【2020年】江苏省中考数学模拟试卷(含答案)
2020年江苏省中考数学模拟检测试卷附解析

2020年江苏省中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.关于视线的范围,下列叙述正确的是()A.在轿车内比轿车外看到的范围大B.在船头比在船尾看到的范围大C.走上坡路比走平路的视线范围大D.走上坡路比走平路的视线范围小2.如图,已知△ABC,P是边AB上的一点,连结CP,以下条件中不能确定△ACP∽△ABC 的是()A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AC AB CP BC3.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是()A.45°B.60°C.90°D.180°4.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550 B.x(x-1)=2550C.2x(x+1)=2550 D.x (x-1)=2550×25.已知一组数据5,7,3,9,则它们的方差是()A. 3 B. 4 C. 5 D. 66.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m/s,摩托车的速度为10 m/s,那么10 s后,两车大约相距()A.55 m B.l03 m C.125 m D.153 m7.等腰三角形一个角为 40°,则它的顶角是()A.40° B.70° C. 100°D. 40°或 100°8.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°9.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,折叠后的C点落在B′M 或B′M的延长线上,那么∠EMF的度数是()A.85°B.90°C.95°D.100°10.一副三角板按如图方式摆放,且∠l比∠2大50°.若设∠1=x,则可列出方程()A.x+(x+500)=180° B.x+(x-50°)=180°C. x+(x+500)=90° D.x+(x-50°)=90°11.两数相加,其和小于其中一个加数而大于另一个加数,那么()A.这两个加数都是正数B.这两个加数都是负数C.这两个加数是一正一负D.这两个加数的符号不能确定二、填空题12.在Rt△ABC中,已知∠C=90°,若∠A=30°3,则∠B=______, b=______,c=______.13.扇形的圆心角是30°,半径是2cm,则扇形的周长是 cm.14.把函数y=x2-1的图象沿y轴向上平移1个单位长度,可以得到函数____________的图象.15.抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是_____________.16.若点(-4,m),(3,n)都在直线14y x t=-+上,则m与n的大小关系是 .17.已知点A坐标为(-1,-2),点B坐标为(1,-l),点C坐标为(5,1),其中在直线y=-x+6上的点是,在直线y=3x一4上的点是..18.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是枚.奥运金牌榜前六名国家19.要使△ABC≌△A′B′C′,已知AB=A′B′,∠B=∠B′,如果利用“ASA”,要补充条件,如果利用“AAS”,要补充条件.20.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高℃.21.数轴上表示整数的点中,与原点距离最近的点所表示的数是.三、解答题22.如图,直线l的解析式为443y x l=+,与x轴,y轴分别交于点A B,.(1)求原点O到直线l的距离;(2)有一个半径为1的⊙C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当⊙C与直线l相切时,求t的值.23.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)24.一个圆锥的底面半径为10cm ,母线长为20cm ,求:(1)圆锥的高;(2)•侧面展开图的圆心角.25.美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求04,05两年绿地面积的年平均增长率.26.求下列二次根式中字母x 的取值范围:⑴ 32+x ⑵52+x ⑶ 11-+x x27.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y -<++;(2)323228x x -≥-28.化简:(1)22)(9)(4y x y x --+ (2)4x 3 ÷(-2x )2-(2x 2-x )÷(21x ) (3)[(x -y )2-(x + y )2]÷(-4xy ) (4)(a+3)2-2(a+3)(a-3)+(a-3)229.某体育场的环形跑道长 400米,甲、乙二人在跑道上,练习长跑,甲平均每分钟跑250米,乙平均每分钟跑290米,现在两人同时从同一起跑线同向出发,起跑后经过多长时间两人才能第一次相遇?30.|2|y -互为相反数,求y x 的平方根.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.B5.C6.B7.D8.D9.B10.D11.C二、填空题12.60°,12,3813.143π+14. y=x 215.(1,0)16.m n >17.点C ,点B18.2119.∠A=∠A ′,∠=∠C ′20.2321.三、解答题22.解:(1)在443y x =+中,令0x =,得4y =,得4BO =. 令0y =,得3x =-,得3AO =,5AB ∴==. 