旋转编码器导致的电梯故障

旋转编码器导致的电梯故障
旋转编码器导致的电梯故障

旋转编码器导致的电梯故障

高手修理电梯.从来就是能够根据故障的现象,分析成因,并能迅速地判定故障所产生的真正原因或是确定故障所在的具体位置.因此修理电梯既需要不断地总结和积累排除故障的经验,更需要掌握确认故障的一些技巧。

旋转编码器故障的确认

实例1:一台电梯,平层不准确在运行行程中有"腾一腾"的现象.在维修时费了很大劲走了许多弯路最终发现是因旋转编码:几个光电感应孔被灰尘封堵而致清洁后故障消除.实例2:一台电梯在进行空轿厢安全钳一限速器联动试验后出现了异常现象,电梯选层起动后爬行约50mm,便停止.思来想去.既然电梯具有运行条件,也无明显的其他异常现象那么肯定是旋转编码器出了问题.最后查出原因果然是旋转编码器与微机的连接有虚接现象.

实例3:1台VVVF电梯在运行中经常突然停梯.然后自动平层后又可正常运行.经枪查该故障不是因为制动线路不良所引起。也不是安全回路及门锁回路瞬间通断所导致。而是因为旋转编码器严重磨损导致电梯在运行中产生信号突然中断的现象所致.

实例4:1台电梯检修运行正常快车运行时轿厢强烈地振荡,电梯有规律地上下抖动特别是多层运行时这种现象尤为明显.在检查电梯主回路印刷板及驱动单元之后仍未找到真正原因.经询问业主,得知是有人在机房清除杂物后,电梯开始出现上述现象.后对曳引机及控制柜外围着重进行检查发现装在电机尾部用于测速反馈的PG接地铜皮扭曲变形使得电梯在运行中电机轴与Pc的轴套不同心.后重新加工1片连接铜片,更换后故障现象消除.

由旋转编码器导致的故障,在实际中不算是少数,检查起来也相当费事,有时虽已排查但还是不能让人放心.故在此向大家介绍一招简单的确认旋转编码故障的方法,从驱动调节系统简图电梯行业网可以清楚地看出正是因为旋转编码,才使得微机--变频器--电机之间构成了一个速度闭环控制系统。固此如果转编码器出现了问题反馈信号不正常必然会影响到电机的正常运行.假如此时我们索性将旋转编码器的反馈断开--变成开环控制,电机如果还能够现正常的快速运行状态,那么就可以确定电梯的故障确实产生在旋转编码器上,否则应该在其他方面去寻拄故障.这是确认旋转编码器故障的理论和方法.当然,为了安全起见在断开反馈运行时,电梯不应到上下的两个端站运行。

旋转编码器原理及其应用

旋转编码器的原理及其应用 摘要:本文介绍了常用编码器的原理、分类以及其应用的注意事项,并以德国P+F公司的编码器产品为参照,重点介绍了增量型编码器和绝对值型编码器的原理及应用,其中绝对值型编码器中以格雷码为主作了详细的介绍。 关键词:编码器增量型绝对值格雷码 一、前言 在自动化领域,旋转编码器是用来检测角度、速度、长度、位移和加速度的传感器。依靠轴杆、齿轮、测量轮或绳缆的控制,线性的移动能被检测。编码器也把实际的机械参数值转换成电气信号,这些电气信号可以被计数器、转速表、PLC和工业PC处理。 二、功能原理 由玻璃或塑料制成的圆盘被分成透明和非透明的区域,如果一个光源固定在圆盘的一侧,光敏元件固定在另一侧,旋转的移动没有接触就可获得。如果一束光打在透明的区域,接收器接收到,产生脉冲,当光束被 黑色区域隔断式,不产生脉冲。发光二极管 通常用作光源,发光范围在红外线范围内, 光敏二极管或光敏晶体管作为接收器。(见 右图) 如果按照此原理没有其它功能加入的 话,仅能推论出圆盘在转动,旋转的感应或 绝对值位置不能被确定。 编码器根据它们的功能原理和机械形式 和安装系统有不同的区别。 1、功能原理 1.1增量型旋转编码器 轴的每圈转动,增量型编码器提供一定数量的脉冲,周期性的测量或者单位时间内的脉冲数可以用来测量移动的速度。如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲之间相差900。能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制。另外,三通道增量型编码器每一圈产生一个称之为零位信号的脉冲。 旋转增量型编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的产生结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 1.2绝对值旋转编码器 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

