矩阵论_线性空间和线性映射课件
矩阵论_线性空间和线性映射课件

例2 设 A Rmn,那么线性方程组 AX 0 的 全部解为 n 维线性空间 Rn 的一个子空间,我们称其
为齐次线性方程组的解空间。当齐次线性方程组
AX 0 有无穷多解时,其解空间的基底即为其基础
解系;解空间的维数即为基础解系所含向量的个数。
例3
设 1,2,L
,
为
s
❖ 映射的乘积(复合):若 f : S1 → S2 和 g: S 2→ S3,则映射的 乘积 g○ f 定义为: g○ f(a)=g(f(a))。
在不至混淆的情况下,简记 g○ f 为 gf
映射的例子
❖ 例子1:设集合S是数域F上所有阶方阵的集合,则
f(A)=det(A) 为S到F的映射。 ❖ 例2:设S为次数不超过n的多项式构成的集合,则求导运 算:
]
y2
[1,2,
y1
,
n
]P
y2
xn
yn
yn
于是有:
x1 y1
x2
P
y2
M M
xn
yn
该式被称为坐标变换公式。
例1 在4维线性空间 R22 中,向量组
1
0 1
3
1 0
1 1
,
2
1 1
1 1
,
4
1 1
0 1 , 与向量组
1
1 0
1 0
,
3
1 1
δ(f(t))=f’(t) 为S到S的变换。 ❖ 例3:S为平方可积函数构成的集合,则傅里叶变换:
F ( f )() f (t)e jtdt
为S到S上的一个变换。
线性空间的定义
定义:设 V 是一个非空的集合,F 是一个数域,在集合 V 中定 义两种代数运算, 一种是加法运算,用 + 来表示,另一种是 数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
第一章线性空间与线性映射1

第一章 线性空间与线性映射线性空间是研究矩阵理论的重要基础,本章主要讨论线性空间及其子空间的性质、线性映射与矩阵的关系等。
§1.1 数 域定义1 设F 是至少包含两个数的数集,如果F b a ∈∀,均有ab b a ,±F b ba∈≠)0(,,则称F 是数域。
例1 全体实数构成实数域,记为R 。
全体复数构成复数域,记为C 。
全体有理数构成有理数域,记为Q 。
例2 全体整数不够成数域,因为对除法不封闭。
例3设{|,}F a a Q b Q =∈∈,证明F 是数域。
证明 ,F αβ∀∈,则1122,,,a b a b Q ∃∈,使得1122,a a αβ==,易证,αβαβ±,(0)F αββ≠∈。
例4 证明任何数域F 都包含有理数域。
证明 因为F 中至少包含两个不同元素,所以0,≠∈∃a F a ,由运算的封闭性知F aa∈=1,112,123,F +=+=∈ 121,132F -=--=-∈,所以F 包含了全体整数,又由除法封闭性知F 包含有理数域。
和号:∑∑∑∑=====∈n j mi j i m i nj ji j i a aF a 1111,§1.2 线 性 空 间在线性代数中n R 是n 维实向量空间,在本节中将此概念推广到一般向量空间。
定义1 设V 是一个非空集合,F 是一个数域。
在集合V 的元素之间定义一种称之为加法的运算,且V 关于加法封闭,即,,x y V ∀∈有唯一的V y x ∈+。
在F 与V 之间定义一种运算称之为数乘,即V x F ∈∈λ∀,有唯一确定的V x ∈λ=ω与之对应,如果以上两种运算满足以下八条运算规则,则称V 为数域F 上的线性空间,V 中元素也称为V 中的向量,也记)(F V V =。
V y x x y y x ∈∀+=+,.1V z y x z y x z y x ∈∀++=++,,)()(.2.3V θ∃∈使,x x x V θ+=∀∈,称θ为零元素,也记为0。
课件 矩阵论

6
证
对于数组
k 1
,L ,
km
,
因为
k 1
y 1
+L+
km
ym
=
(
x 1
,L,
x
n
)(
k1α
1
+L+
kmα m
)
=θ
等价于 k1α1 + L + kmα m = θ , 所以结论成立.
四、基变换与坐标变换
1.基变换:设线性空间V
n
的基(Ⅰ)为
x 1
,L,
xn
,
基(Ⅱ)为
y 1
,L,
yn
,
则
y 1
=
cx 11 1
⊆
S 2
∀b ∈
S 2
⇒
b∈
S 1
,
即S 2
⊆
S 1
交:
S 1
I
S 2
=
{a
a
∈
S 1
且
a∈
S2 }
并:
S 1
U
S 2
=
{a
a
∈
S 1
或
a
∈
S 2
}
和: S 1
+
S 2
=
{a
=
a 1
+
a 2
a 1
∈
S 1
,
a 2
∈
S 2
}
例1
S 1
=
{A
=
a 11
a21
0
a
22
ai j ∈ R}
S 2
=
{A
西北工业大学矩阵论PPT课件

+
x 2
=θ
+
x 2
=
x 2
+θ
=
x 2
第一章 线性空间与线性变换(第 1 节)
4
例 6 在线性空间V 中,下列结论成立.