设点O 到直线AB 的距离为h ,1122AOB S AO BO AB h ==△, ∴4.2=⋅=AB BO AO h . (2)如图,设⊙C 与直线l 相切于点D ,连CD ,则CD AB ⊥,90AO BO=⊥,ABO CBD ∠=∠BC CD ABO CBD AB AO ∴∴=,,△∽△由(1)得345AO BO AB ===,,, 1557453333BC BC OC ∴=∴=∴=-=,,,73t CO ∴==(秒). 根据对称性得53BC BC '==,517174333OC t OC ''∴=+=∴==,(秒). ∴当⊙C 与直线l 相切时,73t =秒或173秒. 23. 在 Rt △ADF 中,∠D=60°,tan AF D DF=,∴3933tan 3AF DF D ==⨯= 在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++331091933=++=+m24.解:(1)如右图所示,在Rt △SOA 中,SO=22222010SA OA -=-=103.(2)设侧面展开图扇形的圆心角度数为n ,则由2πr=180n l π,得n=180,• 故侧面展开图扇形的圆心角为180°. 25.(1)60;4(2)设年平均增长率为x ,则60(1+x )2=72.6,解得,x =0.1.26.⑴x 可取任何实数;⑵5->x ;⑶11≠-≥x x 且.27.(1)y>-15;(2)x ≤412图略 28.(1)225526y x xy --;(2)2-3x ;(3)1;(4) 36.29.设起跑后经过x 分钟两人第一次相遇,则甲跑过的路程是250x 米,乙跑过的路程为290x 米.根据题意,得290250400x x -=,解得10x =.答:起跑后经过10分钟两人第一次相遇.30.|2|y -.和|2|y -均为非负数,∴290x γ-+=,20y -=∴2y =,5x =-,于是2(5)25y x =-=,5=±,∴y x 的平方根是5±.。
2020年江苏省中考数学模拟试题(含答案)

2020年江苏省中考数学模拟试题含答案注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 计算(-4)+6的结果为A .-2B .2C .-10D .22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .3.5×106B .3.5×107C .35×105D .0.35×1083. 下列图形中,是中心对称图形的是A .B .C .D .4. 如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是 A .点MB .点NC .点PD .点Q5. 如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆锥D .圆柱6. 已知方程3x 2-4x -4=0的两个实数根分别为x 1,x 2.则x 1+x 2的值为A .4B .23C .43D .-43QP N M左视图主视图俯视图(第5题)7. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABCF(第10题)O xyy =8xAB y =kx(第9题)DCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)216.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40C 汽车尾气排放 nD工厂造成的污染120(第18题)y xB OCAC 10%B A20%DE调查结果扇形统计图E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.(第23题)ABC EOBCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(第25题)FEDCBA(1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2k y x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第27题)(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2................. 4分 =x 2 .. (5)分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)D∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。
2020年江苏省中考数学模拟试题与答案

2020年江苏省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。
江苏省2020年中考数学模拟试题(含答案)

江苏省2020年中考数学调研模拟试题含答案注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个是正确的) 1.在函数2y x =-中,自变量x 的取值范围是A .x <2B .x ≤2C .x >2D .x ≥22. 若一个三角形三个内角度数的比为1∶2∶3,那么这个三角形最小角的正切值为A .13B .12C .33D .323.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁) 18 19 20 21 22 人数25221则这12名队员年龄的众数、中位数分别是A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于 A .21 B .41 C .81 D .91 5.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°, 则∠DAB 等于A .60°B .65°C .70°D .75°6. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切7. 若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程25x bx +=的解为 A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =8.如图1,一个电子蜘蛛从点A 出发匀速爬行,它先沿线段AB 爬到点B ,再沿半圆经过 点M 爬到点C .如果准备在M 、N 、P 、Q 四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x ,电子蜘蛛与记录仪之间的距离为y ,表示y 与x 函数关系的图象如图2所示,那么记录仪可能位于图1中的AB CDEB CDAABCNPQ 图1Oxy图2MA .点MB .点NC .点PD .点Q二、填空题(本大题共10小题.每小题2分,共20分) 9. 已知,在Rt △ABC 中,∠C =90°,4tan 3B =,则cos A = ▲ . 10.反比例函数ky x=的图象经过点(1,6)和(m ,-3),则m = ▲ . 11.某工厂2014年缴税20万元,2016年缴税24万元,设这两年该工厂缴税的年平均增长率为x ,根据题意,可得方程为 ▲ .12.已知一组数据1,2,x ,5的平均数是4,则这组数据的方差是 ▲ . 13.点11()A x y ,、B 22()x y ,在二次函数241y x x =--的图象上,若当1<1x <2,3<2x <4时,则1y 与2y 的大小关系是1y ▲ 2y .(用“>”、“<”、“=”填空) 14.已知扇形的圆心角为150°,它所对应的弧长20 π cm ,则此扇形的半径是 ▲ cm . 15.直角坐标系中点A 坐标为(5,3),B 坐标为(1,0),将点A 绕点B 逆时针旋转90°得到点C ,则点C 的坐标为 ▲ . 16.一次函数1y x =-+与反比例函数2y x=-,x 与y 的对应值如下表: x 3-2- 1- 1 2 31y x =-+ 4 32 01- 2-2y x =-321 22-1-23-不等式21x x-+-> 的解为 ▲ . 17.如右图,△ABC 的三个顶点的坐标分别为A (-3,5),B (-3,0),C(2,0),将△ABC 绕点B 顺时针旋转一定角度后使A 落在y 轴上,与此同时顶点C 恰好落在ky x=的图象上,则k 的值为 ▲ . 18.如图,在平面直角坐标系中,已知点(0,1)A 、点(0,1)B t +、(0,1)(0)C t t ->,点P 在以(3,3)D 为圆心,1为半径的圆上运动,且始终满足90BPC ∠=︒,则t 的最小值是 ▲ .三、解答题(本大题共有10小题,共84分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.化简:(本题8分) ⑴2cos60tan 45sin 45sin30︒-︒+︒︒⑵ 019sin30(3)2π-+︒++O CABPDyxABCyOA'C'x20.解方程:(本题10分)⑴ 241)90x --=( ⑵ 2322x x -=-()21.(本小题满分7分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:⑴ 本次调查的样本容量为 ▲ ;⑵ 在频数分布表中,a = ▲ ,b = ▲ ,并将频数分布直方图补充完整; ⑶ 若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?初中毕业生视力抽样调查频数分布表初中毕业生视力抽样调查频数分布直方图(每组数据含最小值,不含最大值)4.0 4.3 4.6 4.95.2 5.5 视力22.(本小题满分8分)甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a 、b 、c ,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张,不放回.⑴ 用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果; ⑵ 求三位同学中至少有一人抽到自己制作卡片的概率.23.(本小题满分7分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC 就是格点三角形,建立如图所示的平面直角坐标系,点C 的坐标为(0,-1).⑴ 在如图的方格纸中把△ABC 以点O 为位似中心扩大,使扩大前后的位似比为1∶2,画出△A 1B 2C 2(△ABC 与△A 1B 2C 2在位似中心O 点的两侧,A 、B 、C 的对应点分别是A 1、B 2、C 2).⑵ 利用方格纸标出△A 1B 2C 2外接圆的圆心P ,P 点坐标是 ▲ ,⊙P 的半径 = ▲ (保留根号).O A C B yx24.(本小题满分7分) 已知:如图,等腰△ABC 中,AB =BC ,AE ⊥BC 于E ,EF ⊥AB 于F ,若CE =2,4cos 5AEF ∠=,求BE 的长.25.(本小题满分8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO =45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h ,经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得∠DBO =58°,此时B 处距离码头O 多远?(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)26.(本小题满分9分)旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金是x (元).