紫外差分吸收法原理
烟气紫外差分光谱法原理干扰因素

烟气紫外差分光谱法原理干扰因素
烟气紫外差分光谱法的原理是利用吸收分子在紫外到可见光段的特征吸收来研究大气层的痕量气体成分。
然而,在实际应用中,可能会受到一些干扰因素的影响,包括:
1. 颗粒物散射:烟气中的颗粒物会对紫外光产生散射作用,从而影响差分吸收光谱的测量结果。
2. 气体浓度波动:烟气中气体浓度的波动可能会影响紫外差分光谱的测量精度。
3. 仪器误差:紫外差分光谱仪本身可能存在误差,如光路准直、光强稳定度等,这些因素会影响测量结果。
4. 环境因素:温度、湿度、压力等环境因素的变化可能会影响烟气的成分和浓度,从而影响紫外差分光谱的测量结果。
为了减小这些干扰因素,可以采取以下措施:
1. 在采样时尽可能减少颗粒物进入采样系统。
2. 采用在线校准方法来修正气体浓度波动对测量结果的影响。
3. 对紫外差分光谱仪进行定期维护和校准,以确保其测量精度。
4. 在采样时记录环境因素,以便对测量结果进行修正。
001--烟气监测光学方法及技术规范--刘晓娟

GBT 37186标准解读01方法对比及监测现场常见问题及注意事项0201 GBT 37186-2018标准解析山东省关于紫外法的地方标准本标准规定了采用紫外差分吸收光谱法测定气体中二氧化硫和氮氧化物的方法。
本标准适用于标准气体、工业气体、环境空气等气体中二氧化硫和氮氧化物的测定。
二氧化硫测定范围为(0.2~5000)mg/m3,一氧化氮测定范围为(0.3~5000)mg/m3,二氧化氮测定范围为(2~5000)mg/m3。
氮氧化物的定义:本标准中“氮氧化物”仅包括“一氧化氮”和“二氧化氮。
参考环境保护标准HJ 479-2009HJ 692-2014 崂应3023型紫外差分烟气分析仪朗伯比尔定律:当一束平行单色光垂直通过某一均匀非散射的吸光物质时,与其吸收光强与吸光物质的浓度及吸收层厚度成正比。
紫外差分与紫外吸收:原理相同,数据处理算法不同紫外吸收紫外差分吸收算法气室 气体 气体 吸收快变分析 散射 慢变滤除关于仪器要求根据待测二氧化硫和氮氧化物含量选择测量范围内的测量仪器。
仪器的检出限应满足待测二氧化硫和氮氧化物的含量要求。
在仪器的测量范围内,仪器的响应值与二氧化硫和氮氧化物含量间应有确定的函数关系。
仪器应经计量合格并在有效期内。
《便携式二氧化硫和氮氧化物紫外吸收法测量仪器技术要求及检测方法(征求意见稿)》要求二氧化硫和氮氧化物监测单元最低检出限为≤1%F.S,7.1.1.2 要求“仪器具备双量程或多量程时,只针对仪器的最小量程进行技术指标检测;且其气态污染物(SO2、NOX)监测单元检测最小量程的最大值不超过150μmol/mol。
”关于仪器校准应定期对仪器行进校准。
出现以下任何一种情况时,应对仪器进行校准:---更换、维修传感器的气室、光谱仪等关健元件后;---对仪器响应值有任何怀疑时;---仪器使用说明书中的特别规定。
a)稀释气组分应与待测气体相近b)至少对仪器的零点和80%量程至满量程的两点进行校准。
紫外差分吸收法原理

3.1 DOAS 测量原理从稳定光源发出的光I o (λ,L),通过气室后,由透镜收集光会聚进入光谱仪。
由于沿光程的气体分子的吸收、分子散射,导致了接收光强减弱。
在光通过距离L 的光程后,接收光I (λ,L )可以由Lambert-Beer 定律来表示:00(,)(,)exp[((,,)()(,)(,))]()l Lj j R M j l I L I L p T c l l l dl N λλσλελελλ===⋅-⋅+++∑⎰ (3.1)对于每一种气体,(,,)j p T σλ是在波长λ,压力p 和温度为T 时的吸收截面。
()j c l 是沿光程在距离l 处的密度。
M ε和R ε分别表示瑞利散射、Mie 散射的消光系数。
N (λ)是光强I (λ,L )上的光子噪声。
