矩阵论 线性空间一(1-3)
合集下载
矩阵论 Matrix1-3

T (1 , 2 ,, n ) (1 , 2 ,, n ) A T ( i ) (1 , 2 ,, n ) Ai
Pn[x]中的微分变换在自然基下的矩阵: 0 1 0 0
0 d k ( x ) kxk 1 (1, x, x 2 , , x n-1 ) k dx k 0, 1, 2,, n 1 0
例28(P23) 给定R3上的线性变换 T((x1, x2, x3)T) = (x1+2x2+x3, x2 – x3, x1+x3)T, 求T在基1=(1 0 1)T, 2=(0 1 1)T, 3=(1 -1 1)T下 的变换矩阵B。 例29(P24) 设单位向量 u =(2/3, –2/3, –1/3),给定R3 上的线性变换 P(x) = x – (x, u)u,
A1 A 2 A Ak
矩阵Ai 的阶数 = dim Ui = ni
特别地,若 i, dim(Ui的变换)
讨论内积空间 [V(F);(,)] 中最重要的一类变换。 1 定义1.15 (P25):(T(), T())=(, ) 2 正交(酉)变换的性质: 定理1.15 T是内积空间V(F)上的线性变换,则下列命题等价: (1)T是正交(酉)变换; (2)T保持向量的长度不变; (3)T把V(F)的标准正交基变成标准正交基; (证(2)→(3)) (4)T在标准正交基下的矩阵是正交(酉)矩阵。 3 变换的矩阵:正交矩阵和酉矩阵的性质 正交矩阵C:CTC=I;酉矩阵U: UHU=I 定理1.16(P27) 正交矩阵C和酉矩阵U有如下性质: (1) |det(C)|=1, |det(U)|=1; (2) C-1=CT,U-1=UH; (3) 正交(酉)矩阵的逆、两个正交(酉)矩阵的乘积仍是正交 (酉)矩阵; (4) n阶正交(酉)矩阵的列或行向量组是Rn(Cn)中的标准正 交基。
矩阵论- 线性空间

Q[ x] {an x a1 x a0 a0 , a1 ,, an F , an 0}
n
不是线性空间
例5 [a , b]区间上连续实函数全体所构成的集合C a, b 对通常函数的加法和数乘运算构成相应实数域 R 上 的线性空间,称为实函数空间,记为 C a, b ( R)
(1)幂等律:A∪A=A
(2)交换律:A∪B=B∪A
(3)结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) (4)分配律:(A∩B)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(A∩C)∪(B∩C) (5)DeMongan 律: A ( B C ) ( A B) ( A C )
(3)称既单且满的映射为双射或者一一映射。
定理 3 设 A, B, C 是三个集合,f:A B 是由 A 到 B 的映射, g:B C 是由 B 到 C 的映射,对于 A 中的 每一个元素 x ,有 C 中唯一确定的元素 z 满足:
g ( f ( x)) z 。 即存在一个 A C 的映射, 记为:g f ;
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
例1.证明:数集 是一个数域.
Q( 2 ) a b 2 | a , b Q
类似可证 Q( i ) a bi a , b Q , i 1 是数域.
定理5 任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 1 F
n
不是线性空间
例5 [a , b]区间上连续实函数全体所构成的集合C a, b 对通常函数的加法和数乘运算构成相应实数域 R 上 的线性空间,称为实函数空间,记为 C a, b ( R)
(1)幂等律:A∪A=A
(2)交换律:A∪B=B∪A
(3)结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) (4)分配律:(A∩B)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(A∩C)∪(B∩C) (5)DeMongan 律: A ( B C ) ( A B) ( A C )
(3)称既单且满的映射为双射或者一一映射。
定理 3 设 A, B, C 是三个集合,f:A B 是由 A 到 B 的映射, g:B C 是由 B 到 C 的映射,对于 A 中的 每一个元素 x ,有 C 中唯一确定的元素 z 满足:
g ( f ( x)) z 。 即存在一个 A C 的映射, 记为:g f ;
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的. 2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
例1.证明:数集 是一个数域.
