矩阵论_线性空间和线性映射课件
矩阵论_线性空间和线性映射课件

例2 设 A Rmn,那么线性方程组 AX 0 的 全部解为 n 维线性空间 Rn 的一个子空间,我们称其
为齐次线性方程组的解空间。当齐次线性方程组
AX 0 有无穷多解时,其解空间的基底即为其基础
解系;解空间的维数即为基础解系所含向量的个数。
例3
设 1,2,L
,
为
s
❖ 映射的乘积(复合):若 f : S1 → S2 和 g: S 2→ S3,则映射的 乘积 g○ f 定义为: g○ f(a)=g(f(a))。
在不至混淆的情况下,简记 g○ f 为 gf
映射的例子
❖ 例子1:设集合S是数域F上所有阶方阵的集合,则
f(A)=det(A) 为S到F的映射。 ❖ 例2:设S为次数不超过n的多项式构成的集合,则求导运 算:
]
y2
[1,2,
y1
,
n
]P
y2
xn
yn
yn
于是有:
x1 y1
x2
P
y2
M M
xn
yn
该式被称为坐标变换公式。
例1 在4维线性空间 R22 中,向量组
1
0 1
3
1 0
1 1
,
2
1 1
1 1
,
4
1 1
0 1 , 与向量组
1
1 0
1 0
,
3
1 1
δ(f(t))=f’(t) 为S到S的变换。 ❖ 例3:S为平方可积函数构成的集合,则傅里叶变换:
F ( f )() f (t)e jtdt
为S到S上的一个变换。
线性空间的定义
定义:设 V 是一个非空的集合,F 是一个数域,在集合 V 中定 义两种代数运算, 一种是加法运算,用 + 来表示,另一种是 数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
第一章线性空间与线性映射1

第一章 线性空间与线性映射线性空间是研究矩阵理论的重要基础,本章主要讨论线性空间及其子空间的性质、线性映射与矩阵的关系等。
§1.1 数 域定义1 设F 是至少包含两个数的数集,如果F b a ∈∀,均有ab b a ,±F b ba∈≠)0(,,则称F 是数域。
例1 全体实数构成实数域,记为R 。
全体复数构成复数域,记为C 。
全体有理数构成有理数域,记为Q 。
例2 全体整数不够成数域,因为对除法不封闭。
例3设{|,}F a a Q b Q =∈∈,证明F 是数域。
证明 ,F αβ∀∈,则1122,,,a b a b Q ∃∈,使得1122,a a αβ==,易证,αβαβ±,(0)F αββ≠∈。
例4 证明任何数域F 都包含有理数域。
证明 因为F 中至少包含两个不同元素,所以0,≠∈∃a F a ,由运算的封闭性知F aa∈=1,112,123,F +=+=∈ 121,132F -=--=-∈,所以F 包含了全体整数,又由除法封闭性知F 包含有理数域。
和号:∑∑∑∑=====∈n j mi j i m i nj ji j i a aF a 1111,§1.2 线 性 空 间在线性代数中n R 是n 维实向量空间,在本节中将此概念推广到一般向量空间。
定义1 设V 是一个非空集合,F 是一个数域。
在集合V 的元素之间定义一种称之为加法的运算,且V 关于加法封闭,即,,x y V ∀∈有唯一的V y x ∈+。
在F 与V 之间定义一种运算称之为数乘,即V x F ∈∈λ∀,有唯一确定的V x ∈λ=ω与之对应,如果以上两种运算满足以下八条运算规则,则称V 为数域F 上的线性空间,V 中元素也称为V 中的向量,也记)(F V V =。
V y x x y y x ∈∀+=+,.1V z y x z y x z y x ∈∀++=++,,)()(.2.3V θ∃∈使,x x x V θ+=∀∈,称θ为零元素,也记为0。
课件 矩阵论