在图3.1a 中,I (λ,L )为通过大气的后光谱(为了简化说明,假设其中只含有甲醛的吸收)。
在大多数的DOAS 系统中,回来的光被聚焦到光谱仪的入射狭缝上,经光谱仪分光,光谱由探测器记录。
由于光谱仪有限的分辨率,光谱I (λ,L )的形状发生了变化,这个过程的数学描述是大气光谱I (λ,L )与光谱仪的仪器函数H 进行卷积,图3.1b 表示与典型的仪器函数H 卷积后,投影在探测器上的光谱I*(λ,L )。
在探测器记录光谱的过程中,光谱范围被映射为n 个离散的像元(PDA 或CCD 探测器),用i 来表记,每个像元表示从λ(i)到λ(i+1)的间隔积分。
这个间隔可以根据波长-像元映射ΓI 计算得到。
对于线性色散(:()(0)I i i λλγΓ=+⋅), 像元的光谱宽度为常数(0()(1)()i i i λλλγ∆=+-=)。
像元i 上的光强'()I i 表示为(忽略任何的仪器因子,如不同像元的响应不一样),(1)()'()(',)'i i I i I L d λλλλ+*=⎰(3.2)一般而言,波长-像元映射ΓI 可以用多项式来表示:0:()qk I k k i i λγ=Γ=⋅∑ (3.3)矢量(k γ)确定了像元i-波长λ(i )的映射。
紫外双波长与紫外差分的对比介绍

1.可消 除其 他污染 物对 被测 污染物 浓度 的影 当烟气中含有多种被测气体和烟尘时,烟 响,测量精度高; 气成分对两个波长处的吸收具有叠加效 2.可同时监测几种污染物浓度; 应,监测结果准确度就会受到影响。特别 3.采用自适应算法不但光强度对监测结果没 是烟尘和监测光路的污染影响较为严重。 有影响;同时可以延长光源的使用寿命,减
紫外双波长与紫外差分的对比介绍
紫外双波长测量法
紫外差分吸收 点
技 术 指 标
安装 调试
在被测气体的主吸收峰上,选取两个不同 波长,以这两个波长的吸收系数差值和吸 收 度 差 值 的比 值 来 分析 计 算 被测 物 质 的 浓度。
紫外光照射到由 SO2、NO2 等异原子组成的 气体分子时,其固有的振动和旋转的能级产生 跃迁,同时吸收特定波长的紫外光。差分吸收 光谱法 将气 体的吸 收光 谱分 解为快 变和 慢变 两个部分,快变部分与气体分子的结构和所组 成的元素有关,是气体分子吸收光谱的特征部 分,利用快变部分进行计算分析确定被测气体 的浓度。
少维护工作量。
0-3000ppm;0-1400 测量范围
0 mg/Nm3
测量范围 线性误差
1-9999 mg/Nm3(可自 动切换)
≤±0.4%F.S
SO2
测量误差
<±2%F.S
SO2 线性相关系 数
0.99998
重复性
<1%
重复性
≤0.6%
响应时间
<0.5s
NOx
无
零点漂移
≤±0.5%24h
测量范围
1-9999 mg/Nm3(可自 动切换)
线性误差
≤±0.4%F.S
NOx 线性相关系 数
0.99998
紫外烟气综合分析仪采用的紫外差分吸收光谱技术是如何实现测量的

紫外烟气综合分析仪采用的紫外差分吸收光谱技术是如何实现测量的青岛众瑞便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。
紫外差分吸收光谱技术原理:当紫外-可见连续光谱经过含有被测污染气体的样气时,特定波长光能被样气中的污染气体吸收,光的吸收(吸光度)与污染气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定吸光度和污染气体浓度之间的经验曲线,根据现场被测样气的吸光度实时计算样气中污染气体浓度。
在实际测量中,不仅存在气体分子对光的吸收,还存在瑞利散射、米氏散射等对光的衰减作用,差分吸收的基本思想是将气体分子的吸收截面分为两个部分,一是随波长作缓慢变化的宽带光谱结构,即低频部分,二是随波长作快速变化的窄带光谱结构,即高频部分。
DOAS方法利用吸收光谱的高频部分计算得出气体浓度。
