矩阵分析与计算--01-线性空间

合集下载

线性代数课本课件

线性代数课本课件

最小二乘法的计算实例
直线拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 直线方程。
多项式拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 多项式方程。
非线性拟合的计算实例
通过最小二乘法结合适当的变换,拟合非线 性模型。
THANKS FOR WATCHING
感谢您的观看
04 特征值与特征向量
特征值与特征向量的概念
特征值
设A是n阶方阵,如果存在数λ和 非零n维列向量x,使得Ax=λx成
立,则称λ是A的特征值。
特征向量
对应于特征值λ的满足Ax=λx的非 零向量x称为A的对应于特征值λ的 特征向量。
特征空间
对应于同一特征值的所有特征向量 (包括零向量)的集合,加上零向 量后构成的线性子空间称为特征空 间。
线性方程组的应用举例
线性规划问题
图像处理
线性方程组可用于描述和解决线性规划问 题,如资源分配、生产计划等。
在计算机图像处理中,线性方程组可用于 图像滤波、图像恢复等任务。
机器学习
电路分析
在机器学习领域,线性方程组常用于线性 回归、逻辑回归等模型的参数求解。
在电路分析中,线性方程组可用于描述电路 中的电流、电压等物理量之间的关系,从而 进行电路分析和设计。
向量的线性组合关系不变。
线性变换的性质
02
线性变换具有保持线性组合、保持线性相关等性质,同时线性
变换的核与像也是重要的概念。
线性变换的运算
03
线性变换之间可以进行加法和数量乘法运算,同时线性变换的
逆变换和复合变换也是常见的运算。
线性空间的基与维数
基的概念
线性空间中的一组线性无关的向量,可以表示该空间中的任意向 量,称为该线性空间的基。

《矩阵分析》课件

《矩阵分析》课件

方阵 行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
03
对称矩阵
设$A = (a_{ij})$为$n$阶方阵,若对任意$i, j$都有$a_{ij} = a_{ ji}$,则称$A$为对称矩
阵。
05
02
零矩阵
所有元素都是零的矩阵称为零矩阵,记作 $O$。
04
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不能 由其中的部分向量线性表示出来。换句话说,只有 当这组向量中任何一个向量都不能由其余向量线性 表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
当B=I时,广义特征值问题退化为普通的特征值问题。此外,广义特征值问题可以通 过相似变换转化为普通的特征值问题进行求解。
06
CATALOGUE
矩阵函数与微分学在矩阵分析中应用
矩阵函数定义及性质
矩阵函数的性质 矩阵函数的转置、逆和行列式等运算也遵循相应的矩
阵运算规则。
矩阵函数的定义:设$A(t)=(a_{ij}(t))$是一个 $ntimes n$矩阵,其元素$a_{ij}(t)$是变量$t$ 的函数,则称$A(t)$为矩阵函数。
Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

数学高等代数第五版

数学高等代数第五版
数学高等代数第五版
目 录
• 引言 • 线性方程组与矩阵 • 向量空间与线性变换 • 多项式与行列式 • 线性方程组的解法 • 线性变换的矩阵表示 • 二次型与矩阵的相似对角化 • 总结与展望
01 引言
课程简介
高等代数是数学的一个重要分支,主 要研究线性代数、多项式、群、环和 域等抽象代数结构及其性质和关系。
常用的解法包括高斯消元法、LU 分解法、迭代法等,可以根据具 体情况选择合适的解法。
线性方程组在各个领域都有广泛 的应用,如物理、工程、经济等。
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有 一定的数量。
矩阵的元素
矩阵中的每个元素都有其行标和列标,表示其在 矩阵中的位置。
矩阵的维度
相似变换
如果存在一个可逆矩阵P,使得$P^{-1}AP=B$,并且B的特征值和特征 向量与A相同,则称A经过相似变换得到B。
矩阵的特征多项式与特征值
特征多项式
对于一个给定的矩阵A,存在一个多项式$f(lambda)$,使得 $f(lambda)=0$是A的特征方程,这个多项式称为矩阵A的特征多项式。
高等代数作为大学数学专业的一门必 修课程,对于培养学生的逻辑思维、 抽象思维和数学素养具有重要意义。
学习高等代数的重要性
培养数学思维
高等代数作为数学专业的基础课程,通过学习代数结构和性质,可以培养学生的数学思维和逻辑推理 能力。
应用领域广泛
高等代数在科学、工程、经济、金融等领域有广泛应用,如线性方程组求解、矩阵计算、数据降维、 机器学习等领域都需要用到高等代数的知识。
深化数学理解
学习高等代数有助于学生深化对中学阶段数学知识的理解,如代数方程、平面几何、解析几何等,能 够更好地理解和应用这些知识。