发现每天的运营规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.当每辆车的日租金为多少元时,每天的净收入会最多?(注:净收入=租车收入-管理费)DOB AC北东ACEF27.(本小题满分10分)如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E .在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x . ⑴ 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示) ⑵ 当x 为何值时,△AFD 是等腰三角形. ⑶作点D 关于AG 的对称点'D ,连接'FD ,'GD .若四边形DF 'D G 是平行四边形,求x 的值.(直接写出答案)28.(本小题满分10分)如图,在平面直角坐标系中,直线112y x =-与抛物线214y x bx c =-++ 交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.点P 是直线AB 上方的抛物线上的一动点(不与点A 、B 重合).⑴ 求该抛物线的函数关系式;⑵ 连接PA 、PB ,在点P 运动过程中,是否存在某一位置,使△PAB 恰好是一个以点P 为直角顶点的等腰直角三角形,若存在,求出点P 的坐标;若不存在,请说明理由; ⑶ 过P 作PD ∥y 轴交直线AB 于点D ,以PD 为直径作⊙E ,求⊙E 在直线AB 上截得的线段的最大长度.AB CD'E MGF DO B A Pyx (备用图)O BAyx数学参考答案及评分意见一、选择题 (共16分)二、填空题 (共20分)9.4510.2- 11.20(1+x )2=24 12.513.< 14.24 15.(-2,4) 16.x <-1,0<x <2 17.12n 181-三、计算题(共84分)19.⑴ 2cos60tan 45sin 45sin30︒-︒+︒︒=1212-1 2------------------------------------------------ 3分=12------------------------------------------------------------ 4分 ⑵ ()001sin3032π-+++=12+3-12+1 --------------------------------------------------- 3分= 4 -------------------------------------------------------------- 4分20.⑴ (4x -1)2-9=0 (4x -1)2 =9 ------------------------------------------------------ 1分4x -1=±3 -------------------------------------------------------- 3分x 1=2,x 2=-1 ----------------------------------------------------- 5分 ⑵ 23(2)2x x -=-3(x -2)2 +(x -2) =0 --------------------------------------------- 1分(x -2) (3x -5) =0 ------------------------------------------------ 3分3分21.⑴ 200 --------------------------------------------------------------- 1分⑵ 60,0.05;画图略-------------------------------------------------- 4分⑶ 5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有3500人。
江苏省2020年中考数学模拟试题及答案

江苏省2020年中考数学模拟试题及答案注意事项:1 .考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2 .考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并 交回。
3 .本试卷满分120分,考试时间120分钟。
、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正 确的。
)1 . 2020相反数的绝对值是()A. - -^1-B. - 202020202 .下列计算正确的是()A. 4a-2a =2C. - 2x 2y- 3yx 2= - 5x 2y3 .第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目 688亿元用科学记数法表示正确的是()A. 6.88 X 108元 B . 68.8 X 108元C . 6.88 X1010元 D . 0.688 X 1011元4 .在学校举行“阳光少年,励志青春” 的演讲比赛中,五位评委给选手小明的评分分别为: 90, 80, 95,则这组数据的众数是( )A. 95B. 90C. 855 .已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 6个B. 7个C. 8个D. 9个6 .如图,AB 是。
的直径,C, D 为圆上两点,/ AOC=130,则/ D 等于(A.25 °B.30 °C.35 °D.50 °C. ----D. 2020_ _ 2 _ 2 4B. 2x +2x = 4xD. 2a 2b — 3a 2b= a 2b356个,涉及金额688亿元.数据90, 85,俯视图7 .如图所示,菱形 ABCDK 对角线 AC BD 相交于点 O H 为10.如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,到屏幕的距离为60cm,幻灯片中的图形的高度为6cm,屏幕上图形的高度为( )A. 6cm B . 12cm C. 18cm D . 24cmB是y轴左侧。