由于DOAS方法分析的是吸收光谱的高频部分,而水汽、烟尘和其他一些成分的吸收光谱均属于低频,因此DOAS技术可以有效地去除水汽、烟尘等对测量结果的影响,使测量结果可以更准确、更稳定、更可靠。
同时,由于每种气体分子都有其特征吸收光谱,使得DOAS可以同时测量多种气体组分。
青岛众瑞便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。
整机采用一体便携式设计,采样管和主机为一体,携带方便。
可供环境监测部门对各种锅炉排放的气体浓度、排放量进行检测,也可应用于工矿企业进行各种有害气体浓度的测量。
1。
紫外吸收光谱分析

单色器是将光源发出的复合光分解为单色光的装置。在紫外吸收光谱分析中,常 用的单色器有棱镜单色器和光栅单色器。棱镜单色器分辨率较低,适用于宽波段 扫描;光栅单色器分辨率较高,适用于窄波段扫描和定量分析。
样品池设计与使用注意事项
样品池设计
样品池是承载样品的装置,其设计应考虑到样品的性质、浓度以及分析波长等因素。常 用的样品池有石英比色皿和玻璃比色皿,前者适用于紫外区域的分析,后者适用于可见 光区域的分析。此外,样品池的光程长也是需要考虑的因素,一般根据分析需求选择合
03 样品前处理与实验条件 优化
样品溶解与稀释方法
选择合适溶剂
根据样品的性质选择合适的溶剂 ,确保样品在溶剂中完全溶解, 避免产生浑浊或沉淀。
稀释倍数确定
根据样品的浓度和仪器的检测范 围,确定合适的稀释倍数,使样 品在检测时处于线性范围内。
pH值调整及缓冲液选择
pH值调整
根据样品的性质和实验需求,使用酸或碱调整样品的pH值,确保样品在合适 的pH值下进行实验。
多组分体系同时测定策略探讨
1 2 3
多波长测定法
利用不同组分在紫外光谱中的特征吸收峰,选择 多个波长进行同时测定,实现多组分体系的分析 。
差分光谱法
通过比较样品与参比溶液在特定波长下的吸光度 差异,消除背景干扰,提高多组分体系测定的准 确性。
化学计量学方法
结合化学计量学算法,对多组分体系的紫外吸收 光谱数据进行解析,实现各组分浓度的同时测定 。
应用举例
在药物分析中,利用紫外光谱法可以 快速识别原料药或制剂中的主成分, 以及可能的杂质或降解产物。
导数光谱法在Biblioteka 合物鉴定中应用原理导数光谱法通过对原始紫外光谱进行数学处理(求导),可 以突出光谱的细微特征,提高混合物中各组分的分辨率。
紫外差分模块

紫外差分模块
紫外差分模块是一种用于检测紫外光的技术装置。
它广泛应用于环境监测、生物医学、材料科学等领域。
紫外差分模块的原理是利用特殊的材料来吸收紫外光,并通过差分电流的变化来检测光线的强度。
在紫外差分模块中,首先需要选择合适的材料来吸收紫外光。
这些材料通常具有较高的光吸收系数和较小的电阻。
通过调整材料的厚度和结构,可以实现对不同波长的紫外光的选择性吸收。
紫外差分模块通常由光源、光传输系统、光探测器和信号处理电路等组成。
光源可以是氘灯、氙灯或LED等,用于产生紫外光。
光传输系统用于将光引导到光探测器,通常采用光纤。
光探测器是紫外差分模块的核心部件,用于将光转化为电信号。
信号处理电路则用于放大、滤波和处理电信号,以获取准确的光强度信息。
紫外差分模块的应用十分广泛。
在环境监测方面,它可以用于检测空气中的臭氧浓度、水中的溶解氧浓度等。
在生物医学方面,它可以用于检测DNA、蛋白质等生物分子的浓度和结构。
在材料科学方面,它可以用于研究材料的能带结构、表面缺陷等。
总的来说,紫外差分模块是一种重要的光学检测技术。
它具有灵敏度高、分辨率高、响应速度快等优点,广泛应用于各个领域。
通过不断改进和创新,相信紫外差分模块在未来会发挥更大的作用。
紫外差分法

紫外差分法紫外差分法是一种常用的分析化学方法,该方法是利用物质吸收紫外光谱的差异来分析物质的含量和质量等信息。
紫外差分法广泛应用于食品、药品、环境监测等领域,具有高效、快速、准确的特点。