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

《矩阵及其运算 》课件

《矩阵及其运算 》课件

幂法
通过迭代计算矩阵A的幂 ,最终得到特征值和特征 向量。
反迭代法
利用已知的特征向量x, 通过反迭代计算得到对应 的特征值λ。
06
应用实例
在物理中的应用
线性变换
矩阵可以表示线性变换,如平移、旋转、缩放等,在物理中广泛应 用于描述物体运动和力的作用。
振动分析
矩阵可以用于分析多自由度系统的振动,通过矩阵表示系统的运动 方程,简化计算过程。
详细描述
矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,并 且结果矩阵的行数等于第一个矩阵的行数,列数等于第二个 矩阵的列数。在计算过程中,对应元素相乘并求和,得到新 矩阵的一个元素。
矩阵的转置
总结词
矩阵的转置是将原矩阵的行变为列,列变为行的一种运算。
详细描述
矩阵的转置可以通过交换原矩阵的行和列得到,也可以通过计算元素的代数余 子式得到。转置后的矩阵与原矩阵的行列式值相等,但元素的位置发生了变化 。
《矩阵及其运算》PPT课件
目 录
• 矩阵的定义与性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 特征值与特征向量 • 应用实例
01
矩阵的定义与性质
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩 形阵列,通常表示为二维数 组。
矩阵的元素
矩阵中的每个元素都有行标 和列标,表示其在矩阵中的 位置。
回带法
在消元过程中,每一步都需要回带, 以确保解的正确性。
解的判定
当系数矩阵的秩等于增广矩阵的秩时 ,线性方程组有唯一解;否则,无解 或有无数多解。
线性方程组的解的结构
解的表示
线性方程组的解可以表示为一个向量与自由变量 的线性组合。

《线性代数第1讲》课件

《线性代数第1讲》课件

03
线性代数是数学的一个重要分支,广泛应用于 科学、工程和经济学等领域。
线性代数的基本性质
线性代数的运算具有结合律和交换律,例如矩阵乘法满足结合律和交换律 。
线性代数中的向量和矩阵具有加法、数乘和矩阵乘法的封闭性,即这些运 算的结果仍属于向量空间或矩阵集合。
线性代数中的一些基本概念,如向量空间的基底、向量的维数、矩阵的秩 等,具有明确的数学定义和性质。
04
线性变换在几何、物理和工程等领域有广泛应性方程组的解法
1 2
3
高斯-约当消元法
通过行变换将系数矩阵化为行最简形式,从而求解线性方程 组。
克拉默法则
适用于线性方程组系数行列式不为0的情况,通过求解方程 组得到未知数的值。
矩阵分解法
将系数矩阵分解为几个简单的矩阵,简化计算过程,如LU分 解、QR分解等。
THANKS
特征值与特征向量的应用
判断矩阵的稳定性
通过计算矩阵的特征值,可以判 断矩阵的稳定性,从而了解系统 的动态行为。
信号处理
在信号处理中,可以通过特征值 和特征向量的方法进行信号的滤 波、降噪等处理。
数据压缩
在数据压缩中,可以使用特征值 和特征向量的方法进行数据的压 缩和重构,提高数据的存储和传 输效率。
03
向量与向量空间
向量的定义与性质
01
基础定义
03
向量具有加法、数乘和向量的模等基本性质。
02
向量是有大小和方向的量,通常用实数和字母 表示。
04
向量的模是衡量其大小的标准,计算公式为 $sqrt{a^2 + b^2}$。
向量空间的概念
01
抽象空间
02
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、

矩阵分析课件

矩阵分析课件
它的秩为0. 注:线性无关向量组的最大无关组即其自身!
基本性质: (1)含有零向量的向量组一定线性相关;
(2)整体无关 部分无关;部分相关 整体相关;
(3)如果含有向量多的向量组可以由含有向量少的向 量组线性表出,那么含有向量多的向量组一定线性相 关; (4)向量组的秩是唯一的,但是其极大线性无关组并 不唯一; (5)如果向量组(I)可以由向量组(II)线性表出,
例 4 全体正的实数 R 在下面的加法与数乘的
定义下也构成线性空间:
a b : ab, a, b R
k a : ak , a, k R
例 5 R 表示实数域 R 上的全体无限序列组成的
的集合。即
R
[a1,
a2, a3,]
ai F, i 1,2,3,
在 R 中定义加法与数乘:
[a1, a2, a3,] [b1, b2, b3,] [a1 b1, a2 b2, a3 b3, ] k[a1, a2, a3,] [ka1, ka2, ka3,] 则 R 为实数域 R上的一个线性空间。
是一组线性无关的函数,其中 1,2 , ,n 为一
组互不相同的实数。
例 3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx
也是线性无关的。
例 4 实数域 R 上的线性空间空间 RR 中,函数组 1,cos2 x,cos 2x
是线性相关
cos 2x 2cos2 x 1
线性表出
k11 k22 knn
称1,2,,n为V的一组基; (k1, k2 , , kn )T
为称向V量为一个在n基维底线性1,空2间,, ,记为n下d的im坐V标。此n.时我们
1.向量的坐标是唯一的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《矩阵分析与应用》
张贤达清华大学出版社,2004年9月
矩阵与计算工具:MATLAB, MAPLE,LAPACK … 编程语言:C/C++, C#, Fortran,Java
14
矩阵分析与计算
考核方式:

闭卷考试:65%
课堂讨论,小报告: 35% 作业抽查,应该重视练习、讨论、算法设计、 上机实践等环节。
矩阵是数学中的一个重要的基本概念,是代数 学的一个主要研究对象,也是数学研究和应用 的一个重要工具。“矩阵”这个词是由西尔维 斯特(1814-1897)首先使用的,他是为了将 数字的矩形阵列区别于行列式而发明了这个述 语 西尔维斯特一生致力于纯数学的研究,他和凯莱、哈 在逻辑上,矩阵的概念应先于行列式的概念, 密顿 (Hamilton)等人一起开创了英国纯粹数学的一个 然而在历史上次序正好相反。 繁荣局面.他的成就主要在代数方面,他同凯莱一起
18
本讲主要内容
线性空间定义与性质 基、维数、坐标 基变换与坐标变换
子空间
内积空间
19
一、线性空间

几何空间和 n 维欧氏空间的回顾 推广思想: 抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
线性空间定义 要点:


集合V 与数域F 向量的加法和数乘向量运算 运算的性质刻画
矩 阵 分 析 与 计 算 Matrix Analysis and Computations
理学院 Email: mymath@ (民) 2011年9月
1

本科线性代数内容的简单回顾与讨论 1)线性代数主要内容 2)有什么用?工科学生最关心的 大家在本科毕业设计中用了么?
2
1.矩阵论的发展历史
(x1 , x2 ,
要点: 坐标与基有关 任何线性空间V n[F]在任意一组基下的坐标属于Fn 。
31
常见线性空间的基与维数:
Fn,自然基{e1,e2,…,en},dim Fn =n Rmn ,自然基{Eij},dim Rmn =mn。 Pn [x] ,自然基{1,x,x2,x3…,x n-1},dimPn [x] =n C[a,b], {1,x,x2,x3…x n-1 …}C[a,b], dim C[a,b]= 约定: V n(F)表示数域F上的 n 维线性空间。 只研究有限维线性空间。


15
联系方式

Email: mymath@(民网)
课件与作业通过民网邮箱发给大家.

Tel:
13517488568(m)
16
第一章 线性空间与线性变换
线性代数的核心内容
17
第一章 线性空间与线性变换


内容: 线性空间的一般概念 重点:空间结构和其中的数量关系 线性变换 重点:其中的矩阵处理方法 特点: 研究代数结构——具有线性运算的集合。 看重的不是研究对象本身,而是对象之间的结构关 系。 研究的关注点:对象之间数量关系的矩阵处理。 学习特点:具有抽象性和一般性。
d n x d n 1 x L(x) n n 1 an x dt dt 的解的全体 S {x(t ) | L( x) 0}

以普通函数的加法、 数乘为运算,构成 C上的线性空间
27
2.基 、维数与坐标

回顾:向量的线性相关与线性无关: 例题1 证明C[0,1]空间中的向量组 {ex,e2x,e3x „,enx},x[0,1] 线性无关。

向量0
24
线性空间举例
1.分量属于数域F上的全体n元数组构成 数域F的一个线性空间
F
n
x , x ,
1 2
, xn x1 , x2 ,
T
, xn F

当数域F为复数域C时,称C 为n元复向量空间 数域F为实数域R时,称R n 为n元实向量空间
n
25
线性空间举例

2.元素属于复数域C的m×n矩阵,按照矩阵的 加法与数的数乘,构成复数域C上的线性空间, 记为C m×n 3. [a, b]上的连续函数构成的空间C[a, b]
9
线性定常系统的状态方程

写成矩阵形式
a11 a21 A an1 a12 a22 an 2 a1n a2 n ann
x1 (t ) x (t ) x (t ) n
dx Ax dt
10
Why study the matrix analysis


