西北工业大学矩阵论复习概要

合集下载

西北工业大学矩阵论课件PPT第二章例题 范数理论

西北工业大学矩阵论课件PPT第二章例题 范数理论

1
则 A0 1 1, x0 1,但是
A0 x0 (n,0,,0)T
从而
A0 x0 n 1 A0 1 x0
故矩阵1-范数与向量的∞-范数不相容。
例 已知
0 Ai
i 1
1i ,
x
1 0
(i 1)
1 i 0
1
则 A ( 3 ), A 2 (1 2 ), Ax 1 ( 4 )。
第二章 范数理论
§1 向量的范数
例1 对 x (x1, x2,, xn )T Cn,规定
n
x 2
xi 2 xH x
i 1
则它是一种向量范数,称为向量2-范数。
注 直接证明第三条公理时要用到Cauchy
-Schwarz不等式
n
n
n
( xi yi )2
xi 2
yi 2
x
2 2
y
2 2
A F 1 4 2 9 25 11 4 111 4 16
70
A m 45 20, A 1 max6, 8, 5, 5 2 8, A max3 2, 9, 4, 8 9
例 判断矩阵1-范数与向量的∞-范数是否相容?
解取
1
A0
0
1 0
1
0

x0
1 1
0 0 0
U使得
U H AU diag(1,2,,n ) (i 0,i 1,2,,n)
于是
A U diag(1,2,,n )U H
U diag( 1, 2 ,, n ) diag( 1, 2 ,, n )U H PHP
其中 P diag( 1, 2 ,, n )U H是可逆矩阵。
从而

西北工业大学矩阵论课件PPT第一章例题矩阵的相似变换

西北工业大学矩阵论课件PPT第一章例题矩阵的相似变换

2100 3100 2100 3100
2100
例 求解一阶线性常系数微分方程组
ddt x1 2x1 x2 x3
ddt x2 x1 2x2 x3
d dt
x3
x1
x2
2 x3
解令
x
x1 x2 x3

dx dt
d dt
d dt
d dt
x1 x2 x3
, A
2 1 1
一次因式方幂的乘积, 并分别写出这些方幂
(相同的按出现的次数计数),称之为A的初等因子,
本题中A的初等因子为
2 和 ( 2)2 第三步:对每个初等因子( i )ri 作出 ri 阶
Jordan块
i
1
i
1
i
ri
ri
所有初等因子对应的Jordan块构成的Jordan矩阵 J
即是A的Jordan标准形。本题中A的Jordan标准形为
1 1
10
1 0 0,
1 0
3 0 ( 3)( 2), 1 2
3
1
1 2,
1
1 1
0 ( 2), 2
1 1 ( 2), 1 0 2,
11
1 2
1 0 ( 1)( 2)
1 2
所以
D2() 2
又 det(I A) ( 2)3,故
D3() ( 2)3

1 1 2
解 第一步:对 I A 用初等变换化为Smith
标准形:
3
I A 1
1
3
1
1
1
0
c2 ( 1) c1
1 0
1 2 2 4 4
0
r1( 3) r2

西北工业大学《线性代数》课件-第二章 矩阵

西北工业大学《线性代数》课件-第二章 矩阵

y1 x1,
y2 x2,
yn xn
对应
1 0 0
0
1 0
0
0 1
单位阵
我们把这样的线性变换称之为恒等变换。
矩阵的基本运算
一、矩阵的相等
同型矩阵:两个矩阵行数和列数都相等
矩阵相等:设两个矩阵 Amn 和 Bmn是同型矩阵, 且对应元素相等,即 aij bij (i 1,2,, m; j 1,2,, n)
则称矩阵A和B相等,记做 A B。
例如:
x 0
1 y
48
3 0
1 2
z 4
可得
x 3 y 2 z 8
判断正误:零矩阵相等。 ( )
二、矩阵的线性运算
⒈ 矩阵的加法
设有两个同型矩阵 A aij mn , B bij mn ,那末矩阵A
与B的和记作A B,规定为
A B (aij bij )mn
y Bz
则 z 到 x 变换为
x Ay A(Bz) ( AB)z
求出AB即可。
四、方阵的幂
设A为n阶方阵,则规k 定A的k次方为 Ak A A A
可以看出:只有方阵才有幂运算。
规定:
A0 E
A1 A
Ak1 Ak A
(k 1,2,)
运算规律: Ak Al Akl
( Ak )l Akl
k,l为任意正整数
注意:当 AB BA时,某些关于数字幂运算的规律 不再成立,例如
( AB)k Ak Bk
( AB)k (AB)(AB)( AB) ( AB AB)( AB)( AB) k ( A2B2 )( AB)( AB)
所以
( AB)k Ak Bk
⒉ 线性变换