下面我们就来详细了解一下紫外差分法的原理、优缺点以及应用。
紫外差分法的原理是基于“比色法”的原理,即通过比较样品溶液和参比溶液在一定波长范围内的吸光度差异来分析样品中所含有的化合物。
当两组溶液吸收光谱发生差异时,说明样品中含有的成分较多,进而得知样品的质量和含量等信息。
相较于传统的分析方法,紫外差分法具有诸多优点。
首先,紫外差分法无需分离、纯化样品,大大简化了分析操作流程,提高了分析效率。
其次,紫外差分法对样品稳定性和样品量有较低的要求,减小了实验误差和分析风险。
此外,紫外差分法还具有灵敏度高、数据准确度高等优点,使得其在大规模生产和研究中应用广泛。
当然,紫外差分法也存在一些缺点,如对样品吸收光谱的选择性不高、样品中存在干扰物质时容易出现误差等。
但是,这些缺点可以通过合理的操作流程和配合其他分析方法进行克服,确保分析结果的精确和可靠。
在实际应用中,紫外差分法被广泛应用于食品、药品、环境监测等领域中。
比如,在食品质控中,紫外差分法可用于检测食品中的添加物、防腐剂等有害物质;在药物检测中,紫外差分法可用于检测药品中的纯度和杂质等。
此外,紫外差分法还可以用于环境监测中,检测空气、水、土壤等中污染物的含量和来源等信息。
总之,紫外差分法是一种高效、准确、灵敏的分析化学方法,应用广泛,对于科学研究和实际应用都具有重要意义。
未来,随着技术的不断升级和发展,紫外差分法将会变得更加精确、高效,并在更多领域发挥更加重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 DOAS 测量原理从稳定光源发出的光I o (λ,L),通过气室后,由透镜收集光会聚进入光谱仪。
由于沿光程的气体分子的吸收、分子散射,导致了接收光强减弱。
在光通过距离L 的光程后,接收光I (λ,L )可以由Lambert-Beer 定律来表示:00(,)(,)exp[((,,)()(,)(,))]()l Lj j R M j l I L I L p T c l l l dl N λλσλελελλ===⋅-⋅+++∑⎰ (3.1)对于每一种气体,(,,)j p T σλ是在波长λ,压力p 和温度为T 时的吸收截面。
()j c l 是沿光程在距离l 处的密度。
M ε和R ε分别表示瑞利散射、Mie 散射的消光系数。
N (λ)是光强I (λ,L )上的光子噪声。
在图3.1a 中,I (λ,L )为通过大气的后光谱(为了简化说明,假设其中只含有甲醛的吸收)。
在大多数的DOAS 系统中,回来的光被聚焦到光谱仪的入射狭缝上,经光谱仪分光,光谱由探测器记录。
由于光谱仪有限的分辨率,光谱I (λ,L )的形状发生了变化,这个过程的数学描述是大气光谱I (λ,L )与光谱仪的仪器函数H 进行卷积,图3.1b 表示与典型的仪器函数H 卷积后,投影在探测器上的光谱I*(λ,L )。
在探测器记录光谱的过程中,光谱范围被映射为n 个离散的像元(PDA 或CCD 探测器),用i 来表记,每个像元表示从λ(i)到λ(i+1)的间隔积分。
这个间隔可以根据波长-像元映射ΓI 计算得到。
对于线性色散(:()(0)I i i λλγΓ=+⋅), 像元的光谱宽度为常数(0()(1)()i i i λλλγ∆=+-=)。
像元i 上的光强'()I i 表示为(忽略任何的仪器因子,如不同像元的响应不一样),(1)()'()(',)'i i I i I L d λλλλ+*=⎰(3.2)一般而言,波长-像元映射ΓI 可以用多项式来表示:0:()qk I k k i i λγ=Γ=⋅∑ (3.3)矢量(k γ)确定了像元i-波长λ(i )的映射。
参数0γ的改变的物理意义为光谱的平移,1γ的变化表示了光谱的线性拉抻和压缩,k 阶参数k γ描述了光谱的非线性变形。
参数矢量(k γ)物变化可以是光谱测量条件引起的,因为光栅光谱仪随着每k 温度的变化移动1/10个像元。
