2=norm(y,2); %求解向量 y 的 2 范数 normy2 normyinf=norm(y,inf); %求解向量 y 的无穷范数 normyinf z1=[normx1,normx2,normxinf]; z2=[normy1,normy2,normyinf]; end
for i=2:n
for j=i:n U(i,j)=A(i,j)-L(i,1:i-1)*U(1:i-1,j);

%Doolittle 分解计算上三角矩阵的公
L(j,i)=(A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i); %Doolittle 分解计算下三角矩 阵的公式
end
1 1 1 ������ x = (1, 2 , 3 , … , ������) ,
������ = (1,2, … , ������)������.
对n = 10,100,1000甚至更大的n计算其范数,你会发现什么结果?你能否修改
你的程序使得计算结果相对精确呢?
1.1 源代码
function [z1,z2]=norm_vector(n) %向量 z1 的值为向量 x 的是三种范数,向量 z2 的值为向量 y 的三 种范数,n 为输入参数

大连理工大学矩阵与数值分析大作业题目

大连理工大学矩阵与数值分析大作业题目

2014级工科硕士研究生《矩阵与数值分析》课程数值实验题目1. 方程在x=3.0附近有根,试写出其三种不同的等价形式以构成两种不同的迭代格式,再用这两种迭代求根,并绘制误差下降曲线,观察这两种迭代是否收敛及收敛的快慢2. 用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为,并将计算结果与精确解进行比较:(1) (2)3. 使用带选主元的分解法求解线性方程组,其中,,当时.对于的情况分别求解.精确解为.对得到的结果与精确解的差异进行解释.4. 用4阶Runge-kutta 法求解微分方程t t t te e t u u u u u 222101)(,101)0(,2---+==-=' (1) 令1.0=h ,使用上述程序执行20步,然后令05.0=h ,使用上述程序执行40步(2) 比较两个近似解与精确解(3) 当h 减半时,(1)中的最终全局误差是否和预期相符?(4) 在同一坐标系上画出两个近似解与精确解.(提示输出矩阵R 包含近似解的x 和y 坐标,用命令plot(R(:,1),R(:,2))画出相应图形.)5. 设为阶的三对角方阵,是一个阶的对称正定矩阵其中为阶单位矩阵。

设为线性方程组的真解,右边的向量由这个真解给出。

(1) 用Cholesky 分解法求解该方程.(2) 用Jacobi 迭代法和Gauss-Seidel 迭代法求解该方程组,误差设为. 其中取值为4,5,6.6. 设考虑空间的一个等距划分,分点为设为插值于这些等分点上的Lagrange插值多项式。

(1)选择不断增大的分点数目画出原函数与插值多项式在的图像,并比较分析实验结果。

(2)选择重复上述的实验看其结果如何实验须知:(1)所有的数值实验的题目要求用C语言或Matlab编程;(2)实验报告内容应包括问题、程序、计算结果及分析等;(3)考试前提交实验报告;(4)本次实验成绩将占总成绩的10%。

(5)报告上要注明:所在教学班号、任课老师的姓名;报告人所在院系、学号。

(完整word版)数值分析考试试卷和答案(word文档良心出品)

(完整word版)数值分析考试试卷和答案(word文档良心出品)

线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

大连理工大学《矩阵与数值分析》学习指导与课后参考答案第三章、逐次逼近法

第三章 逐次逼近法1.1内容提要1、一元迭代法x n+1=φ(x n )收敛条件为:1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。

2、多元迭代法x n+1=φ(x n )收敛条件为:1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。

3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。

4、线性方程组的迭代解法,先作矩阵变换 U L D A --=Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)(Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()(超松弛迭代法公式的矩阵形式f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111)(])1[()(三种迭代方法当1)(<B ρ时都收敛。

5、线性方程组的迭代解法,如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

6、线性方程组的迭代解法,如果A 不可约对角占优,则Gauss-Seidel 法收敛。

7、Newton 迭代法,单根为二阶收敛 2211'''21lim)(2)(lim---∞→+∞→--=-==--k k k k k k k k x x x x f f c x x ξξαα8、Newton 法迭代时,遇到重根,迭代变成线性收敛,如果知道重数m , )()('1k k k k x f x f m x x -=+仍为二阶收敛 9、弦割法)()())((111--+---=k k k k k k k x f x f x x x f x x 的收敛阶为1.618,分半法的收敛速度为(b-a )/2n-110、Aitken 加速公式11211112)(),(),(+----+-+--+---+---===k k k k k k k k k k k x x x x x x x x x x x ϕϕ1.2 典型例题分析1、证明如果A 严格对角占优,则Jacob 法和Gauss-Seidel 法都收敛。

大连理工大学-数学分析2009解答

大连理工大学-数学分析2009解答

大连理工大学2009年数学分析考试试题 数学分析试题解答 一、 计算题 1、 求极限:1222 (i),lim nn n n a a na a an→∞→∞+++=其中解:1212222...(1)(1)limlimlim()(1)212nn n n n n a a na n a n a a Stolz nn nn +→∞→∞→∞+++++===+-+利用公式2、求极限:21lim (1)xxx ex-→∞+解:2222221(1)1lim (1)lim ()1111(1)(1)(ln(1))1limlim111111(())21lim 121(1)12lim (1)lim ()lim ()xxxxx x xxx x x xxxxx x x x xex e ex xxx xxo exxx x e xee xx exee -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+-+==--+-∴+===3、证明区间(0,1)和(0,+∞)具有相同的势。