【2020年】江苏省中考数学模拟试题(含答案)

2020年江苏省中考数学模拟试题含答案考试时间120分钟 试卷满分150一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上 ) 1. ﹣5的相反数是( ) 【 ▲ 】 A.﹣5 B.5 C.﹣ D.2.下面运算正确的是 【 ▲ 】 A.7a 2b﹣5a 2b=2 B.x 8÷x 4=x 2 C.(a﹣b)2=a 2﹣b 2 D.(2x 2)3=8x 6 3. 某同学在“百度”搜索引擎中输入“魅力东台”,能搜索到与之相关的结果是3930000,这个数用科学记数法表示为【 ▲ 】 A.0.393×107B.393×104 C.3.93×106D.39.3×1054. 下列实数中,是无理数的为 【 ▲ 】 A.﹣3 B.0.303003 C. D.5.下列调查中,适合采用普查方式的是【 ▲ 】A .调查市场上婴幼儿奶粉的质量情况B .调查泰东河质情况C .对科学通信卫星上某种零部件的调查D .调查《东台新闻》栏目在东台市的收视率6. 如图1,已知a 、b 、c 、d 四条直线,a ∥b ,c ∥d ,∠1=112°,则∠2等于【 ▲ 】A.58° B.68° C.78° D.112°7. 如图2,点F 在平行四边形ABCD 的边CD 上,射线AF 交BC 的延长线于点E ,在不添加辅助线的情况下,图中相似的三角形有【 ▲ 】A.1对 B.2对 C.3对D.4对8.若a、b、c为△ABC的三边长,且满足|c ﹣3|+=0,则a 的值不可以为【▲】A.2 B.3C.4D.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上) 9. 分解因式:x 2﹣xy=____▲ __ ; 10. 当x=___▲___时,分式232-+x x 的值为0;11.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设第6题图第7题图学校: 班级: 姓名: 座位号:装订线内请勿答题沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于___▲___;12.如图,正六边形ABCDEF内接于半径为4的圆,则劣弧AB的长度为____▲____;13. 如图是由6个棱长均为1的正方体组成的几何体,它的左视图的面积为____▲____;14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是____▲__;15.△ABC中∠A=30°,tanB=,AC=,则AB=____▲___;16.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需______分钟.17. 如果方程3)1(2=-xa的解是x=5,则a=▲;18. 如图,已知四边形PABN在坐标系中位置如图,则四边形PABN周长最小时,a= ▲;三、解答题(本大题共有10小题,共96分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.(本题满分12分)(1)计算:()01260cos2214π-+︒-⎪⎪⎭⎫⎝⎛+-.(2)解不等式组:⎪⎩⎪⎨⎧≤>-422xx.20.(本题满分8分)先化简,再求值:41221122-+-÷⎪⎭⎫⎝⎛-+mmmm,其中m = 4.21.(本题满分9分)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.第11题图第12题图第13题图捐款户数分组统计表组别捐款额(x)元户数A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400捐款户数分组统计图1 捐款户数分组统计图2第18题图请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2)补全“捐款户数分组统计图1”,“捐款户数分组统计图2”中B组扇形圆心角度数为;(3)若该社区有500户住户,请根据以上信息,估计全社区捐款不少于300元的户数.22.(本题满分8分)在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机取出一个小球,记下数字为x;小红在剩下的三个小球中随机取出一个小球,记下数字为y.小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明你的理由;若不公平,怎样修改游戏规则才对双方公平?23.(本题8分)如图,已知△ABC中,∠ACB=90°P是AC的中点.实践与操作:尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①以BC为直径作⊙O,交AB于点D;②连接PD.推理与运用:求证:PD是⊙O的切线.24.(本题满分9分)实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=–200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)表示(如图所示).(1) 喝酒后多长时间血液中的酒精含量达到最大值?最大值为多少?(2) 求k的值.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.25.(本题满分8分)如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1:2,求函数y=kx+b的表达式.26.