6
证
对于数组
k 1
,L ,
km
,
因为
k 1
y 1
+L+
km
ym
=
(
x 1
,L,
x
n
)(
k1α
1
+L+
kmα m
)
=θ
等价于 k1α1 + L + kmα m = θ , 所以结论成立.
四、基变换与坐标变换
1.基变换:设线性空间V
n
的基(Ⅰ)为
x 1
,L,
xn
,
基(Ⅱ)为
y 1
,L,
yn
,
则
y 1
=
cx 11 1
⊆
S 2
∀b ∈
S 2
⇒
b∈
S 1
,
即S 2
⊆
S 1
交:
S 1
I
S 2
=
{a
a
∈
S 1
且
a∈
S2 }
并:
S 1
U
S 2
=
{a
a
∈
S 1
或
a
∈
S 2
}
和: S 1
+
S 2
=
{a
=
a 1
+
a 2
a 1
∈
S 1
,
a 2
∈
S 2
}
例1
S 1
=
{A
=
a 11
a21
0
a
22
ai j ∈ R}
S 2
=
{A
西北工业大学矩阵论PPT课件

+
x 2
=θ
+
x 2
=
x 2
+θ
=
x 2
第一章 线性空间与线性变换(第 1 节)
4
例 6 在线性空间V 中,下列结论成立.
0x = θ :1x + 0x = (1 + 0)x = 1x ⇒ 0x = θ
kθ = θ : kx + kθ = k( x + θ ) = kx ⇒ kθ = θ
(−1)x = (− x) : (−1)x = (−1)x + [ x + (− x)] = [(−1)x + 1x] + (− x) = (− x)
+
aE 12 12
+
aE 21 21
+
aE 22 22
坐标为
α
=
(
a 11
,
a 12
,
a21 ,
a22 )Τ
(2)
取基
B 1
=
1 1
1 1 ,
B 2
=
0 1
1 1 ,
B 3
=
0 1
0 1
,
B 4
=
0 0
0 1
A
=
a 11
(
B 1
−
B 2
)
+
a 12
(
B 2
−
B 3
)ห้องสมุดไป่ตู้
+
a
21
(
B 3
−
B 4
)
+
aB 22 4
+L+ cm xm
第一章线性空间与线性变换-矩阵理论课件

(2)x W , P x W . 平凡子空间
例5
① V x (x1, x2, , xn )T Ax , A Rnn,det(A) 0
是 R中n 的一个子空间。 ② R3是3 R的m一n个子空间。
③ P3[是t] Pn[的t]一个子空间。
定义2 (线性生成子空间)
设 x1, x2 , , xn V L(P ) , 线性组合
C
C11C2
0 0
1 0
1 1
1 1
0
1
1 1
1 1
1
0
0 0 0 1 1 1 0 1
1 1 0 0 1 0 1 1 1 1 0 0
0
0
1 0
1 1
0
0
1 1
1 1
1 1
1
0
1
0
0 0
0
1
1 1
0
0
0
1
1
1
0
1
1
1 0 1
§3、子空间与维数定理 定义1 (子空间)
下的坐标依次可记为
E11, E12 , E21, E22
1 0 0 1 1
1
1
0
,2
1 1
,
3
0
1
,
1
0
2
,
2
1 0
0
0
1
3
1
容易判定该向量组的一个最大无关组为 1,2 ,3 , 2
A1, A2 , A3, B2 是 V1 V2 的一个基。dim(V1 V2 ) 4
③求V1 的V基2 与维数。
分析: 设V的两个子空间为
求 x1, x2, , xm , y1, y2, , yn
矩阵理论课件 第一章 线性空间与线性变换

a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2
01_矩阵论_第一章线性空间与线性变换

例 2 V = F mn = {A = (aij)mn | aijF},它在矩 阵的加法与数乘运算下构成数域 F 上的线性空间, 称为矩阵空间,其中 Rmn 为由一切 mn 实矩阵构 成的实矩阵空间。
例 3 实数域 R 上次数不超过 n 1 次的关于 文字 x 的一切多项式和零多项式所构成的集合
二、线性空间的基与维数 向量空间中的基与维数是依赖于向量的线 性相关与线性无关的概念来定义的。 线性空间 V 作为一个向量集合,其中向量 的线性相关、线性无关、极大无关组、等价等 一系列概念,在形式上与向量空间 Rn 中的定义 完全类似。 与上述概念相关的性质与结果也可平移到 线性空间中。
定义 1.2 设 V 是线性空间,若存在一组线性 无关的向量 1, 2, …, n,使空间中任一向量可 由它们线性表示,则称向量组 {1, 2, …, n} 为 V 的一组基。基所含向量个数为 V 的维数,记为 dimV = n, n < 或者 n = 。
图 1 二维向量空间 V = {x = (0, x2, x3)T | x2, x3R}
本质上,向量空间就是满足某些特性 ( 比如 对于向量加法及数乘两种运算封闭)的向量集合, 它的一个直观模型是向量几何,2 维和 3 维几何 空间中大多数有用的结论都可以扩展到向量空间。
定义向量空间的目的就是讨论向量集合的一 般性质。
解 因为
a0 a 2 3 1 f x (1, x, x , x ) , a2 a 3
类似地,{Eij, i = 1, 2, …, m; j = 1, 2, …, n} 是矩阵空间 Rmn 的一组基,dimRmn = mn。 例 7 向量组 {1, x, x2, …, xn 1} 是 Pn[x] 的一 组基,dimPn[x] = n。
矩阵理论第一章线性空间与线性变换精品PPT课件