0x = θ :1x + 0x = (1 + 0)x = 1x ⇒ 0x = θ
kθ = θ : kx + kθ = k( x + θ ) = kx ⇒ kθ = θ
(−1)x = (− x) : (−1)x = (−1)x + [ x + (− x)] = [(−1)x + 1x] + (− x) = (− x)
+
aE 12 12
+
aE 21 21
+
aE 22 22
坐标为
α
=
(
a 11
,
a 12
,
a21 ,
a22 )Τ
(2)
取基
B 1
=
1 1
1 1 ,
B 2
=
0 1
1 1 ,
B 3
=
0 1
0 1
,
B 4
=
0 0
0 1
A
=
a 11
(
B 1
−
B 2
)
+
a 12
(
B 2
−
B 3
)ห้องสมุดไป่ตู้
+
a
21
(
B 3
−
B 4
)
+
aB 22 4
+L+ cm xm
第一章线性空间与线性变换-矩阵理论课件

(2)x W , P x W . 平凡子空间
例5
① V x (x1, x2, , xn )T Ax , A Rnn,det(A) 0
是 R中n 的一个子空间。 ② R3是3 R的m一n个子空间。
③ P3[是t] Pn[的t]一个子空间。
定义2 (线性生成子空间)
设 x1, x2 , , xn V L(P ) , 线性组合
C
C11C2
0 0
1 0
1 1
1 1
0
1
1 1
1 1
1
0
0 0 0 1 1 1 0 1
1 1 0 0 1 0 1 1 1 1 0 0
0
0
1 0
1 1
0
0
1 1
1 1
1 1
1
0
1
0
0 0
0
1
1 1
0
0
0
1
1
1
0
1
1
1 0 1
§3、子空间与维数定理 定义1 (子空间)
下的坐标依次可记为
E11, E12 , E21, E22
1 0 0 1 1
1
1
0
,2
1 1
,
3
0
1
,
1
0
2
,
2
1 0
0
0
1
3
1
容易判定该向量组的一个最大无关组为 1,2 ,3 , 2
A1, A2 , A3, B2 是 V1 V2 的一个基。dim(V1 V2 ) 4
③求V1 的V基2 与维数。
分析: 设V的两个子空间为
求 x1, x2, , xm , y1, y2, , yn
矩阵理论课件 第一章 线性空间与线性变换

a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2
01_矩阵论_第一章线性空间与线性变换
例 2 V = F mn = {A = (aij)mn | aijF},它在矩 阵的加法与数乘运算下构成数域 F 上的线性空间, 称为矩阵空间,其中 Rmn 为由一切 mn 实矩阵构 成的实矩阵空间。
例 3 实数域 R 上次数不超过 n 1 次的关于 文字 x 的一切多项式和零多项式所构成的集合
二、线性空间的基与维数 向量空间中的基与维数是依赖于向量的线 性相关与线性无关的概念来定义的。 线性空间 V 作为一个向量集合,其中向量 的线性相关、线性无关、极大无关组、等价等 一系列概念,在形式上与向量空间 Rn 中的定义 完全类似。 与上述概念相关的性质与结果也可平移到 线性空间中。
定义 1.2 设 V 是线性空间,若存在一组线性 无关的向量 1, 2, …, n,使空间中任一向量可 由它们线性表示,则称向量组 {1, 2, …, n} 为 V 的一组基。基所含向量个数为 V 的维数,记为 dimV = n, n < 或者 n = 。
图 1 二维向量空间 V = {x = (0, x2, x3)T | x2, x3R}
本质上,向量空间就是满足某些特性 ( 比如 对于向量加法及数乘两种运算封闭)的向量集合, 它的一个直观模型是向量几何,2 维和 3 维几何 空间中大多数有用的结论都可以扩展到向量空间。
定义向量空间的目的就是讨论向量集合的一 般性质。
解 因为
a0 a 2 3 1 f x (1, x, x , x ) , a2 a 3
类似地,{Eij, i = 1, 2, …, m; j = 1, 2, …, n} 是矩阵空间 Rmn 的一组基,dimRmn = mn。 例 7 向量组 {1, x, x2, …, xn 1} 是 Pn[x] 的一 组基,dimPn[x] = n。
矩阵理论第一章线性空间与线性变换精品PPT课件
(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) V ,使得
(A4) 具有加法逆元(负向量) V
( )
,使得
(M1) 数乘的结合律:k(l ) (kl)
例3 闭区间 [a,b]上的所有实值连续函数按通常函
数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数不超过 n 的所有实系数多项式按通常多项
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,
构成线性空间
。l