因而,在光谱分析中必须对这些影响进行修正。
图3.1c 表示了记录并存储在计算机中的离散谱'()I i 。
DOAS 技术最初是设计用来测量大气的吸收光谱[Platt 1994],与实验室中的测量相比,大气测量不可能掌握观测气体的绝对吸收,因为不能够移去大气来获得光强信息。
DOAS 技术的基本原理是通过将吸收截面分为两部分来解决这个问题的:'b j j j σσσ=+ (3.4)对于痕量气体j ,b j σ代表了宽状结构光谱,'j σ代表差分吸收截面,其反映了窄带光谱结构。
在光谱分析中只考虑'j σ可以去除来自瑞利和Mie 散射的干扰。
图3.2示意了O 3吸收截面的分离。
'()I i 取对数, ()ln '()J i I i =表示为:''0()()()'()'()'()'()mj j i J i J i a S i B i R i A i N i =+⋅++++∑ (3.5)对于每种痕量气体j, 'j S 是差分吸收截面,''()ln(exp(()))j j S H λσλ=-*,其对应于气体的差分吸收截面与仪器函数H 的卷积,B ’(i) 为宽带吸收结构,'()R i 为瑞利和Mie 散射的和,'()A i 代表了探测器、光谱仪的响应, '()N i =ln(N(λ))表示了探测器的噪声和光子噪声的总和,比例因子'j j a c L =⋅ 则是沿光程平均数密度的积。
图3.1. 典型DOAS 的组成部分。
平行光束穿过观测的大气团,被大气分子所吸收。
(a)举例说明,观测到含有甲醛的大气光谱 (b) 与光谱仪仪器函数卷积后的光谱(c) 投影在PDA 表面上,按PDA 像元离散后的光谱,这个光谱被存储在计算机中,待进一步的数值处理。
式3.5表示了几种痕量气体分子重叠吸收的和。
实际上,可测量分析的吸收气体数量是由它们的吸收结构强度来决定,必须高于DOAS 技术的探测低限。
一般,一条光谱能够分析出2-10种气体成分[Platt 1994]。
因此,同时得到这些气体的浓度。
为了从重叠的光谱结构中反演出不同的成分浓度,要对重叠结构进行数字分离。
这个反演过程的任务是:1. 反演参数'j a ,考虑中痕量气体的吸收和仪器系统的影响。
2. 计算参数'j a 的误差,及测量浓度的误差。
300310320300310320aI (λ, L )wavelength [nm]bI (λ, L ) * Fwavelength [nm]L100200cpixel在不考虑仪器本身的影响时,以上两项任务可通过最小二乘拟合来实现[Stutz and Platt 1996]。
3.2数学描述分析过程基于描述DOAS 测量谱线物理行为的数据模型(3.5式),离散光谱的对数用函数()F i 来表示有,260280300320340-9x10-20-6x10-20-3x10-2003x10-206x10-209x10-20σ''(λ)ozon e ab sorption cross se ctionσ'(λ)σc (λ)a b s o r p t i o n c r o s s s e c t i o n σ (λ) [c m 2]Wavelength [nm]-3x10-19-2x10-19-1x10-1901x10-192x10-193x10-194x10-190.02.0x10-184.0x10-186.0x10-188.0x10-181.0x10-171.2x10-170.02.0x10-184.0x10-186.0x10-188.0x10-181.0x10-171.2x10-17260280300320340图3.2 DOAS 分离吸收截面的基本原理。
以O 3的吸收截面(上)为例说明。
在数据反演过程应用数值滤波器将吸收截面分为“慢变化”部分(宽带吸收,第二个图),“快变化”部分(窄带吸收,第三个图)和高频部分(最低下的图)。
