09级矩阵与数值分析试题
(完整版)2009研究生数值分析试题及答案-石家庄铁道大学,推荐文档

姓名学号评分时间120分钟石家庄铁道学院 2009 级硕士研究生考试试卷参考答案及评分标准课程名称 数值分析 任课教师 王亚红一.(1-6题 2分/空;7-10题 3分/空)1. 3,32. 43. -34. )()(max x P x f bx a -≤≤5. )2)(1(!4)(),2(2)4(2--+-x x x f x x ξ 6. 33,3321=-=x x 7. 21<a8.Λ,2,1,0,211721=--=+k x x x x kkk k 9. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=323/22/3212L 10.1,...,2,1,1--=⎩⎨⎧-==+n n k x d x d x k k k kn n β 二(16分).1. 解 :⎢⎢⎢⎣⎡221213112⎥⎥⎥⎦⎤ =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-32/12/1112132/112/31------8分解,b Ly =得⎪⎪⎪⎭⎫⎝⎛=304y解,y Ux =得⎪⎪⎪⎭⎫ ⎝⎛=111x . -----------------------------------------------12分2.Jacobi 迭代法计算公式:初始向量)0(x⎪⎩⎪⎨⎧--=--=--=+++2/)25()236(2/)4()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x , Λ,2,1,0=k ------------------------------16分-----------------------------------7分)2)(1)(1(245)1)(1(65)1(233))()(](,,,[))(](,,[)](,[)()(21032101021001003--+--++++-=---+--+-+=x x x x x x x x x x x x x x x x f x x x x x x x f x x x x f x f x N--------------------10分2.(10分)根据最小二乘原理∑=--=302))((i i i y b ax I 最小,----2分有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00aI bI即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑i i i ii i x y y a b xxx 24----------------------8分即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛36915554a b ,解得b =1.2857,a =2.8286 拟合曲线2857.18286.2+=x y ----------------------10分 四(16分)解: 1.+----=))(())(()()(2010210x x x x x x x x x f x L ))(())(()(2101201x x x x x x x x x f ----+))(())(()(1202102x x x x x x x x x f ---- ------------------------------6分计算=)(0'x L ()()()()2104321x f x f x f h-+- ----------------9分 )()(0'0'x L x f ≈=()()()()2104321x f x f x f h-+- ------------------------------------------12分2.)()(),,(210x L x f x x x ≈∈,))()!1()(()()(1)1(2'++'='++x n f x L x f n n ωξ, x x n f n n 与ξωξ,))()!1()((1)1('+++有关, )()(),,(210x L x f x x x '≈'∈无法估计. )(,2x L x '不是插值节点时当的值不能作为)('x f 的近似值.-----------------16分 五. 解 1.(8分)Λ004.041.10=-I 21021-⨯≤------------------2分 2000011102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I ------------------------4分22111122102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I类推有 8210999910101021102110~10)1~10(110~--⨯=⨯⨯≤-=---=-I I I I I I-----------6分计算到10I 时,误差限为初始0I 的误差限的1010倍,每递推一次误差扩大10倍, 所以这个计算过程是不稳定的。
大连理工大学《矩阵与数值分析》2005-2009年真题答案

大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。
矩阵与数值分析试题

1)1)已知近似值246.00a =有5位有效数字,则a 的绝对误差界为 ,a 的相对误差界为 ;2)于0,2π⎡⎤⎢⎥⎣⎦,用y=a+bx 做()sin f x x =最佳平方逼近,则法方程组为: ;3)设71057⎛⎫= ⎪⎝⎭A ,1=A ,()1cond =A ;4)为了减少运算次数,应将表达式.425432168116171814131x x x x x x x x ++--+---改写为_ ______;5)已知(0)1,(1)3,(2)5,f f f ===则均差[0,1,2]f = ,对应于x 0=0插值基函数()0l x = ;6)此数值求积公式2110116x e dx e --⎛⎫≈ ⎪⎝⎭⎰的代数精度为: ;7) 求解1u u t e -'=-+-的隐式Euler 公式: ; 8) 用二分法求方程3()2510f x x x =--=在区间[1,3]内的根,进行一步后根所在区间为___ ___。
9)1225⎛⎫=⎪⎝⎭A 的TLL 分解为: ; 10) [0,1]上以1()lnx xρ=权函数的正交多项式()0x φ= ,()1x φ= 。
11)0=x 是()10x f x x e =--=的根,则具有平方收敛的迭代公式为: 。
12)将向量=x 221⎛⎫⎪⎪ ⎪⎝⎭变换为向量=y ⎪⎪⎪⎭⎫ ⎝⎛003的正交矩阵H 为 ;姓名: 学号: 院系: 级 班装订线二、计算题1.(15分)如下求解初值问题00)(),,(u t u u t f u =='的线性二步法21(3)2n n n n hu u f f ++=++①确定出它的阶p 、局部截断误差主项和收敛性,求出其绝对稳定区间; ②给出上述方法求解方程:40u u '=-,1)0(=u ,的步长h 的取值范围。
2.(15分)确定0x ,0A ,1x ,1A 使得求积公式()()()1200111x f x dx A f x A f x -≈+⎰的代数精度m 达到最高,试问m 是多少?取()2xf x e -=,利用所求得的公式计算出数值解。
研究生《数值分析》试卷(带答案)