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 的A核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn}
Ker( A)
例7 所有矩阵向量积 Ax 的集合构成数域 R 上的
线性空间 R( A) , 称为矩阵 A 的列空间或值域, 也称为矩阵 A 的像 , 即
R( A) { y Rm | y Ax, x Rn, A Rmn}
(M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
注意:这里我们不再关心元素的特定属性,而 且我们也不用关心这些线性运算(加法和数乘) 的具体形式。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和
数乘,构成线性空间 Rmn (C mn ) 。
中,直觉和抽象是交互为用的。”(汤川秀树,1949 年诺贝尔物理奖获得者)。
几何方法与代数方法的融和是数学自身的需要和数 学统一性的体现,也是处理工程问题的有力手段。
矩阵论第一章线性空间和线性变换
目录第一章线性空间和线性变换 (1)§1.1引言 (1)§1.2线性空间 (4)§1.3线性空间的基和维数 (11)§1.4子空间、直和 (17)§1.5线性映射 (24)§1.6同构 (34)§1.7线性映射的矩阵表示 (36)§1.8内积空间 (49)§1.9正交变换 (68)第二章特征值和特征向量 (86)§2.1引言 (86)§2.2特征值、特征多项式和最小多项式 (87)§2.3特征矢量和特征子空间 (103)§2.4约当标准型 (113)§2.5特征值的分布 (128)§2.6几个例子 (138)第三章H阵 (152)§3.1二次型 (152)§3.2H阵、Rayleigh商 (157)§3.3正定阵 (165)§3.4正规阵(或称规范阵) (174)第四章矩阵函数 (186)§4.1范数 (186)§4.2几个收敛定理 (206)§4.3矩阵函数At (216)第五章广义逆及最小二乘解 (233)§5.1矩阵的酉交分解、满秩分解和奇值分解 (233)§5.2广义逆 (238)§5.3方程组的最小二乘解 (248)第六章K积及一些常见的矩阵方程 (257)§6.1K积 (258)§6.2拉伸算子V ec (264)§6.3几个常见的矩阵方程 (271)参考目录 (275)第一章线性空间和线性变换§1.1引言我们假定读者已经具有下述基本知识:集合论的初步常识,行列式、矩阵及其代数运算,线性方程组等等。
如果不够熟悉,学习中可准备一本工程数学——线性代数随手翻阅。
在讨论过程中,我们会尽可能地介绍清楚基本概念:它们的由来、发展及其作用。
矩阵论课件01线性空间
第一讲 线性空间一、 线性空间的定义及性质 [知识预备]★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R )和复数域(C )。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
线性空间的概念是某类事物从量的方面的一个抽象。
1.线性空间的定义:设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。
如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++;(2)交换律 x y y x +=+;(3)零元律 存在零元素o ,使x +o x =;(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -)。
则有()x x +-= o 。
(II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。
注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。
(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构成实数域 R 上的线性空间。 例4:全体正的实数 R+ 在下面的加法与数乘的定义下构成实数
域上的线性空间:对任意 k∈R, a,b∈R例子(续)
例5:R∞表示实数域 R 上的全体无限序列组成的的 集合。即
❖ 映射的乘积(复合):若 f : S1 → S2 和 g: S 2→ S3,则映射的 乘积 g○ f 定义为: g○ f(a)=g(f(a))。
在不至混淆的情况下,简记 g○ f 为 gf
映射的例子
❖ 例子1:设集合S是数域F上所有阶方阵的集合,则
f(A)=det(A) 为S到F的映射。 ❖ 例2:设S为次数不超过n的多项式构成的集合,则求导运 算:
都是线性相关的函数组。
线性空间的基底与维数
定义:设 V 为数域 F上的一个线性空间。如果在 V 中存在 n 个线性无关的向量 1,2,,n ,使得 V 中的任意一个向量 都可以由 1,2,,n 线性 表出:
第一章
线性空间和线性映射
本章知识要点
❖ 线性空间:维数、基、坐标、基变换、坐标变换; ❖ 线性空间的分解:子空间、值域(像空间)与核空间
(零空间)、秩与零度、子空间的交、和与直和; ❖ 线性变换及其矩阵表示:定义、运算、值域与核空
间、秩与零度、相似类、特征值与特征向量、不变 子空间、Jordan标准形; ❖ 欧氏空间和酉空间:内积、度量矩阵、正交、标准 正交基、正交分解与正交补、正交变换与正交矩阵、 对称变换与对称矩阵、Hermite变换与Hermite矩阵、 正规矩阵与可对角化、谱分解。 ❖ Hibert空间:平方可积空间和平方可和空间。
(7)对k,l∈F,α∈V 有: (k+l) ∙α= k ∙ α+l ∙α
(8)对k∈F,α, β∈V 有: k ∙(α+β)= k ∙ α+k ∙β
称这样的集合 V 为数域 F 上的线性空间。 可以证明:零元素唯一,每个元素的负元素都是唯一的。
线性空间的例子
例1:全体实函数集合 RR构成实数域 R 上的线性空间。 例2:复数域 C上的全体 m×n 阶 矩阵构成的集合Cm×n 为 C
线性空间的例子(续)
例 6 在 R中满足Cauchy条件的无限序列组成的
子集合也构成 R上的线性空间。Cauchy条件是:
0,N 0, 使得对于 m,n N 都有 am an
例7 在 R 中满足Hilbert条件的无限序列组成的
子集合构成 R 上的线性空间。
Hilbert条件是:级数
δ(f(t))=f’(t) 为S到S的变换。 ❖ 例3:S为平方可积函数构成的集合,则傅里叶变换:
F ( f )() f (t)e jtdt
为S到S上的一个变换。
线性空间的定义
定义:设 V 是一个非空的集合,F 是一个数域,在集合 V 中定 义两种代数运算, 一种是加法运算,用 + 来表示,另一种是 数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
x1 , x2 , , xn
是一组线性无关的函数,其中 1,2, ,n 为一组互不相同
的实数。
例3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx
也是线性无关的。
例4 实数域 R 上的线性空间空间 RR 中,函数组 1,cos2 x,cos 2x
与函数组
sin x,cos x,sin2 x,cos2 x,, sinn x,cosn x , n 4.
映射
❖ 映射:集合S到集合S‘的一个映射是指一个法则(规则) f : S → S’,对S中任何元素a,都有S’中的元素a‘与之对应,记为: f(a)=a’ 或 a→a’。一般称a’为a的像,a为a’的原像。
❖ 变换:若S=S‘,则称映射为变换。
❖ 映射的相等:设有两个映射 f : S → S’和 g: S → S’,若对任 何元素 a∈S 都有 f(a)=g(a) 则称 f 与 g 相等。
唯一; (5)如果向量组(I)可以由向量组(II)线性表出,那
么向量组(I)的秩小于等于向量组(II)的秩; (6)等价的向量组秩相同。
例1 实数域 R上的线性空间 RR 中,函数组
e1x , e2x , , enx
是一组线性无关的函数,其中 1, 2, , n 为一组互不相同
的实数。
例2 实数域 R 上的线性空间 RR 中,函数组
R {[a1, a2 , a3, ] | ai R, i 1,2,3, }
在R∞中定义加法与数乘:
[a1, a2, a3,] [b1, b2, b3,] [a1 b1, a2 b2, a3 b3, ] k[a1, a2, a3,] [ka1, ka2, ka3,]
则 R∞ 为实数域 R上的一个线性空间。
集合
❖ 集合
元素、子集、集合相等、运算(交、并、补)
❖ 例:数域是一个集合含有加法+和乘法*
含有元素0,满足对任何元素a,有 a+0=a; 含有1,满足对任何元素a,有 a*1=a; 任何元素 a 存在负元素 b,满足a+b=0; 非零元素a存在逆元素b,满足a*b=1; 对加法和乘法封闭
❖ 常用数域有:有理数域、实数域、复数域
(1)加法交换律:α+β= β + α (2)加法结合律: (α+β)+ γ= α+(β+γ) (3)零元素:在 V 中存在一个元素0,使得对于任意的α∈V
都有
α+ 0 =α (4)对于V中的任意元素α都存在一个元素 β使得:α+β= 0
线性空间的定义(续)
(5)数1:对α∈V,有: 1∙α=α
(6)对k,l∈F,α∈V 有: (kl) ∙α= k ∙ (l ∙α)
an 2 收敛
n 1
线性空间的基本概念及其性质
基本概念:线性组合;线性表示;线性相关;线性无关; 向量组的极大线性无关组;向量组的秩。
❖ 基本性质:
(1)含有零向量的向量组一定线性相关; (2)整体无关则部分无关;部分相关则整体相关; (3)如果含有向量多的向量组可以由含有向量少的向量
组线性表出,那么含有向量多的向量组一定线性相关; (4)向量组的秩是唯一的,但是其极大线性无关组并不