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导 张凯院 西北工业大学出版社

矩阵论同步学习辅导(习题与试题精解)张凯院徐仲编西北工业大学出版社图书在版编目(CIP) 数据矩阵论同步学习辅导/ 张凯院,徐仲编. —西安: 西北工业大学出版社,2002. 8ISBN7-5612-1542-8Ⅰ. 矩⋯Ⅱ. ①张⋯②徐⋯Ⅲ. 矩阵-理论-高等学校-教学参考资料Ⅳ. 0151. 21中国版本图书馆CIP数据核字( 2002 )第062114 号出版发行: 西北工业大学出版社通信地址: 西安市友谊西路127 号邮编: 710072 电话: 029 - 8493844网址: ht tp: / / www. nwpup. com印刷者: 印刷厂开本: 850×1 168mm1/32印张:字数:版次: 2002 年8 月第1 版2002 年8 月第1 次印刷印数: 1~定价: 元【内容简介】本书由两部分内容组成。

第一部分按照程云鹏等编的研究生教材《矩阵论》(第2 版)的自然章节,对矩阵论课程的基本概念、主要结论和常用方法做了简明扼要的分类总结, 对各章节的课后习题做了详细的解答; 第二部分收编了近年来研究生矩阵论课程的考试试题12 套和博士入学考试试题3 套,并做了详细的解答。

本书叙述简明,概括性强。

可作为理、工科研究生和本科高年级学生学习矩阵论课程的辅导书,也可供从事矩阵论教学工作的教师和有关科技工作者参考。

—Ⅳ—前言矩阵论是高等学校和研究院、所面向研究生开设的一门数学基础课。

作为数学的一个重要分支,矩阵理论具有极为丰富的内容;作为一种基本工具,矩阵理论在数学学科以及其他科学技术领域都有非常广泛的应用。

因此,学习和掌握矩阵的基本理论与方法, 对于研究生来说是必不可少的。

矩阵论课程的理论性强,概念比较抽象,而且有独特的思维方式和解题技巧。

读者在学习矩阵论课程时,往往感到概念多、结论多、算法多, 对教学内容的全面理解也感到困难。

为了配合课堂教学, 使研究生更好地掌握该门课程的教学内容,我们编写了这本同步学习辅导书。

矩阵论复习大纲

矩阵论复习大纲

第一章1 线性空间概念(封闭性)2线性空间的基与维数 (教材P3例6) 3坐标概念、及求解(教材P3例8) 4 坐标在不同基下的过渡矩阵及坐标变换5 子空间、列空间、和空间概念,维数定理以及求法(例1);直和, 直和补空间6 内积空间概念,标准正交基及标准正交化过程7 线性变换概念、线性变换的矩阵(概念:教材P22定义1.13,性 质:教材P22定理1.13),计算、过渡矩阵以及不同基下的矩阵(例2, 3)8 不变子空间,正交变换,酉交变化例1 设112{,}W L αα=,212{,}W L ββ=,其中T )0121(1=α,T )1111(1-=α,T )1012(1-=β,T )7311(1-=β,求12W W +与12W W ⋂的维数,并求出12W W ⋂解 [][][]2121212121,,,,ββααββααL L L W W =++=+()⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==711022-203-5-30121-17110301111121211,,,2121行变换ββααA B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000310040101-001000031007110121-1得r(A)=r(B)=3,dim(W 1+W 2)=3. 又因为dim W 1=2, dim W 2=2,由维数定理 dim (W 1 W 2)= dim W 1+ dim W 2-dim (W 1+W 2)=4-3=1 设,,4433221121ββααααx x x x W W +=+=∈ 化为齐次线性方程组0),,,(142121=--⨯X ββαα.即0711*******121211=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------X解得()(){}.4,3,2,5,4,3,2,54,,3,4,21214321TTk W W k k k k x k x k x k x -==-=+-==-==-=αααα 即例2 设3R 上线性变换T 为,)2())((3132321213T T x x x x x x x x x x T +-++=求T 在基TT T)111(,)110(,)101(321-===ααα下的矩阵B.解 在自然基321,,e e e 下,线性变换T 的坐标关系式为:,10111012123213132321⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+-++=x x x x x x x x x x Y 根据由变换的坐标式 Y=AX 得T 在自然基下矩阵,101110121⎥⎥⎦⎤⎢⎢⎣⎡-又从C e e e )()(321321=ααα 得过渡矩阵,111101112,1111101011⎥⎥⎦⎤⎢⎢⎣⎡----=⎥⎥⎦⎤⎢⎢⎣⎡-=-C C所以.4212204511⎥⎥⎦⎤⎢⎢⎣⎡--==-AC C B3.设3R 中,线性变换T 为:.3,2,1,==i T i i βα其,)1,1,1(,)1,1,2(,)1,0,1(321T T T ==-=ααα与.)1,2,1(,)0,1,1(,)1,1,0(321T T T =-==βββ求(1)T 在基321,,ααα下的矩阵。