(本题满分10分)如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(本题满分12分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图1,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC ∥BC.若AD=2,AE=1,DF=6,则EG=, = .(2)如图2,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB为边构造△ADM(即AM=BF ,MD=DF);以AE、EG、GC为边构造△AE N(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图3,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)28.(本题满分12分)在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0),抛物线y=33-x2+bx+c 经过点A、B、C.(1)请直接写出点B、C的坐标:B(▲,▲)、C(▲,▲);(2)求经过A、B、C三点的抛物线的函数表达式;(3)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E y yFD图3放在线段AB 上(点E 是不与A 、B 两点重合的动点),并使ED 所在直线经过点C . 此时,EF 所在直线与(1)中的抛物线交于第一象限的点M . ①设AE =x ,当x 为何值时,△OCE∽△OBC ; ②在①的条件下:抛物线的对称轴上是否存在点P 使△PEM 是等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一.选择题三.解答题19.(1) 4 (2) 2<x ≤820. 化简原式= 结果为2 21.一、选择题(每题3分,计24分) 题号 1 2 3 4 5 6 7 8 答案B DCD C BCD二、填空题(每题3分,计30分) 9.x(x-y) ; 10._-2 ; 11. 3/8; 12. 4/3π; 13. 4__ ; 14. 8π__; 15. 5 ; 16.40 _______; 17.1/6; 18. 7/4; 12-+m m22、23.72°24.25.26. 解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=35°.∴FB=AB﹣AF=120﹣50=70.根据三角形外角性质可知,∠CBN=∠CFB+∠BCF,∴∠BCF=70°﹣35°=35°=∠CFB,∴BC=BF=70. 在Rt△BEC中,sin70°=,∴CE=BC•sin70°≈70×0.94=65.8≈66.答:河流的宽是66米.27.28.。
2020年江苏省中考数学模拟试卷附解析

2020年江苏省中考数学模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题下列图形中,不是正方体平面展开图的是( )2.如图,为了测量河的宽度,王芳同学在河岸边相距200m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30的方向,则河的宽度是( ) A .2003mB .20033m C .1003m D .100m3.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( ) A .x y 5=B .x y 54=C .x y 45= D .x y 209=4.下列函数中,当 x>0 时,y 随x 的增大而减小的是( ) A .y x = B .1y x=C .1y x=-D .21y x =-5. 用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781()416t -=D .23420y y --=化为2210()39y -=6.下列各组条件中,能判定△ABC 为等腰三角形的是 ( ) A .∠A=60°,∠B=40° B .∠A=70°,∠B=50° C .∠A=90°,∠B=45° D .∠A=120°,∠B=15° 7.以下列各组数为长度的线段,能组成三角形的是( )A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm 8.若(3x 2y -2xy 2)÷A=-3x+2y ,则单项式A 为( )A .xyB .-xyC .xD .-y9.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( )A .11B .-11C .5D .-210.相传有个人不讲究说话艺术常引起误会.一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”客人听了,心想难道我们是不该来的,于是有一半客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的三分之二的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的四个人也都告辞走了,聪明的你能知道开始来了几位客人吗? ( ) A .15B .16C .18D .24二、填空题11.矩形的面积为2,一条边长为x ,另一条边长为y ,则y 与x 的函数关系式为(不必写出自变量取值范围)________________.12.在□ABCD 中,AB=2cm ,BC=4cm ,∠B=45°,则□ABCD 的面积等于 cm 2. 13.如图,在方格纸上有一个顶点都在格点上的△ABC ,则这个三角形是________三角形. 14.如图,平面镜A 与B 之间的夹角为 120°,光线经平面镜A 反射到平面镜B 上,再反射出去.若∠1=∠2,则∠1 的度数为 .15.如图是一个以点 0为旋转中心的旋转对称图形.