2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈ 6.016.044.001.0)412(01.0)448(=+=⨯++⨯-= 0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f ,0!4)(]4,3,2,1,0[)4(==ξff 三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰的代数精度.解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++= 1)(=x f 时:1110==⎰dx I1]00[121]2[21=-+=n I x x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I 4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ 52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛154153234520320320320221a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H ,解得 5,3=-=b a 因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈110)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -=得得Gauss 点: ,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A 解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈ Newton 迭代公式为1ln 112ln 1-+=----=+k k k k kk k k k x x x x x x x x x令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解. 解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛135152121137253125121211113112即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y 令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n nn n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
(完整版)2009研究生数值分析试题及答案-石家庄铁道大学,推荐文档

姓名学号评分时间120分钟石家庄铁道学院 2009 级硕士研究生考试试卷参考答案及评分标准课程名称 数值分析 任课教师 王亚红一.(1-6题 2分/空;7-10题 3分/空)1. 3,32. 43. -34. )()(max x P x f bx a -≤≤5. )2)(1(!4)(),2(2)4(2--+-x x x f x x ξ 6. 33,3321=-=x x 7. 21<a8.Λ,2,1,0,211721=--=+k x x x x kkk k 9. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=323/22/3212L 10.1,...,2,1,1--=⎩⎨⎧-==+n n k x d x d x k k k kn n β 二(16分).1. 解 :⎢⎢⎢⎣⎡221213112⎥⎥⎥⎦⎤ =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-32/12/1112132/112/31------8分解,b Ly =得⎪⎪⎪⎭⎫⎝⎛=304y解,y Ux =得⎪⎪⎪⎭⎫ ⎝⎛=111x . -----------------------------------------------12分2.Jacobi 迭代法计算公式:初始向量)0(x⎪⎩⎪⎨⎧--=--=--=+++2/)25()236(2/)4()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x , Λ,2,1,0=k ------------------------------16分-----------------------------------7分)2)(1)(1(245)1)(1(65)1(233))()(](,,,[))(](,,[)](,[)()(21032101021001003--+--++++-=---+--+-+=x x x x x x x x x x x x x x x x f x x x x x x x f x x x x f x f x N--------------------10分2.(10分)根据最小二乘原理∑=--=302))((i i i y b ax I 最小,----2分有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00aI bI即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑i i i ii i x y y a b xxx 24----------------------8分即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛36915554a b ,解得b =1.2857,a =2.8286 拟合曲线2857.18286.2+=x y ----------------------10分 四(16分)解: 1.+----=))(())(()()(2010210x x x x x x x x x f x L ))(())(()(2101201x x x x x x x x x f ----+))(())(()(1202102x x x x x x x x x f ---- ------------------------------6分计算=)(0'x L ()()()()2104321x f x f x f h-+- ----------------9分 )()(0'0'x L x f ≈=()()()()2104321x f x f x f h-+- ------------------------------------------12分2.)()(),,(210x L x f x x x ≈∈,))()!1()(()()(1)1(2'++'='++x n f x L x f n n ωξ, x x n f n n 与ξωξ,))()!1()((1)1('+++有关, )()(),,(210x L x f x x x '≈'∈无法估计. )(,2x L x '不是插值节点时当的值不能作为)('x f 的近似值.-----------------16分 五. 解 1.(8分)Λ004.041.10=-I 21021-⨯≤------------------2分 2000011102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I ------------------------4分22111122102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I类推有 8210999910101021102110~10)1~10(110~--⨯=⨯⨯≤-=---=-I I I I I I-----------6分计算到10I 时,误差限为初始0I 的误差限的1010倍,每递推一次误差扩大10倍, 所以这个计算过程是不稳定的。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
09下数值分析答案(A)