西北工业大学矩阵论课件PPT第四章例题矩阵分解

西北工业大学矩阵论课件PPT第四章例题矩阵分解

u1
a3 e~1 a3 e~1 2
1 2
1 0 1
于是
0 0 1
H~1
I
2u1u1T
0
1
0
1 0 0

H1
1 0
0T H~1
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 1 0 0

H1AH1
1 0
1 3
3 1
4 2
0 4 2 1
对 a2 (3,4)T,取 2 a2 2 5,则
1
0
0 0 0 2

试求矩阵
A
0 0
3 4
1 2
的QR分解。
2 1 2

将列向量
a1
0
0
,a2
3 4 ,a3
1 2
正交化得
2
1
2
p1
a1
0
0

p2
2
a2
2 4
p1
3 4
,p3
0
a3
4 4
p1
5 25
p2
8 5
6 5
0
单位化得
0
q1
1 2
p1
0 , 1
证 因为
I O A B I O A B B I I B A I I O A B 取行列式即得。
例 设A, B, C, D为同阶方阵,A可逆, 且AC = CA。
证明 证 因为
det A C
B det(AD CB) D
I CA1
O A I C
B A D O
(2 )4
4!
A4

矩阵论——讲稿

矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22

R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j

R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .

西北工业大学《线性代数》课件-第三章 矩阵的初等变换 (1)

西北工业大学《线性代数》课件-第三章 矩阵的初等变换 (1)

可化为单位矩阵
A 可表为若干初等方阵乘积 A 没有零特征值
…… 有零特征值
A* 可逆 AT 可逆
A* 不可逆 AT 不可逆
Байду номын сангаас
§3.3 求解线性方程组的消元法

2 4
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③


2①
1 2

2
x1
x2
4x2
1 2
x2
3x3 1
注意:rank A rank B rank H
同理
A 初等列变换
初等列变换
B(列阶梯形)
H(列最简形)
例2
用初等列变换化
A
3 1
1 1
0 2
21为列阶梯形
1 3 4 4
和列最简形。

3 1
A 1 1
0 2
2 1
c1 c2
1 1
3 1
0 2
2 1
1 3 4 4
3 1 4 4
1 2
3 5
1 4
x1
x3 3 ③
1 0 1 3


2①
1 2

2
x1
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
r2 2r1
r3
1 2
r1
2 0 0
1
4
1 2
3
1
1 2
1
2
5 2
③'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 A 1
0 0
2. 设T,S 是V 的线性变换,T2=T, S2=S , ST=TS, 证明
3. 设T, S 是V 上线性变换,且T2=T, S2=S ,证明
(1) R(T)=R(S)TS=S, ST=T
(2) N(T)=N(S)TS=T, ST=S 4. 设P[x]2的线性变换T T(a+bx+cx2)=(4a+6b)+(-3a-5b)x+(-3a-6b+c)x2 求P[x]2的一个基,使T 在该基下的矩阵为对角矩阵.
1 i j ( i , j ) 0 i j
3. 设1,2;1, 2是欧式空间V2两个基, 又
1=1-22, 2=1-2,
(1,1)=1, (1,2)=-1 ,(2,1)=2,(2,2)=0
分别求基1,2与1,2的度量矩阵. 4. 设实线性空间Vn的基1,2,,n,设,Vn
6. 设线性空间V3的线性变换T 在基1,2,3下的 矩阵
1 A 2 2 2 1 2 2 2 1
证明:W=L(2-1, 3-1)是T 的不变子空间.
7. 求下列矩阵的Jordan标准形
1 A 3 2 1 3 2 3 1 4 3 , B 7 2 7 1 1 1 6 0 0 2 1 0 0 1 0
在该基下的矩阵为对角阵 T有n个线性无关的特征
向量。
(5) Hamilton 定理与矩阵的最小多项式
6. 不变子空间
定义: W是V的子空间,T是V的线性变换,如果
对W, 有T()W,则W是T 的不变子空间.
1. 求K22上的线性变换 T:T(X)=AX的值域R(T)与核
N(T)的基与维数, 其中 (S+T)2=S+TST=O.
5. 设V 是C 上的n维线性空间,T是V上的线性变换,
0 T (1 , 2 ,, n ) (1 , 2 ,, n ) 1
0