能使旋转后的图形与原图形重合的旋转角是 .16.驴子和骡子驮着货物并排在路上走着,驴子不停地理怨主人给它驮的货物太重,压得实在受不了. 骡子说:“你发什么牢骚啊 ! 我比你驮得多 ! 如果你给我一袋,我驮的袋数就是你的两倍.”驴子反驳说:“没那么回事,只要你给我一袋,我们就一样多了 !”你能算出驴子和骡子各驮几袋货物吗?设驴子驮x 袋货物,骡子驮y 袋货物,则可列出方程组 .17.如图所示,已知点D ,E ,F 分别是BC ,AC ,DC 的中点,△EFC 的面积为6 cm 2,则△ABC 的面积为 .三、解答题18.已知菱形的周长为 16 cm,两邻角的比为 1:.2,求较短的对角线的长及一组对边的距离.19.写出命题“等腰三角形底边上的中点到两腰的距离相等.”的逆命题,并证明它是真命题.20.把汽油以均匀的速度注入容积为60 L的桶里,注入的时间和注入的油量如下表:注入的时间t(min)123456注入的油量q(L) 1.53 4.567.59(1)求q与t的函数解析式,并判断q是否是t的正比例函数;(2)求变量t的取值范围;(3)求t=1.5,4.5时,q的对应值.21.如图,已知BE=CF,AB=CD,∠B=∠C,则AF=DE吗?请说明理由.22.从A、B、C、D四位同学中任选2人参加学校演讲比赛,一共有几种不同的可能性?并列举各种可能的结果.23.计算 2222211111(1)(1)(1)(1)(1)23420052006-⋅-⋅--⋅-的值,从中你可以发现什么规律?24.三峡一期工程结束后,当年发电量为 5. 5×109千瓦时,某区有 100 万户居民,若平均每户每年用电32.7510⨯千瓦时,那么该年所发的电能供该区居民使用多少年?25.已知有含盐 20% 与含盐 8% 的盐水,若需配制含盐 15%的盐水 300 kg ,则两种盐水 需各取多少 kg ?26.已知边长为l cm 的等边三角形ABC ,如图所示.(1)将这个三角形绕它的顶点C 按顺时针方向旋转30°,作出这个图形; (2)再将已知三角形分别按顺时针方向旋转60°,90°,l20°,作出这些图形.(3)继续将三角形向同一方向旋转150°,180°,210°,240°,270°,300°,330°,作出这些图形.你将会得到一个美丽的图案.27.请任意画一个角,设法将它平均分成四个相等的角,并说出你是如何做的.28222524-= .29.已知矩形 ABCD 的周长为 12,面积为 8,设∠ACB=α, 求tanα的值.30.如图所示是一个正三角形区域的土地,中间的每一个点都是中点,所以每个三角形都是正三角形. 3 月 12 日植树节,同学们一起到这块地里植树,有一棵名贵的树要植在中间最小的三角形内,而同学们在不知道的情况下,随意地种,则这棵树种对地方的概率是多少?116【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.B6.C7.C8.B9.A10.D二、填空题xy 2=12..等腰14.30°15.120°16.2(1)111x y x y -=+⎧⎨+=-⎩17. 48cm 2三、解答题 18.较短对角线的长为 4 cm ,一组对边的距离19.略20.(1)q=1.5t ,是;(2)0≤t ≤40;(3)2.25,6.7521.利用SAS 说明△ABF ≌△DCE22.6种 AB AC AD BC BD CD .23.20074012.规律:22221111(1)(1)(1)(1)234n -⋅-⋅--化简后剩下两项,首项是(112-),最后一项是(11n +),结果即为12n n+ 24.2年25.含盐 20% 的盐水需 175 kg ,含盐 8%的盐水需 125 kg26.27.略28.729.68AB BC AB BC +=⎧⎨⋅=⎩,可得24AB BC =⎧⎨=⎩或42AB BC =⎧⎨=⎩,∴1tan 2AB a AC ==或 2. 30.116。
2020年江苏省中考模拟测试数学试题(附答案)

江苏省中考模拟测试数学试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.23的倒数是2.计算a 6b 2÷(ab )2的结果是3.无理数a 满足: 2<a <3,那么a 可能是4.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,摸到红球的概率是 A .12 B .13 C .25 D .15 5.半径为1,圆心角为60°的扇形的面积是A .π3B .16C .π6D .136.如图,在平面直角坐标系中,x 轴上一点A 从点(-3,0)出发沿x 轴向右平移,当以A 为圆心,半径为1的圆与函数y =33x 的图像相切时,点AA .(-2,0)B .(-3,0) 或(3,0)C .(-3,0)D .(-2,0)或(2,0)二、填空题(本大题共10小题,每小题2分,共20A .23B .-23C .-32D .32A .a 3B .a 4C .a 3bD .a 4bA .10B .6C .2.5D .207(第6题)填写在答题卡相应位置.......上) 7.(-2)2+(-2)-2= ▲ .8.南京奥林匹克体育中心位于南京市区西部,总占地面积896000平方米,是2014年南京青奥会主要场馆.数据896000用科学计数法表示为: ▲ . 9.如图,在正六边形ABCDEF 中,连接AE ,则tan ∠1= ▲ .10.写出一个公因式为2ab 且次数为3的多项式: ▲ . 11.2a =12,则a = ▲ .12.如图, CD ∥AB ,CB ⊥AB ,∠1=60o ,∠2=40o ,则∠3= ▲ .13.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m 3,则根据图中的条件,可列出方程: ▲ .14.平行四边形ABOC 在平面直角坐标系中,A 、B 的坐标分别为(-3,3),(-4,0).则 过C 的双曲线表达式为: ▲ .15.