《数值分析》I课程试题参考答案及评分标准(中文试卷)( A卷)适用专业年级:信息与计算科学07级 考试时间: 100分钟命题人:吕勇一、解------------------------------------------------------5分则插值多项式。
---------------------------------------- -------10分二、 证明设,以为节点的Lagrange插值多项式为 --3分余项为-----------------------------------------------------6分由于为线性函数,当时,。
--------------------------------9分则:,所以结论得证-------------------------------------------------10分三、证明 ----------------------------------------------------5分-------------------------8分 ---------------------------------------------------10分四、证明设则根据插值多项式原理-------------------------------------------------------------------------------------6分两端在上积分-------------------------------------------------------------10分五、解设,。
--------------------------------------------------------------------3分,---------------------------------------------------------------6分,。
2008_2009数值分析考试试题卷

太原科技大学硕士研究生2008/2009学年第1学期《数值分析》课程试卷一、填空题(每空6分,共30分)1、已知a 是积分⎰-102dx e x 的近似值,并且有四位有效数字,则a 的绝对误差限=)(a ε 2、设n 阶矩阵)(ij a A =的对角元),,2,1(0n i a ii =≠,令),,,(2211nn a a a diag D =。
若将A 分裂成)(1A D I D D A ---=,以其构造解线性方程组b Ax =的迭代公式为 。
3、求解初值问题1)0(,112=+='y yy 的欧拉公式为 。
4、若⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31,)1()1()1(2110,,)(233x c x b x a x x x x s 是三次样条函数,则=b 。
5、已知函数)(x f y =在2,0,1210===x x x 处的值分别为,4,2,1210===y y y 则经过点)4,2(),2,0(),1,1(-的Lagrange 插值多项式为 。
二、(10分)设A 为n 阶非奇异的上三角阵,试导出计算1-A 的元素的递推公式。
三、(15分)证明下列迭代公式产生的序列{}k x 收敛于a (0>a )并具有三阶收敛速度,,1,0,3)3(221=++=+k a x a x x x k k k k其中0x 充分接近a 。
四、(15分)已知Legendre 正交多项式)(x L n 有三项递推关系式:⎪⎪⎩⎪⎪⎨⎧=+-++===-+,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 试推导两点Gauss-Legendre 求积公式)()()(221111x f A x f A dx x f +≈⎰- 的求积系数和节点,并用此公式计算下列积分的近似值。
⎰-=2242dx e I x五、(15分)在区间[-1,1]上给定函数122)(23-++=x x x x f ,求其在{}2,,1x x Span =Φ中关于权函数1)(=x ρ的最佳平方逼近多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin x dx 的近似值。 0 1+ x
1
-5-
六、 (12 分)设线性方程组:
− x3 = 1 2 x1 = −12 −2 x1 − 10 x2 −x − x + 4x = 2 2 3 1
(1) 利用 Gauss 消去法求上述解方程组; (2) 求系数矩阵 A 的 LU 分解; (3) 写出求解上述方程组的矩阵形式的 Jacobi 迭代公式和分量形式的 Gauss-Seidel 迭代法公式,并讨论收敛性.
;
。