Q( 2 ) a b 2 | a , b Q
类似可证 Q( i ) a bi a , b Q , i 1 是数域.
定理5 任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 1 F
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
矩阵论第一章线性空间和线性变换

而开方运算则不是,因为显然有
∃x∈R, x ∉ R
(采用这种观点来读数学,你不觉得别有情致吗?)每一种作用都有 其特性,因而每种运算都有它所服从的规律——运算律,所以在定义 运算时,需要讨论或说明它的运算律。
既然如此,是否有某种方式来描述我们的物质世界呢?就宏观现 象而论,涉及到各式各样的物质,自然的作用使物质产生互变,而且 我们认为物质世界是“完备”的,这句话意味着人类的向往,例如“点 石成金”等这类愿望。从这些粗糙的认识出发,我们来探讨描述它的
§6.1 K 积……………………………………………………(258) §6.2 拉伸算子Vec ……………………………………………(264)
§6.3 几个常见的矩阵方程…………………………………(271) 参考目录……………………………………………………………(275)
第一章 线性空间和线性变换
§1.1 引言
12121212nnnnnxxyyxxyyxyfxyxyxy?????12????????????????????????????????定义数乘12nnnxxaxaxafxfaxaxax??????????????????????????????容易验证这些运算满足公理系的要求nff是线性空间
目录
第二章 特征值和特征向量………………………………………(86) §2.1 引言………………………………………………………(86) §2.2 特征值、特征多项式和最小多项式……………………(87) §2.3 特征矢量和特征子空间………………………………(103) §2.4 约当标准型……………………………………………(113) §2.5 特征值的分布…………………………………………(128) §2.6 几个例子………………………………………………(138)
∃x∈R, x ∉ R
(采用这种观点来读数学,你不觉得别有情致吗?)每一种作用都有 其特性,因而每种运算都有它所服从的规律——运算律,所以在定义 运算时,需要讨论或说明它的运算律。
既然如此,是否有某种方式来描述我们的物质世界呢?就宏观现 象而论,涉及到各式各样的物质,自然的作用使物质产生互变,而且 我们认为物质世界是“完备”的,这句话意味着人类的向往,例如“点 石成金”等这类愿望。从这些粗糙的认识出发,我们来探讨描述它的
§6.1 K 积……………………………………………………(258) §6.2 拉伸算子Vec ……………………………………………(264)
§6.3 几个常见的矩阵方程…………………………………(271) 参考目录……………………………………………………………(275)
第一章 线性空间和线性变换
§1.1 引言
12121212nnnnnxxyyxxyyxyfxyxyxy?????12????????????????????????????????定义数乘12nnnxxaxaxafxfaxaxax??????????????????????????????容易验证这些运算满足公理系的要求nff是线性空间
目录
第二章 特征值和特征向量………………………………………(86) §2.1 引言………………………………………………………(86) §2.2 特征值、特征多项式和最小多项式……………………(87) §2.3 特征矢量和特征子空间………………………………(103) §2.4 约当标准型……………………………………………(113) §2.5 特征值的分布…………………………………………(128) §2.6 几个例子………………………………………………(138)
矩阵论(方保镕、周继东、李医民)习题1-3章

5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或 因无零向量).