(A1) 加法交换律: , (A2) 加法结合律:( ) ( ),
(A3) 具有加法单位元(零向量) V ,使得
(A4) 具有加法逆元(负向量) V
( )
,使得
(M1) 数乘的结合律:k(l ) (kl)
例3 闭区间 [a,b]上的所有实值连续函数按通常函
数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数不超过 n 的所有实系数多项式按通常多项
式加法和数与多项式的乘法,构成线性空间 P[ x]n
例5 所有收敛的实数数列按数列极限的加法和数乘,
构成线性空间
。l
例6 齐次线性方程组 Ax 的所有解的集合构成数 域 R 上的线性空间 N ( A) ,称为 Ax 的解空间,
或矩阵 的A核空间或零空间,即
N ( A) { x Rn | Ax , A Rmn}
Ker( A)
例7 所有矩阵向量积 Ax 的集合构成数域 R 上的
线性空间 R( A) , 称为矩阵 A 的列空间或值域, 也称为矩阵 A 的像 , 即
R( A) { y Rm | y Ax, x Rn, A Rmn}
(M2) 数乘的单位元:1 (D1) 分配律1: k( ) k k (D2) 分配律2:(k l) k l
注意:这里我们不再关心元素的特定属性,而 且我们也不用关心这些线性运算(加法和数乘) 的具体形式。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和
数乘,构成线性空间 Rmn (C mn ) 。
中,直觉和抽象是交互为用的。”(汤川秀树,1949 年诺贝尔物理奖获得者)。
几何方法与代数方法的融和是数学自身的需要和数 学统一性的体现,也是处理工程问题的有力手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构成实数域 R 上的线性空间。 例4:全体正的实数 R+ 在下面的加法与数乘的定义下构成实数
域上的线性空间:对任意 k∈R, a,b∈R例子(续)
例5:R∞表示实数域 R 上的全体无限序列组成的的 集合。即
❖ 映射的乘积(复合):若 f : S1 → S2 和 g: S 2→ S3,则映射的 乘积 g○ f 定义为: g○ f(a)=g(f(a))。
在不至混淆的情况下,简记 g○ f 为 gf
映射的例子
❖ 例子1:设集合S是数域F上所有阶方阵的集合,则
f(A)=det(A) 为S到F的映射。 ❖ 例2:设S为次数不超过n的多项式构成的集合,则求导运 算:
都是线性相关的函数组。
线性空间的基底与维数
定义:设 V 为数域 F上的一个线性空间。如果在 V 中存在 n 个线性无关的向量 1,2,,n ,使得 V 中的任意一个向量 都可以由 1,2,,n 线性 表出:
第一章
线性空间和线性映射
本章知识要点
❖ 线性空间:维数、基、坐标、基变换、坐标变换; ❖ 线性空间的分解:子空间、值域(像空间)与核空间
(零空间)、秩与零度、子空间的交、和与直和; ❖ 线性变换及其矩阵表示:定义、运算、值域与核空
间、秩与零度、相似类、特征值与特征向量、不变 子空间、Jordan标准形; ❖ 欧氏空间和酉空间:内积、度量矩阵、正交、标准 正交基、正交分解与正交补、正交变换与正交矩阵、 对称变换与对称矩阵、Hermite变换与Hermite矩阵、 正规矩阵与可对角化、谱分解。 ❖ Hibert空间:平方可积空间和平方可和空间。
(7)对k,l∈F,α∈V 有: (k+l) ∙α= k ∙ α+l ∙α
(8)对k∈F,α, β∈V 有: k ∙(α+β)= k ∙ α+k ∙β
称这样的集合 V 为数域 F 上的线性空间。 可以证明:零元素唯一,每个元素的负元素都是唯一的。
线性空间的例子
例1:全体实函数集合 RR构成实数域 R 上的线性空间。 例2:复数域 C上的全体 m×n 阶 矩阵构成的集合Cm×n 为 C