(11) 用 A(-2,-3.1)、B(-1,0.9)、C(0,1.0) 、D(1,3.1)、E(2,4.9)拟合一 直线 s(x)=a+bx 的法方程组为:
。
(12) 已知多项式 p3 ( x ) = 4 x3 + 3 x 2 + 2 x + 1 ,那么求此多项式值的秦九韶算法 公为:_ (13) 给定如下数据表 xi yi -2 -5 -1 -2 0 3 1 10 2 19 3 30 ______。
考试日期:2010 年 1 月 12 日 五 10 六 12 七 10 八 / 九 /
主讲教师
(1) 已知 a = 2009.12 , b = 2010.01 分别是按四舍五入原则得到的 x1 和 x2 近似 值, 那么,x1 − a ≤ x −b ; 2 ≤ b ;x1 x2 − ab ≤ 。 ;
姓名: 学号: 院系:
矩阵数值分析 班
大 连 理 工 大 学
课 程 名 称: 矩阵与数值分析 授课院 (系): 数 学 系 一 标准分 得 一、 分 填空与判断题( × 或√) ,每空 2 分,共 50 分 50 二 6 三 6 四 6 试 卷: 统一 考试类型 闭卷 试卷共 8 页 十 / 总分 100
∞ 1 0.25 (8) 已知 A = , 则 Ak = ∑ 0.25 k =0
。
ssT (9) 设 s ≠ 0 ∈ C , 则 ( s, s )
n
=
2
。
u ′ = t − u (10) 求解微分方程 , 的 Euler 法公式为 u (0) = 2 绝对稳定区间为 ; 改进的 Euler 公式为
∫
1
0
e x ( x−1)dx
-3-
四、 (8 分)确定将向量 x = (1,3 , 4 ) ,变换为向量 y = (1, 0, t ) 的正数 t 和
T T
Householder 矩阵 H,以及 cond 2 ( H ) , H 1 。
-4-
五、 (10 分) (1) 用 Schimidt 正交化方法,构造 [−1,1] 上以 ρ ( x) ≡ 1 权函数的正交多项式 系: φ0 ( x) , φ1 ( x) , φ2 ( x) ; (2) 利用所得到的结果构造 f ( x ) = x 4 在 [−1,1] 上的最佳二次平方逼近多项式; (3)构造 [−1,1] 上的两点 Gauss 型数值求积公式; (4)利用(3)的结果给出 ∫
4 3
1 3
2 3
-7-
-6-
u ′(t ) = f (t , u ) 七、 (10 分)已知解常微分方程初值问题 的某线性二步法的第 u (t0 ) = u0
一、第二特征多项式分别为:
ρ ( λ ) =λ 2 − λ + , σ ( λ ) = λ 2
(1) 给出此线性二步法具体表达式,并求出其局部截断误差主项; (2) 讨论其收敛性; (3) 求其绝对稳定区间。
则 均 差 f [−1, 0,1] =
, 由 数 据 构 造 出 最 简 插 值 多 项 式
。
p ( x) =
1 1 3 ,当 a 满足条件 (14)设 A = 1 a + 2 3 (其中 L 是对角元为正的下三角矩阵) 。
时,
A 必有唯一的 LLT 分解
(15) 求 f ( x) = e x − 1 − x = 0 根的 Newton 迭代法至少局部平方收敛 (16) 若 A 为可逆矩阵, 则求解 ATAx=b 的 Gauss-Seidel 迭代法收敛 (17) 分段二点三次 Hermite 插值多项式∈C2 函数类 (18) 如果 A 为 Hermite 矩阵, 则 A 的奇异值是 A 的特征值
−1
。 。
。
。
≤
(7) 已知 f (a − h), f (a ), f (a + h) ,计算一阶数值导数的公式是:
f ′(a ) =
+O(h 2 ) ;取 f ( x) = x , h = 0.001 ,
那么,用此公式计算 f ′(2) 的近似值时,为避免误差的危害,应该写成:
f ′(2) ≈
。
-1-
装 订 线
(2) [ 0, 1] 上 权 函 数 ρ ( x ) = x 的 正 交 多 项 式 族 中 φ1 ( x ) =
∫ (x
1 0
5
+ x 3 ) φ5 ( x ) =
。
2
(3) 已知存在实数 R 使曲线 y = x 2 和 y 2 + ( x − 8 ) = R 2 相切。求切点横坐标近 似值的 Newton 迭代公式为 1 2 (4) 设 A = ,则它的奇异值为 2 −1 1 1 1 (5)若取 A = ,则 ∫ e At dt = 0 0 1 (6) 若 A < 1 ,则 ( I − A )
( ( ( (Βιβλιοθήκη ) ) ) )-2-
0 1 0 ,求出 A 的 Jordan 分解以及 sintA 。 二、 (6 分)已知 A = −2 0 −2
三、 (6 分)给定求积节点:xk=0,0.25,0.5,0.75,1,请用复化的梯形公式和 复化的 Simpson 公式,计算如下定积分的近似值。