6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,
' 2
,
' 3
)
的基为
1'
,
' 2
,
' 3
的一个最大无关组,
' 1
,
' 2
,
' 3
在基1
,
2
,
3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A
1 0
0 0
,B
6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,
' 2
,
' 3
)
的基为
1'
,
' 2
,
' 3
的一个最大无关组,
' 1
,
' 2
,
' 3
在基1
,
2
,
3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A
1 0
0 0
,B
矩阵论学习-(线性空间与线性变换)

ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=
矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22
∈
R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j
∈
R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
矩阵论一 线性空间

ann
是由旧的基底到新的基底的过渡矩阵,那么上式可
以写成
1, 2, , n 1,2 ,n P
定理:过渡矩阵 P 是可逆的。
任取 V ,设 在两组基下的坐标分别为
x1, x2,
, xn
T
与
y1, y2,
, yn
T
,那么我们有:
x1 y1
x2
P
y2
xn
yn
矩阵理论
数学与系统科学学院 王震
个人简介 王震,博士,副教授,硕士生导师
研究方向:分数阶系统的稳定性、同步控制及其应用。现 主持国家自然科学基金面上项目1项。 主讲课程:数值分析,运筹学,数学模型,数学实验, 偏微分方程数值解,Calculus(留学生), Linear Algebra (留学生),Complex Function(留学生),矩阵分析, 图论与网络优化,线性代数与解析几何等。山东省精品 课程《数值分析》主讲教师。 办公室:J9-404, 电话:80698175, 13573831001
称上式为坐标变换公式。
例1 在4维线性空间 R22中,向量组
1
0 1
1 1
,
2
1 1
0 1
,
3
1 0
1 1
,
4
1 1
1 0
,
与向量组
1
1 0
0 0
,
2
1 0
1 0
,
3
1 1
1 0
,
4
1 1
1 1
,
为其两组基,求从基 1,2 ,3,4 到基 1, 2, 3, 4的
过渡矩阵,
并求向量
A
1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以证明: 1、在线性空间 中, 线性无关。 其中 表示第i行元素第j列元素1,其它元素为0的 矩阵。 2、在线性空间 中,
线性无关。
定义 设 ( 1) 则称
是线性空间V的向量组,如果 是线性无关组, 线性表示; 的极大无关组; 是向量组
(2)任一向量 可由
并称 r 为向量组的秩,记为 说明:一般地,向量组的极大无关组不是唯一的,但向 量组的每一个极大无关组都与向量组自身是等价的,并 且向量组的每一个极大无关组中所含有的向量的个数都 等于向量组的秩。
若在V中可以找到任意多个线性无关的向量,则称V 是无限维线性空间
说明:线性空间的基不唯一
例1、 证明:在三维向量空间R3中 x1 ,x2 , x3 与y1 ,y2 , y3都是线性空间R3的一组基
这是因为:
从而它们各自都线性无关, 而对于任意向量
分别有:
例2、P[x]n表示所有次数不超过n 的多项式所构 成的一个线性空间,则:
则称向量组 x1 ,x2 , …,xp 是线性相关的; 否则,就称向量组 x1 ,x2 , …,xp 是线性无关的。
等价命题
命题一 向量组x1 ,x2 , …, xp是线性无关的充要条件 是仅当k1 = k2 = … = kp= 0 时成立
命题二 向量组 x1 ,x2 , …,xp 是线性相关的充 要条件是其中的一个向量可由其余的向量线性表 示。
“积” • •
对V的任一元x,及F的任一数k,都存在唯一的 ,且满足
(5)分配律 k(x+y)=k x+k y (6)分配律 (k+l)x=k x+lx