日立电梯GVF-II的故障码

10 主微机故障 11 副微机故障 12 运行接触器短接故障 14 安全继电器短接故障 15 安全回路断开故障 16 软件WDT动作 17 连续3次开门锁死 20 抱闸制动器短接故障 21 抱闸制动器断开故障 22 运行速度偏差故障 23 40D继电器故障 25 40G继电器故障 26 程序和数故障 27 重复故障 30 旋转编码器断线故障32 空转保护 34 厅门锁短接故障 35 轿门锁短接故障 37 反转故障 38 运行接触器断开故障 41 低速运行超速 42 50B继电器断开故障50 高速运行超速

51 起动速度异常 54 微动平层逆转超距离 55 强迫减速开关故障 56 微动平层超速故障 57 微动平层运行超距离 58 速度低故障 60 层高测定出错 61 运行中DC48V断电 62 电梯层楼位置出错 64 端站减速曲线异常 70 变频器预报警 71 变频门机故障 73 门区运行故障 75 SCLB板通讯故障 77 自救运行过多 78 SLCC板通讯故障 80 运行中厅门锁断开检出 81 检修状态异常 82 微动平层超时故障 85 微动平层感应器故障 86 电梯开门超时故障 87 电梯关门超时故障

88 运行中轿门锁断开检出 89 变频微机设置为键盘控制模式 90 群控/并联通讯异常 91 电源瞬时停电检出 92 停电自救运行 93 电梯自救运行 94 称重传感器故障 变频器故障代码表 E101 加速运行过电流硬件过流:大于额定电流2.5倍 软件过流:大于额定电流2.4倍 误差±5% E102 减速运行过电流 E103 恒速运行过电流 E104 加速运行过电压软件:母线:厂家参数0~999V可调,出厂值760V 硬件母线滞环,范围780V~820V 误差±5% 直流母线电压检测误差±3% E105 减速运行过电压 E106 恒速运行过电压 E107 控制电源过电压软件:厂家参数:120.0~130.0% ,出厂值130% 注:控制电源电压检测误差:±5% E108 输入侧缺相输入缺相,相应检测信号为脉冲序列 E109 输出侧缺相输出缺相在运行时检测,输出电流大于33.3%额定时才检测

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

永大日立电梯故障代码(完整版)

永大日立电梯故障代码(完整版) 10 50B ON 故障 11 10T ON 故障 12 15B ON 故障 13 SDC 运转异常 14 从 MICON 死机 15 SDA 死机 16 主从并列通信异常 17 SDA、SDC 串列通信异常 18 50BC 故障或 E STOP 切入 19 99G 故障 20 双重入力 BUFFER 异常 21 过电流检出(IPM FAULT) 22 过电压检出 23 SDC 保守开关异常 24 从 MICON DRAM ERROR 25 从 MICON EEPROM ERROR 26 DSP CHEECK S UM ERROR 27 多发故障检出 28 P15V 电压异常 29 主 MICON DRAM ERROR 30 主 MICON EEPROM ERROR 31 DSP DRAM ERROR 32 抑制回路异常检出 33 BDCC 电压异常 34 不足电压检出 35 40D 40G ON 故障 36 SDC 操作模式错误 37 逆运转检出 38 DSP 当机检出 39 100R ON/OFF 故障 40 ROTARY ENCODER 故障 41 低速 OVER SPEED 42 50B OFF 故障 43 SPD 回路故障 44 SDCLAN 的48V电源异常 OPBLAN -I24B 或 I48A 故障 SDCLAN 与OPBLAN 通讯异常 45 BKSW 动作 CHECK 46 OPEN LOCK 连续三次 47 负荷检出回路异常 48 49 50 高速 OVER SPEED 51 速度偏差检知 52 10T OFF 故障 53 15B OFF 故障 54 RE 故障(U,V,W 相角度异常) 55 HCT OFF SET 偏差过大 56 57 MG。B 两段式电源回路异常 58 DLAN 当机 59 楼高大于 9 米,无诱导板检出 60 阶高 TABLE SUM ERROR 61 62 同期位置异常 63 SDS ON 故障 64 SDS 速度异常检出 65 运行中 40D 异常 OFF 66 运行中 40G异常 OFF 67 平层关门时 40D 或 40G未 ON 68 SDA 当机八次检出 69 SDA RAM ERROR 70 共享 RAM ERROR 71 主 MICON 当机检出 72 主 MICON 当机八次检出 73 FML POSI OPEN 故障 74 救出运转多发 75 POWER MODULE 过热 76 微速运转时间异常 77 门机马达过热 78 门机异常 79 80 81 光电 POSI OPEN 故障 82 光电 POSI 短路故障 83 84 OLS ON 故障 85 CLS ON 故障 86 开门动作不正常检知 87 关门动作不正常检知 88 停电检知 89 90 91 DZ POSI开路故障 92 DZ POSI短路故障 93 94 95 最终故障目的阶 96 最终故障电梯位置 97 电梯故障最终速度 98 救出运转总回数 99 最终之主 TCD