加法即函数的加法,数乘即数乘以函数

4. 全体实函数构成实数域上的线性空间

加法即函数的加法,数乘即数乘以函数
26
线性空间举例

5.复数域上次数不超过n的一元多项式全体Cn[x]为复 数域C上的线性空间 按照多项式加法、数与多项式的乘法

6.零空间 仅由C上线性空间V的零元素构成的单元素集合 7.n阶线性齐次微分方程
4
矩阵论的发展历史




厄米特 (C.Hermite,1822-1901) 在1855 年证明了别的 数学家发现的一些矩阵类的特征根的特殊性质,如 现在称为埃米特矩阵的特征根性质等。 克莱伯施 (A.Clebsch,1831-1872) 、布克海 姆 (A.Buchheim) 等证明了对称矩阵的特征根性质。 泰伯 (H.Taber) 引入矩阵的迹的概念并给出了一些 有关的结论。 弗罗比尼斯 (G.Frobenius,1849- 1917) 讨论了最小多 项式问题,引进了矩阵的秩、不变因子和初等因子 、正交矩阵、矩阵的相似变换、合同矩阵等概念,
30
3 坐标

定义3 设 1 , 2 , , n 为线性空间V 的一个基,对于任意元 素 , 有且仅有一组有序数x1 , x2 , , xn F ,使得
x11 x2 2
则称 x1 , x2 , 记作
xn n i 1 xi ai
n
T , xn)
, xn 为 在基1, 2, n下的坐标,

发展了行列式和矩阵的理论,共同奠定了不变量的理 论基础.此外对代数方程论、数论等诸领域都有重要 的贡献.
3
James Joseph Sylvester
剑桥大学毕业,在剑桥任聘3年,从事数 学研究。因不愿担任圣职,于1846年入林 肯法律协会于1849年成为律师,以后14年 他以律师为职业,业余时间继续数学研究。 1863年为剑桥大学教授,直至逝世。
23
线性空间的一般性的观点
线性空间的一般形式 V(F),元素被统称为向量:, ,, 线性空间的简单性质(共性) 定理:V(F)具有性质: (1) V(F)中的零元素是唯一的。 (2) V(F)中任何元素的负元素是唯一的。 (3)数零和零元素的性质: 0=0,k0=0,k =0 =0 或k=0 数0 (4) = (1)



英国数学家凯莱 (A.Cayley,1821-1895) 被公认为是矩阵论 的创立者,他首先把矩阵作为一个独立的数学概念提出来 ,并首先发表了关于这个题目的一系列文章。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的 研究报告》,系统地阐述了关于矩阵的理论。 定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩 阵的逆等一系列基本概念,指出了矩阵加法的可交换性与 可结合性。另外,凯莱还给出了方阵的特征方程和特征根 (特征值)以及有关矩阵的一些基本结果。
k与 的数量乘积,记为 k . 如果加法和数量乘
法还满足下述规则,则称V为数域F上的线性空间:
21
加法满足下列四条规则: , , V ① ② ( ) ( ) ③ 在V中有一个元素0,对 V , 有 0 (具有这个性质的元素0称为V的零元素) ④ 对 V , 都有V中的一个元素β ,使得
5
矩阵论的发展历史


约当在1854 年研究了矩阵化为标准型的问题。 梅茨勒 (H.Metzler)在 1892 年引进了矩阵的超越函 数概念并将其写成矩阵的幂级数的形式。 傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩 阵问题,这主要是适用方程发展的需要而开始的。
傅里叶生于法国中部欧塞尔一个裁缝家庭, 8岁时沦为孤儿,就读于地方军校,1795年 任巴黎综合工科大学助教,1798年随拿破仑 军队远征埃及,回国后被任命为格伦诺布尔 省省长,由于对热传导理论的贡献于1817年 当选为巴黎科学院院士。
6
矩阵论的发展历史源自矩阵理论发展非常迅速,到19世纪末,矩阵理 论体系基本形成。 到20世纪,矩阵理论得到进一步发展,目前, 它已经成为在物理、控制论、机器人学、生物 学、经济学、信息科学等学科有大量应用的数 学学科。

7
2. 矩阵论的重要性
不懂矩阵论
= ?

不懂线性代数 = 差不多是文盲? (瑞典数学家Lars Garding 《Encounter with Mathematics》)
20
1.线性空间的定义
设V是一个非空集合,F是一个数域,在集合V中 定义了一种代数运算,叫做加法:即对 , V, 在V中都存在唯一的一个元素 与它们对应,称 为
在P与V的元素之间还 与 的和,记为 ;
定义了一种运算,叫做数量乘法:即 V , k F , 在V中都存在唯一的一个元素δ与它们对应,称δ为


矩阵分析在数学学科与其他科学技术领域,诸 如数值分析、优化理论、微分方程、概率统计、 运筹学、控制论、信号处理、系统工程、科学 计算等学科有广泛的应用 物理、生物。。。。 企业管理、经济。。。
从事科学研究工作的基本工具!
相关文档
最新文档