• •
(7)结合律 k(lx)=(k l)x (8)1x=x
线性空间的元素也称为向量,它比n维向量有更广泛 的含义。 注意 :上述定义所规定的加法运算与数乘运算也称为 V的线性运算,满足“封闭性”,即对V的任意两个元 素及F的任一数k,所定义的“和” 与“积” 仍属于V。
当F是实数域时,V称为实线性空间; 当F是复数域时,V称为复线性空间。
可以验证:
n维实向量空间是线性空间,仍记作
n维复向量空间是线性空间,仍记作
;
。
线性空间实例
•例1 所有 型矩阵在矩阵加法和数乘运算下 构成一个线性空间,记为 •例2 所有次数不超过n 的多项式在多项式加法 和数乘运算下构成一个线性空间,记为 •例3 二阶齐次线性微分方程的解集合对于函数加 法与数与函数的乘法构成一个线性空间。 •例4 闭区间[a,b]上所有连续函数的集合在函数加 法和数乘运算下构成一个线性空间,记为
解问题。 给定线性空间V 的两个向量组 与 ,如果 中的每一个向量都可以由向量组 线性表示,则称向 量组 可以由向量组 线性表示; 如果向量组 与 组 与向量组 可以相互表示,则称向量 是等价的。
等价向量组具有:自反性、对称性、传递性
线性相关
设 x1 ,x2 , …,x p 是线性空间V 的向量组。 如果存在一组不全为 0 的数 k1 ,k2 , …,kp 使得
非线性空间举例 所有n阶可逆矩阵在矩阵加法和数乘运算下不 构成线性空间(0矩阵不可逆)。 •所有次数等于n 的多项式在多项式加法和 数乘运算下不构成线性空间。 •相容的线性非齐次方程组 运算不构成线性空间
解的全体按 中的
+为所有正实数组成的集合,其上的加法与乘 设 R 实例5 法分别定义为
试证R+是R上的线性空间。
例3、
则
表示所有m×n 矩阵构成一个线性空间,
是m×n 维线性空间
令E ij为第(i,j)元为1,其余元为0的 m×n矩阵,
则{Eij:i=1,2, …,m;j=1,2, …,n}是线性空间
的一组基, 的维数是 m×n 。
引理1
设x1 ,x2 , …,xn是线性空间V 的一组基,则对于V的 任一元x, x可由x1 ,x2 , …,xn唯一线性表示。 证明 设x可由x1 ,x2 , …,xn有两种线性表示:
一、线性空间的基与向量在基下的坐标
设x1 ,x2 , …,x n是线性空间V的向量组,如果 (1) x1 ,x2 , …,x n是V的线性无关组, (2)V的任一向量x可由x1 ,x2 , …,x n线性表示;
则称x1 ,x2 , …,x n是线性空间V 的一组基。
称n是线性空间V 的维数,记作dimV。 或称线性空间V 是n维线性空间 即:线性空间的维数是其基中所含向量的个数。
“和” 对V的任意两个元素x、y,都有V的 唯一的 ,且满足
复数域C),如果在V上规定了下列两种运算, 则称V是数域F上的一个线性空间
•(1)交换律 x+y=y+x; •(2)结合律 x+(y+z)=(x+y)+z; •(3)存在0元 x+0=x; •(4)存在负元-x x+(-x)=0 .
[2]数乘运算
概述
•数学空间是指一个赋是n维向量空间R n 的推广,是矩阵理论 的基础。
•线性空间是一类具有“线性结构”的元素集合, 这种线性结构是通过两种线性运算“加法”、 “数乘”在一定公理体系下给出的。
定义 设V是一个非空集合,F是一个数域(如实数域R或 [1]加法运算
P[x]n是n+1维线性空间 可以验证:1 , x , x2 , … , xn是线性空间P[x]n的 一组基, P[x]n的维数是n+1。 P[x]表示实系数多项式所构成的一个线性空间, 则:
P[x]是无限维线性空间
因为对于任何整数N,多有N个线性无关的向量1 ,
x , x2 , … , xN。
是V的向量组。
则称x可由x1 ,x2 , …,x p线性表示,称x是 x1 ,x2 , …,x p的线性组合。 例1 在二维空间R2中,任意一个二维向量 都可由标准单位向量e1 , e2 线性表示。
例2、在线性空间 中,
例3 在三维空间R3中,求k1 , k2 , k3 ,使得
求解
注:讨论向量组的线性表示可化为讨论线性方程组的求
证明 设
即对所定义的加法“”与乘法“”是封闭的。且 满足
(3)1是零元,因为 (4)a的负元是1/a,因为
故R+是R上的线性空间。
定理 设V是数域F上的一个线性空间,则 (1)V的零元是唯一的; (2)V中任意元的负元是唯一的; (3 ) (4)如果 ,则k=0或 。
线性表示
设V是一个线性空间, 如果存在一组数 使得