旋转编码器的原理及应用

旋转编码器的原理及应用 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 什么是光电编码器? 工作原理:当光电编码器的轴转动时A、B两根线都产生脉冲输出,A、B两相脉冲相差90度相位角,由此可测出光电编码器转动方向与电机转速。如果A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转.Z 线为零脉冲线,光电编码器每转一圈产生一个脉冲.主要用作计数。A线用来测量脉冲个数,B线与A线配合可测量出转动方向. N为电机转速Δn=ND测-ND理 例如:我们车的速度为1.5m/s,轮子的直径220mm,C=D*Pi,电机控制在21.7转/秒,根据伺服系统的指标, 设电机转速为1500转/分,故可求得当ND=21.7*60=130转/分时,光码盘每秒钟输出的脉冲数为: PD=130×600/60=1300个脉冲 当测出的脉冲个数与计算出的标准值有偏差时,可根据电压与脉冲 个数的对应关系计算出输出给伺服系统的增量电压△U,经过D/A转换,再计算出增量脉冲个数,等下减去。 当运行时间越长路线越长,离我们预制的路线偏离就多了。这时系统起动位置环,通过不断测量光电编码器每秒钟输出的脉冲个数,并与标准值PD(理想值)进行比较,计算出增量△P并将之转换成对应的D/A 输出数字量,通过控制器减少输个电机的脉冲个数,在原来输出电压的基础上减去增量,迫使电机转速降下来,当测出的△P近似为零时停止调节,这样可将电机转速始终控制在允许的范围内。

编码器原理及常见知识问答

编码器原理及常见知识问答 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 编码器工作原理: 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。 1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。 感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。

永大日立电梯故障代码(完整版)

永大日立电梯故障代码(完整版)TCD 代码内容 10 50B ON故障 11 10T ON故障 12 15B ON故障 13 SDC运转异常 14 从MICON死机 15 SDA死机 16 主从并列通信异常 17 SDA、SDC串列通信异常 18 50BC故障或E STOP切入 19 99G 故障 20 双重入力BUFFER 异常 21 过电流检出(IPM FAULT) 22 过电压检出 23 SDC保守开关异常 24 从MICON DRAM ERROR 25 从MICON EEPROM ERROR 26 DSP CHEECK SUM ERROR 27 多发故障检出 28 P15V 电压异常 29 主MICON DRAM ERROR 30 主MICON EEPROM ERROR 31 DSP DRAM ERROR 32 抑制回路异常检出 33 BDCC 电压异常 34 不足电压检出 35 40D 40G ON 故障 36 SDC 操作模式错误 37 逆运转检出 38 DSP 当机检出 39 100R ON/OFF故障 40 ROTARY ENCODER故障 41 低速OVER SPEED 42 50B OFF故障 43 SPD 回路故障 SDCLAN的48V电源异常 44 OPBLAN -I24B或I48A故障 SDCLAN 与OPBLAN 通讯异常 45 BKSW动作CHECK 46 OPEN LOCK 连续三次 47 负荷检出回路异常 48