线性空间的例子(续)
例 6 在 R中满足Cauchy条件的无限序列组成的
子集合也构成 R上的线性空间。Cauchy条件是:
0,N 0, 使得对于 m,n N 都有 am an
例7 在 R 中满足Hilbert条件的无限序列组成的
子集合构成 R 上的线性空间。
Hilbert条件是:级数
δ(f(t))=f’(t) 为S到S的变换。 ❖ 例3:S为平方可积函数构成的集合,则傅里叶变换:
F ( f )() f (t)e jtdt
为S到S上的一个变换。
线性空间的定义
定义:设 V 是一个非空的集合,F 是一个数域,在集合 V 中定 义两种代数运算, 一种是加法运算,用 + 来表示,另一种是 数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
x1 , x2 , , xn
是一组线性无关的函数,其中 1,2, ,n 为一组互不相同
的实数。
例3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx
也是线性无关的。
例4 实数域 R 上的线性空间空间 RR 中,函数组 1,cos2 x,cos 2x
与函数组
sin x,cos x,sin2 x,cos2 x,, sinn x,cosn x , n 4.
映射
❖ 映射:集合S到集合S‘的一个映射是指一个法则(规则) f : S → S’,对S中任何元素a,都有S’中的元素a‘与之对应,记为: f(a)=a’ 或 a→a’。一般称a’为a的像,a为a’的原像。
❖ 变换:若S=S‘,则称映射为变换。
❖ 映射的相等:设有两个映射 f : S → S’和 g: S → S’,若对任 何元素 a∈S 都有 f(a)=g(a) 则称 f 与 g 相等。
唯一; (5)如果向量组(I)可以由向量组(II)线性表出,那
么向量组(I)的秩小于等于向量组(II)的秩; (6)等价的向量组秩相同。
例1 实数域 R上的线性空间 RR 中,函数组
e1x , e2x , , enx
是一组线性无关的函数,其中 1, 2, , n 为一组互不相同
的实数。
例2 实数域 R 上的线性空间 RR 中,函数组
R {[a1, a2 , a3, ] | ai R, i 1,2,3, }
在R∞中定义加法与数乘:
[a1, a2, a3,] [b1, b2, b3,] [a1 b1, a2 b2, a3 b3, ] k[a1, a2, a3,] [ka1, ka2, ka3,]
则 R∞ 为实数域 R上的一个线性空间。
集合
❖ 集合
元素、子集、集合相等、运算(交、并、补)
❖ 例:数域是一个集合含有加法+和乘法*
含有元素0,满足对任何元素a,有 a+0=a; 含有1,满足对任何元素a,有 a*1=a; 任何元素 a 存在负元素 b,满足a+b=0; 非零元素a存在逆元素b,满足a*b=1; 对加法和乘法封闭
❖ 常用数域有:有理数域、实数域、复数域
(1)加法交换律:α+β= β + α (2)加法结合律: (α+β)+ γ= α+(β+γ) (3)零元素:在 V 中存在一个元素0,使得对于任意的α∈V
都有
α+ 0 =α (4)对于V中的任意元素α都存在一个元素 β使得:α+β= 0
线性空间的定义(续)
(5)数1:对α∈V,有: 1∙α=α
(6)对k,l∈F,α∈V 有: (kl) ∙α= k ∙ (l ∙α)
an 2 收敛
n 1
线性空间的基本概念及其性质
基本概念:线性组合;线性表示;线性相关;线性无关; 向量组的极大线性无关组;向量组的秩。
❖ 基本性质:
(1)含有零向量的向量组一定线性相关; (2)整体无关则部分无关;部分相关则整体相关; (3)如果含有向量多的向量组可以由含有向量少的向量
组线性表出,那么含有向量多的向量组一定线性相关; (4)向量组的秩是唯一的,但是其极大线性无关组并不