1 0
其中1,2,,n是V 的一个基. 证明:V 的包含n的T 的不变子空间只有V.
练习题
2 2
1. 在欧式空间R22中的内积为
1 A1 0 1 0 , A2 0 1
( A, B ) aij bij
i 1 j 1

1 ,W L( A1 , A2 ) 1
(1)求W的一个基;
(2)利用W与W的基求R22的一个标准正交基.
2. 已知欧式空间Vn的基1,2,,n的度量矩阵为A, 证明在Vn中存在基1,2,,n,使满足
矩阵论复习
一. 线性空间
1. 线性空间的概念
2. 线性空间的基,维数与坐标(基变换与与坐 标变换) 3. 线性子空间的概念与运算
(1)定义 (2) 运算(交与和,直和)
1. 判断 1,sinx, cosx 的线性相关性.
2. 若1, 2, …, r线性无关,则向量组1= 1+k1r ,
在该基下的坐标分别为(1,,n)T,(1,,n)T; 定义
(1,2,,n 为 线性空间V 的一个基)
4. 线性变换的运算 加法,数乘,乘法,逆,多项式.
5. 化简线性变换的矩阵 (1) 线性变换的特征值与特征向量 (2) 在不同基下的矩阵相似
(3) C上的线性空间V上的T ,一定存在V的一个基使
得T在该基下的矩阵是Jordan矩阵
(4) C 上的线性空间Vn上的T,存在V的一个基使得T
二. 线性变换 1.定பைடு நூலகம் T:VV且T( k+l )=kT( )+lT( )
2. 线性变换的值域与核
R(T)=L(T(1),T(2),T(n)),N(T)={T()=,V}
3.线性变换的矩阵 T (1,2,,n)=(1,2,,n)A
rankT=rankA, nullT=n-rankA
9.设A 是一个6阶方阵,其特征多项式为
()=(+2)2(-1)4, 最小多项式为mA()=(+2)(-1)3,
求出A的若当标准形.
10.对于n 阶方阵A,如果使Am=O成立的最小正整数
为m,则称A是m次幂零矩阵,证明所有n阶n-1次幂
零矩阵彼此相似,并求其若当标准形.
三.欧式空间与酉空间
8. 求下列矩阵的最小多项式
1 A 1 1 2 0 1 a 6 3 , B 3 b a b b a b a
a 1 1 1
a 1 1 a 1
a
V1 ( x1 , x2 , xn ) x1 x2 xn 0, xi K V2 ( x1 , x2 , xn ) xi xi 1 0, xi K
证明 Kn=V1V2
5. 设 S,A,T分别为Knn中对称,反对称,上三角方
阵构成的子空间,证明: Knn=S A , Knn=T A .
1. 定义 ,度量矩阵((,)=xTAy,A是某基的度量矩阵,x
和y分别是 和 在该基下的坐标)
2. 正交基与规范正交基(sthmidt 正交化)
3. 正交补
4. 对称变换与正交变换
(T,)=(,T)T在规范正交基下的矩阵为实对称矩阵. (T,T)=(,) T 在规范正交基下的矩阵为正交矩阵. 5. n阶方阵酉相似于上三角矩阵 n 阶方阵A 酉相似对角矩阵A是正规矩阵.
2= 2+k2r , , r= r (kiK)也线性无关.
3. 求向量组
1 (1,2,1,0) 1 ( 2,1,0,1) 2 ( 1,1,1,1) 2 (1,1,3,7)
分别生成的子空间的交的基和维数.
4. 设 V1, V2 分别是
相关文档
最新文档