50 高速OVER SPEED 51 速度偏差检知 52 10T OFF故障 53 15B OFF故障 54 RE故障(U,V,W相角度异常) 55 HCT OFF SET偏差过大 56 57 MG。B两段式电源回路异常 58 DLAN当机 59 楼高大于9米,无诱导板检出 60 阶高TABLE SUM ERROR 61 62 同期位置异常 63 SDS ON故障 64 SDS速度异常检出 65 运行中40D异常OFF 66 运行中40G异常OFF 67 平层关门时40D或40G未ON 68 SDA当机八次检出 69 SDA RAM ERROR 70 共享RAM ERROR 71 主MICON 当机检出 72 主MICON 当机八次检出 73 FML POSI OPEN故障 74 救出运转多发 75 POWER MODULE过热 76 微速运转时间异常 77 门机马达过热 78 门机异常 79 80 81 光电POSI OPEN故障 82 光电POSI 短路故障 83 84 OLS ON故障 85 CLS ON故障 86 开门动作不正常检知 87 关门动作不正常检知 88 停电检知 89 90 91 DZ POSI开路故障 92 DZ POSI短路故障 93

案例五旋转编码器的安装与应用

案例五旋转编码器的安装与应用 1.项目训练目的 掌握旋转编码器的安装与使用方法。 2.项目训练设备 旋转编码器及相应耦合器一套。 3.项目训练内容 先熟悉旋转编码器的使用说明书。 (1)旋转编码的安装步骤及注意事项 ①安装步骤: 第一步:把耦合器穿到轴上。不要用螺钉固定耦合器和轴。 第二步:固定旋转编码器。编码器的轴与耦合器连接时,插入量不能超过下列值。 E69-C04B型耦合器,插入量 5.2mm;E69-C06B型耦合器,插人量 5.5mm;E69-Cl0B型耦合器,插入量7.lmm。 第三步:固定耦合器。紧固力矩不能超过下列值。E69-C04B型耦合器,紧固力矩2.0kfg?cm;E69-C06B型耦合器,紧固力矩 2.5kgf?cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg?cm。 第四步:连接电源输出线。配线时必须关断电源。 第五步:检查电源投入使用。 ②注意事项: 采用标准耦合器时,应在允许值内安装。如图5-1所示。 图5-1 标准耦合器安装 连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。如图 5-2所示。 图5-2 旋转编码器安装 齿轮连接时,注意勿使轴受到过大荷重。 用螺钉紧固旋转编码器时,应用5kfg?cm左右的紧固力矩。 固定本体进行配线时,不要用大于3kg的力量拉线。 可逆旋转使用时,应注意本体的安装方向和加减法方向。 把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。 使用时勿使本体上粘水滴和油污。如浸入内部会产生故障。 (2)配线及连接

①配线应在电源0FF状态下进行。电源接通时,若输出线接触电源线,则有时会损坏输出回路。 ②若配线错误,则有时会损坏内部回路,所以配线时应充分注意电源的极性等。 ③若和高压线、动力线并行配线,则有时会受到感应造成误动作或损坏。 ④延长电线时,应在10m以下。还由于电线的分布容量,波形的上升、下降时间会延长,所以有问题时,应采用施密特回路等对波形进行整形。 还有为了避免感应噪声等,也要尽量用最短距离配线。集成电路输人时,要特别注意。 ⑤电线延长时,因导体电阻及线间电容的影响。波形的上升、下降时间变长,容易产 生信号间的干扰(串音),因此应使用电阻小、线间电容低的电线(双绞线、屏蔽线)。