,,11()()(,,)()mr j j j d j j F i P i a S d d i ==+⋅∑ (3.6)这里,痕量气体的吸收结构j S 是实验测量的,作为输入参数。
多项式()r P i 描述宽带光谱结构,主要是由灯的光谱特征0()I i ,大气瑞利、Mie 散射'()R i ,光谱灵敏度'()A i 以及痕量气体的宽带吸收'()B i 组成,如下所示:()0()rh r i h c h P c i i ==⋅-∑ (3.7)这里,参数int(/2)c i n =代表了光谱区域的中心像元,相对于c i 的多项式最大化了非线性的影响。
通过F 和J 的线性拟合,可以解出比例因子j a 和多项式系数h c 。
最后用比例因子来计算相应痕量气体的平均浓度:'jj j a c Lσ=⋅ (3.8)'j σ表示气体j 的差分吸收截面,L 是吸收光程长度。
在分析过程中,注意将参考光谱'()j S i (波长-像元映射j Γ)与测量光谱J (i )(波长-像元映射J Γ)的波长对齐。
根据测量谱线的波长-像元映射J Γ和参考光谱'()j S i 计算参考光谱()j S i *,这个过程可以看作是参考光谱在波长上进行“平移或拉伸”。
因为j Γ(在式3.3中等效于J Γ)是一个严格单调函数,其反函数也可以由一个多项式描述:1:()qk jkk x λβλ-=Γ=⋅∑ (3.9)这里,()x λ表示了从反函数中得到的非整数像元数值。
因此,能够从连续函数()j S x 中计算出,连续谱线()j S x 可以从谱线()j S i 的中通过三次样条插值得到。
因此,由()j S i 插值近似得到()j S x ,()j S x 根据1j -Γ得出()jS λ,由()j S λ和J Γ算出()jS i *:1interpolation()()()()jJj j j j S i S x S S i λ-ΓΓ*−−−−→−−→−−→ (3.10)这个计算过程可以用一个公式来实现,i 和x 通过含参数k δ的多项式联系起来,0()(())s lq q k k k x i x i i λδ⋅===⋅∑ (3.11)在实际的分析过程中,将式3.11进行等价变换,使得谱线对齐参数,j k d ,在测量谱线波长-像元映射J 和参考谱线j S 相同的时候等于“0”,,0()()()jP k j j j k c k x i f i withf i d i i ====⋅-∑ (3.12)光谱,0,1(,,)()()j j j j S d d i S i *=现在与测量光谱具有相同的波长-像元映射J Γ。
在参数j a 和h c 不变的条件下,参数,j k d 通过模型F 和光谱J 的非线性拟合得到。
如果0j p =,光谱j S 平移,0j d 个象元,如果1j p =,光谱j S 按照,1j d 进行线性拉伸或压缩,高阶j p 代表了高阶的拉伸变化。
为了对光谱进行最好的物理描述,对每个参考光谱设定合适的拉伸参数,如果各个参考光谱是一起校准的,则可对所有的参考光谱用一套参数,j k d 。
分析过程采用了两个算法:线性Levenberg-Marquardt 算法确定参数,j k d ;一个标准的最小二乘拟合算法计算j a 和h c 。
两种算法在F 和J 间最小化2χ:220(()())ni J i F i χ==-∑ (3.13)计算过程,首先用初始,j k d 值进行线性拟合计算,它的拟合结果j a 和h c 作为接下来的非线性Leverbert-Marquardt 拟合的输入,这个非线性迭代过程只进行的一步,其结果参数,j k d 被用作下一次线性拟合的输入,进而结果又被非线性拟合调用。
反演过程交替地调用两种拟合的结果作为下一次拟合的输入。
这个过程重复,直到非线性拟合的某个条件得到满足。
通常,当2χ的相对变化值小于一个设定的值(如10-6),拟合计算停止。
如果迭代的重复次数超过所设定的,或非线性拟合不稳定,也将中止拟合过程。