证明:构造一一对应y=arctanx 。

4、计算积分21Ddxdyy x+⎰⎰,其中D 是x=0,y=1,y=x 围成的区域解:1120221101011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dyy xy xy dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。

解:222222222tan 2222cos ,[0,2)cos 23cos 2cos 2213(2)(1)12arctan 1(2)(1)3111Cx x y ydx xdyI d x yxx x x d x dxxx x xππθθθπθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩--=−−−→=-+++-+-++−−−−−→-=--++++=-⎰⎰⎰⎰换元万能公式代换22661x dx dxπ+∞+∞-∞-∞+=-++⎛+ ⎝⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大 连 理 工 大 学
课 程 名 称: 矩阵与数值分析 试 卷: 统一 考试类型 闭卷 授课院 (系): 数 学 系 考试日期:2010年1月12日 试卷共 8页
一、 填空与判断题(⨯或√),每空 2 分,共50分
(1) 已知2009.12a =,2010.01b =分别是按四舍五入原则得到的1x 和2x 近似
值,那么,1x a -≤ ;2x b b -≤ ;12x x ab -≤ 。

(2)[]0,1上权函
数()x x ρ=的正交多项式族中()1x φ= ;
()()1
5
350
x
x x φ+=⎰ 。

(3) 已知存在实数R 使曲线2y x =和()2
228y x R +-=相切。

求切点横坐标近似值的Newton 迭代公式为 。

(4) 设1221⎛⎫
⎪-⎝⎭
A =,则它的奇异值为 。

(5)若取1101⎡⎤
=⎢⎥⎣⎦
A ,则10
d t
e t =⎰A 。

(6) 若1<A ,则()
1
--≤I A 。

(7) 已知(),(),()f a h f a f a h -+,计算一阶数值导数的公式是:
()f a '= 2()O h +;取()f x =0.001h =,
那么,用此公式计算(2)f '的近似值时,为避免误差的危害,应该写成:
(2)f '≈ 。

姓名: 学号: 院系:
矩阵数值分析 班
主讲教师


线
(8) 已知0.2510.25⎛⎫= ⎪

⎭A ,则0k
k ∞
==∑A 。

(9) 设,n
≠∈C s 0则
()
2
T
=ss s,s 。

(10) 求解微分方程(0)2u t u
u '=-⎧⎨=⎩,的Euler 法公式为 ;
绝对稳定区间为 ;改进的Euler 公式为 。

(11) 用A (-2,-3.1)、B (-1,0.9)、C (0,1.0) 、D (1,3.1)、E (2,4.9)拟合一 直线s (x )=a +bx 的法方程组为:。

(12) 已知多项式()3234321p x x x x =+++,那么求此多项式值的秦九韶算法公为:_ ______。

(13)
则均差[1,0,1]f -= ,由数据构造出最简插值多项式
()p x = 。

(14)设⎪⎪⎪⎪


⎝⎛+=231311a A ,当a 满足条件 时, A 必有唯一的T LL 分解(其中L 是对角元为正的下三角矩阵)。

(15) 求01)(=--=x e x f x 根的Newton 迭代法至少局部平方收敛 ( ) (16) 若A 为可逆矩阵,则求解A T Ax=b 的Gauss-Seidel 迭代法收敛 ( ) (17) 分段二点三次Hermite 插值多项式∈C 2函数类 ( ) (18) 如果A 为Hermite 矩阵,则A 的奇异值是A 的特征值 ( )
二、(6分)已知A =010202⎛⎫ ⎪ ⎪ ⎪- ⎪
-⎝
⎭,求出A 的Jordan 分解以及sin t A 。

三、(6分)给定求积节点:x k =0,0.25,0.5,0.75,1,请用复化的梯形公式和
复化的Simpson 公式,计算如下定积分的近似值。

四、(8分)确定将向量()1,3,4T
=x ,变换为向量()1,0,T
t =y 的正数t 和Householder 矩阵H ,以及()2cond H ,1H 。

五、(10分)
(1) 用Schimidt 正交化方法,构造[1,1]-上以1)(≡x ρ权函数的正交多项式系:)(0x φ,)(1x φ,)(2x φ;
(2)利用所得到的结果构造()4f x x =在[1,1]-上的最佳二次平方逼近多项式;
(3)构造[1,1]-上的两点Gauss 型数值求积公式;
(4)利用(3)的结果给出1
0sin 1x
dx x
+⎰
的近似值。

六、(12分)设线性方程组: 1
312
1
23212101242
x x x x x x x -=⎧⎪
--=-⎨⎪--+=⎩ (1) 利用Gauss 消去法求上述解方程组; (2) 求系数矩阵A 的LU 分解;
(3) 写出求解上述方程组的矩阵形式的Jacobi 迭代公式和分量形式的Gauss-Seidel 迭代法公式,并讨论收敛性.
七、(10分)已知解常微分方程初值问题00()(,)
()u t f t u u t u '=⎧⎨=⎩的某线性二步法的第
一、第二特征多项式分别为:
()2413
3ρλλλ=-+,()223
σλλ=
(1) 给出此线性二步法具体表达式,并求出其局部截断误差主项; (2) 讨论其收敛性; (3) 求其绝对稳定区间。

相关文档
最新文档