永大日立电梯的问题电梯技术内部资料故障

有一台永大日立的电梯 上下两块板子的,短接端子是在下面那块板子的下面 有一排,有P48,U什么,D什么的 控制柜上的铭牌是 CONTROL:VF-800乘12-C0 MFG.NO.:2A04592 是什么型号啊?? 短接回路都是那些啊??? 2、输入信号检查(双重输入) 主MICON ZX10TM($CA02H),从MICON ZX10TS($CD22H)的数据是否与10T继电器的状态同步。 3、输出信号检查 电梯停止时,线圈(-)与GND间电压测定: a)10T CTT用电源GND间AC 100V b)10T本身C1-C2间AC 100V c)输入信号电源RECT FUSE-GND间DC 48V d)10T本身A2-GND间DC 48V e)MPU PCB和FIO PCB之BUS线确认:确认FIO之FOS(10T)是否确实连接。f)FIO PCB更换:2,3项有不良而第4项良好时,表示FIO输出信号不良,请更换FIO PCB g)MPU PCB更换:FIO更新后,仍有异常发生,表示MPU PCB不良,请更换MPU P CB TCD 12 15B ON/OFF故障故障等级:A1 含义:15B驱动输出信号Z15B,与X15B接点回馈输入信号,做比较判断,不一致时500 ms后检出异常。 说明:当主MICON下走行指令时(起动或停止),会命令从MICON 驱动15B吸合或释放。而主MICON会检测ZX15BM及X15BS信号,做比较判断,此时若15B未在500ms 内按从MICON命令吸合或释放,则异常检出。 检查项目: 1、15B继电器状态确认,检查10B继电器是否有烧结或卡阻现象。 2、用ANNUNCIATOR观察输入信号:(双重输入) a)ZX15BM(主MICON输入信号),地址:$CA00H(81H/ON,00H/OFF) b)ZX15BS(从MICON输入信号),地址:$CD20H(81H/ON,00H/OFF) c)ZX50B(从MICON输出信号),地址:$CD31H(81H/ON,00H/OFF) 3、MPU PCB和FIO PCB之BUS线确认:FIO之FOW(15B)是否确实连接。 4、检查15B 线圈线路: 15B继电器CONTROL1-GND间AC 100V 15B继电器线圈(C1-C2)间AC 100V(15B ON) 15B继电器接点(3-GND)间DC 48V(15B ON) 5、以上各项皆正常请更换FIO PCB 6、FIO PCB更换后,仍有异常发生,表示MPU PCB不良,请更换MPU PCB。 TCD 13 SDC运转异常故障等级:A2 含义:开机后SDC与SDA串行通信无法达成,异常检出电梯再启动不能。

旋转编码器在S7-200的应用

运行工作方式,机器大概情况, 机器共18个工位,每个工位为一个机器过程,一个工件为5米(误差1CM)要求用2000线的轴式旋转编码器通过PLC协调控制完成每个工件。 每个工位都有一个人,1个绿启动按钮。一个绿灯,1个红色急停按钮,1个红灯。当1号工人按1号启动按钮后1号指示灯亮,2号工人按2号启动按钮后2号指示灯亮,直到第18个工人都按启动按钮后18灯全亮,机器开始运转,自动运转到5米后停止。绿灯全灭(记米自动复位)等待18个工人下一次继续给18个运行信号后运行。(红色按钮为紧急停车按钮:当工件工作到一半时紧急停车,手动不复位情况下,8个工人动启动后机器可继续当前的米数运转。手动复位则重新开始) 当18个工人无论哪个工人按红色按钮时机器立即停机(此时红色指示灯全亮,红色按钮释放后指示灯全灭)机器再次启动需18个工人都给启动信号才能运行。18个红色按钮共用PLC一个点。如果点富裕的话18个红按钮分为3组,一组6个共用一个点,用3个点实现这个功能。变频器运行过程,当给变频器运行信号时变频器缓慢启动逐渐加速到高速,指定记米到达时变频器缓慢减速到低速运行,记米到达后变频器立即停止刹车,18个工位如果少几个工位的把那几个工位短接,要不影响工作。

程序分为3部分,主程序,指示灯输出,初始化。初始化中有两个中断程序,分别为当前值=设定值时中断以及复位时产生的中断。高速计数器HDEF的通道是HSC0,意思为编码器的A、B相接I0.0、I0.1,复位接在I0.2。事件号是10,意思是选择A/B正交计数器。中断ATCH的事件号12代表当前值=设定值时中断。事件号28代表HSC0当I0.2高电平时产生中断。 主程序:

旋转编码器定位使用说明

充注小车、运载小车定位使用说明 定位原理: 旋转编码器定位与老式的旋转变压器一样,实际上是一个计数器。我们目前使用的OMRON旋转编码器每旋转一周,能精确地发出1024脉冲,PLC依据旋转编码器发出的脉冲进行计数,再乖以固定机械变比与旋转半径的系数,就可以得出脉冲与实际行走距离的线性对应关系。 PLC利用高速计数模块QD62D读取旋转编码器的值并进行数字化处理,可以将脉冲数值转换成实际的距离值如mm。 目前我们设备都是利用旋转编码器的原始值进行处理的,所有触模屏上的距离值均为脉冲值而非实际距离值,这样在处理数据时比较方便直观。 根据这一对应关系利用普通变频器控制一般的三相鼠笼电机就能实现精度在1毫米左右定位系统,可以在许多定位要求不高的控制领域使用。 使用方法: 依据上述原理,定位系统定位首先必须选择一个参考点,以这点作为基准点,其它所有设置点均为到这一点的相对距离。当基点信号取的不稳定或不好,就会影响整个定位过程。 旋转编码器由一个联轴器与一套齿轮机构组合成一套测量机构。由于齿轮与齿轮之间存在间隙,运行一段时间后就会有误差积累,造成定位不准,这时不要改变屏上设定数据,而是在运行机构运行一段时间后,让运行机构回到基点,进行一次清零,就可以消除积累误差。 旋转编码器定位机构的故障主要有定位不准、或运行数据无变化等等。 定位不准主要是由测量机构之间的间隙,联轴器、齿轮相对打滑。 一种定位不准就是干扰,现场已采用了一端接地的屏蔽等措施。出错时请严格检查测量线路(包抱QD62D联接器)有无断线、短路、屏蔽不严、模块供电电压不足等问题。 还有一种定位不准表现在:由于测量机构所能测量的最大频率不超过500KHz,因此对于变化速度太快脉冲系统不能及时测量,造成定位不准。因此系统要运行平稳,不能有速度突变。

旋转编码器的输出电路以及常用术语介绍

旋转编码器的输出电路以及常用术语介绍 来源:互联网 旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。当旋转编码器轴带动光栅盘旋转时,经发光元件发出的光被光栅盘狭缝切割成断续光线,并被接收元件接收产生初始信号。该信号经后继电路处理后,输出脉冲或代码信号。旋转编码器的特点是体积小,重量轻,品种多,功能全,频响高,分辨能力高,力矩小,耗能低,性能稳定,可靠使用寿命长等特点。其主要种类有增量式编码器、绝对值编码器、正弦波编码器。 输出电路图解 1、NPN电压输出和NPN集电极开路输出线路 PNP开路集电极输出

电压输出 此线路仅有一个NPN型晶体管和一个上拉电阻组成,因此当晶体管处于静态时,输出电压是电源电压,它在电路上类似于TTL逻辑,因而可以与之兼容。在有输出时,晶体管饱和,输出转为0VDC的低电平,反之由零跳向正电压。 随着电缆长度、传递的脉冲频率、及负载的增加,这种线路形式所受的影响随之增加。因此要达到理想的使用效果,应该对这些影响加以考虑。集电极开路的线路取消了上拉电阻。这种方式晶体管的集电极与编码器电源的反馈线是互不相干的,因而可以获得与编码器电压不同的电流输出信号。 2、PNP和PNP集电极开路线路 该线路与NPN线路是相同,主要的差别是晶体管,它是PNP型,其发射极强制接到正电压,如果有电阻的话,电阻是下拉型的,连接到输出与零伏之间。 3、推挽式线路 这种线路用于提高线路的性能,使之高于前述各种线路。事实上,NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。推挽式线路提高了频率与特性,有利于更长的线路数据传输,即使是高速率时也是如此。信号饱和的电平仍然保持较低,但与上述的逻辑相比,有时较高。任何情况下推挽式线路也都可应用于NPN或PNP线路的接收器。

旋转编码器应用注意事项

旋转编码器应用注意事项 有网友问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积; 工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E), 集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 ■二.※有网友问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从 6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用 TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90 °。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高 速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 ■三.※关于户外使用或恶劣环境下使用 有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。 我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型 编码器,放在户外不怕脏,钢厂、重型设备里都可以用。 不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加 强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还 是有一定差距的。 ■四.※从接近开关、光电开关到旋转编码器: 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用 。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优 点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个 μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可 以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气 困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往 很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步 进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装 、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

永大日立电梯NTVF故障代码

永大日立NTVF故障代码 TCD 10 50B继电器ON之故障 TCD 11 10T接触器ON,OFF之故障 TCD12 15B接触器ON,OFF故障 TCD13 SDC运转异常 TCD14 从MICON当机 TCD15 另一电脑故障(对本身而言)从并列通信异常 TCD16 主,副电脑并行通讯出错 TCD17 串行通讯不正常 TCD20 二重输入缓冲器故障 TCD21 超额电流 TCD22 过高电压 TCD26 规格表出错 TCD27 故障重复 TCD31 100R ON故障 TCD32 抑制电路(Suppress Circuit)不正常 TCD33 抑制电路不正常 TCD34 电压不足

TCD35 40D,40G ON故障 TCD36 运行指令输入缓冲器故障 TCD37 运转方向相反故障 TCD40 旋转编码器故障 TCD41 低速运转时超速 TCD42 50B继电器OFF之故障TCD88 断电异常 TCD43 SPD电路故障(速度探测电路) TCD44 再生晶体管用光电偶合器故障 TCD46 旋转编码器接触线 TCD50 高速运行时超速 TCD51 速度有不正常偏差 TCD60 楼层高度表总和出错 TCD61 同步位置不正常(停电后再恢复供电时出现) TCD62 同步位置不正常(平常运行时) TCD63 SDS ON之故障 TCD64 减速下速度不正常 TCD70 ROM总和出错 TCD72 Retry发生次数过多

TCD73 位置探测器OFF之故障 TCD74 安全运行次数过多 TCD75 大功率晶体管散热片过热 TCD76 延迟时间出错 TCD80 群控SDA通讯出错 TCD83 起动补偿不正常 TCD85 起动次数过多(Overduty) TCD86 门开受阻(OPEN LOCK) TCD87 门闭受阻(CLOSE LOCK)

旋转编码器导致的电梯故障

旋转编码器导致的电梯故障 高手修理电梯.从来就是能够根据故障的现象,分析成因,并能迅速地判定故障所产生的真正原因或是确定故障所在的具体位置.因此修理电梯既需要不断地总结和积累排除故障的经验,更需要掌握确认故障的一些技巧。 旋转编码器故障的确认 实例1:一台电梯,平层不准确在运行行程中有"腾一腾"的现象.在维修时费了很大劲走了许多弯路最终发现是因旋转编码:几个光电感应孔被灰尘封堵而致清洁后故障消除.实例2:一台电梯在进行空轿厢安全钳一限速器联动试验后出现了异常现象,电梯选层起动后爬行约50mm,便停止.思来想去.既然电梯具有运行条件,也无明显的其他异常现象那么肯定是旋转编码器出了问题.最后查出原因果然是旋转编码器与微机的连接有虚接现象. 实例3:1台VVVF电梯在运行中经常突然停梯.然后自动平层后又可正常运行.经枪查该故障不是因为制动线路不良所引起。也不是安全回路及门锁回路瞬间通断所导致。而是因为旋转编码器严重磨损导致电梯在运行中产生信号突然中断的现象所致. 实例4:1台电梯检修运行正常快车运行时轿厢强烈地振荡,电梯有规律地上下抖动特别是多层运行时这种现象尤为明显.在检查电梯主回路印刷板及驱动单元之后仍未找到真正原因.经询问业主,得知是有人在机房清除杂物后,电梯开始出现上述现象.后对曳引机及控制柜外围着重进行检查发现装在电机尾部用于测速反馈的PG接地铜皮扭曲变形使得电梯在运行中电机轴与Pc的轴套不同心.后重新加工1片连接铜片,更换后故障现象消除. 由旋转编码器导致的故障,在实际中不算是少数,检查起来也相当费事,有时虽已排查但还是不能让人放心.故在此向大家介绍一招简单的确认旋转编码故障的方法,从驱动调节系统简图电梯行业网可以清楚地看出正是因为旋转编码,才使得微机--变频器--电机之间构成了一个速度闭环控制系统。固此如果转编码器出现了问题反馈信号不正常必然会影响到电机的正常运行.假如此时我们索性将旋转编码器的反馈断开--变成开环控制,电机如果还能够现正常的快速运行状态,那么就可以确定电梯的故障确实产生在旋转编码器上,否则应该在其他方面去寻拄故障.这是确认旋转编码器故障的理论和方法.当然,为了安全起见在断开反馈运行时,电梯不应到上下的两个端站运行。

欧姆龙PLC与旋转编码器的应用

旋转编码器的应用 例:E6C-N绝对型多旋转高精度型旋转编码器与CPM1A PLC连接进行定位控制 一、连接示意图 型号E6C-NN5C 型号CPM1A-40CD□-□ 二、配线表 【型号E6C-NN5C和型号CPM1A的配线】 型号E6C-NN5C输出信号型号CPM1A 输入信号 单旋转导线外皮褐(20) 00000 数据颜色橙(21) 00001 (灰)黄(22) 00002 绿(23) 00003 蓝(24) 00004 紫(25) 00005 灰(26) 00006 白(27) 00007 粉红(28) 00008 多旋转导线外皮茶(20) 00100 数据颜色橙(21) 00101 (黑)黄(22) 00102 绿(23) 00103 蓝(24) 00104 紫(25) 00105 符号+=0 灰(26) 00106 -=1 白(27) 00107 三、输出时间 【输出时间】 型号E6C-NN5C的绝对值数据 1旋转 2旋转 127旋转 63999

四、梯形图程序 000通道的0 接点,输送到 (单旋转数 BIN) BIN BCD 001通道的 0~7接点,输送 到DM0003(多旋转 数据BIN) BIN 转换到BCD BCD)× 500(单旋转分辨率) 的结果存入 DM0005~6 比较带在DM0010/11的值与DM0012/13 的值间在线性绝对值数据时,输出01000 接点。(限正旋转时进行带域比较)

五、DM设定 【DM设定】 DM0000 0001 0002 0000 数据程序用工作区域 0003 0004 0005 0006 0007 线性绝对值数据 0008 0009 比较数据 0010 9000 0011 0000 上限值设定 0012 0500 0013 0001 下限值设定 注:上述梯形程序为参考例,有时会因程序控制器的数据读入时间而产生数据读取错误。这时,比较上次读入的数据与当前读入的数据。若超过100以上,则该数据作废。(多旋转数据变化时,同时读入单旋转数据与多旋转数据,则错误的数据也被读入。

旋转编码器注意事项

旋转编码器注意事项 一. ※增量旋转编码器选型应注意三方面的参数: 1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 ■二.※ 有网友问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z 脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈。 ■三.※ 关于户外使用或恶劣环境下使用 有网友来email问,他的设备在野外使用,现场环境脏,而且怕撞坏编码器。 我公司有铝合金(特殊要求可做不锈钢材质)密封保护外壳,双重轴承重载型编码器,放在户外不怕脏,钢厂、重型设备里都可以用。 不过如果编码器安装部分有空间,我还是建议在编码器外部再加装一防护壳,以加强对其进行保护,必竟编码器属精密元件,一台编码器和一个防护壳的价值比较还是有一定差距的。 ■四.※ 从接近开关、光电开关到旋转编码器: 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安

旋转编码器工作方式图解

旋转编码器 旋转编码器是由光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。 编码器码盘的材料有玻璃、金属、塑料等。玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC),顾名思义,绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,而绝对式编码器可产生能够识别绝对位置的数字信号。综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择--这些应用具有更高的速度和位置控制要求。输出类型取决于具体应用。 一:增量式旋转编码器工作原理 增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。

增量式旋转编码器的工作原理如下图所示。 图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。 当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为: 我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。 S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

相关文档
最新文档