如图,在Rt △ABC 中,AC =8,BC =6,直线l 经过C ,且l ∥AB ,P 为l 上一个动点,若△ABC 与△PAC 相似,则PC = ▲ . 16. 如图,△OA 1B 1在直角坐标系中,A 1(-1,0),B 1(0,2),点C 1与点A 1关于OB 1的对称.对△A 1B 1C 1 进行图形变换,得到△C 1B 2C 2,使得B 2(3,2),C 2(5,0);再进行第二次变换,得到△C 2B 3C 3 ,使得B 3(9 ,2 ),C 3(13 ,0 );第三次将△C 2B 3C 3变换成△C 3B 4C 4,B 4(21, 2),C 4(29 ,0 )…按照上面的规律,若对△A 1B 1C 1进行第四次次变换,得到△C 4B 5C 5,则C 5(第15题)CABEF D 1 (第9题)13 2EABCD (第12题)(第13题) (第14题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式组⎩⎪⎨⎪⎧ 2x -3>5, 2+x 3-1≤2.18.(6分)先化简,再求值a 2-b 2ab ÷(1a + 1b ).其中a =-2,b =1.19.(8分)如图,在矩形ABCD 中,点F 是CD 中点,连接AF 并延长交BC 延长线于点E ,连接AC .(1)求证:△ADF ≌△ECF ;(2)若AB =1,BC =2,求四边形ACED 的面积.20.(8分)王老师对初三年级四个班级上学期期末数学成绩进行统计分析,以下是根据数据制成的统计图表的一部分:请你根据以上信息解答下列问题:CAB D EF (第19题)初三各班参考人数统计表0﹪﹪分比统计图初三各班数学合格人数统计图图(2)(1)图(1)中,甲班参考人数占 ▲ ﹪,丙班有 ▲ 人参考; (2)若经计算得出丙班的合格率为90%,将图(2)补充完整; (3)求上学期期末初三年级数学成绩的平均合格率.21.(8分)甲、乙、丙三个篮球队用抽签方法来决定参加第一场比赛的两个球队.请用树状图或列表法求出甲、乙两队在第一场进行比赛的概率.22.(8分)如图,延长等边三角形ABC 一边CB 到D ,连接AD .以A 为圆心,AC 为半径画弧交AD 于E .已知AC =2,∠D =20o ,求DE 的长(精确到0.1).(参考数据:3≈1.73,tan20o ≈0.36,sin20o ≈0.34,cos20o ≈0.94)23. (8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价....为x 元(x >40),请你分别用x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元?DB AEC(第22题)24.(8分)请用尺规..作出符合下列要求的图形(不写作法,保留作图痕迹): (1)已知线段AB ,试确定一点C ,使得∠ACB =90o ; (2)已知△ABD ,试确定一点C ,使得∠ACB +∠ADB =180o .25.(8分)快、慢两车分别从相距120千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后,立即按原路返回,返回时的速度是去时速度的2倍,结果与慢车同时回到甲地.慢车距出发地的路程y 1(千米)与出发后所用的时间x (小时)的关系如图所示. 请结合图象信息解答下列问题:(1)慢车的速度是 ▲ 千米/小时,快车的返回时速度是 ▲ 千米/小时; (2)画出快车距出发地的路程y 2(千米)与出发后所用的时间x (小时)的函数图象; (3)在快车返回途中,快、慢两车相距的路程为50千米时,慢车行驶了多少小时?DABAB(第25题)y 120O 1 2 3 x26.(9分)已知,如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,动点E 、F 同时从B 点出发,点E 沿射线BC 方向以5cm /s 运动,点F 沿线段BD 方向以4cm /s 运动,当点F 到达D 时,运动停止,连接DE ,设运动时间为t (s ). (1)请判断△DEF 的形状,并说明理由; (2)线段DE 的中点O 的运动路径长 ▲ cm ;(3)当t 为何值时,△DEF 的外接圆与矩形ABCD 的边相切?27.(11分)函数图象有一个公共点,我们就称两个函数图象“共一点”,有两个公共点,则称它们“共两点”…(1)若函数y =-x +b 图像和y =-x 2+2x 图像“共一点”P ,求P 点坐标;(2)若函数y =-x +1图像和y =ax 2+2x 图像“共两点”,则a 的取值范围是: ▲ ; (3)若函数y =2x 与y =ax 2+bx 图像在第一象限“共两点”A 、B (A 在B 左侧),且A 、B 两点之间水平距离为2,两点之间垂直距离是A 到y 轴距离的倒数,设函数y =ax 2+bx 图像(第26题)的顶点为C .求顶点C 的坐标.参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.174 8.8.96 105 9.3310.答案不唯一,如2ab -4ab 211.1212.65o 13.x (x +1)=3 14.y =3x 15. 6.4或10 16.(61,0) 三、解答题(本大题共11小题,共88分) 17. (本题6分)解:解不等式2x -3>5,得 x >4. …………………………………………………………………2分 解不等式2+x3-1≤2,得 x ≤7. ………………………………………………………………4分 ∴原不等式组解集为4<x ≤7. ………………………………………………………………… 6分 18.(本题6分)解:原式=a 2-b 2ab ÷ a +bab ………………………………………………………………………… 1分=(a -b )(a +b )ab ·aba +b………………………………………………………………3分 =a -b . ………………………………………………………………………4分 当a =-2,b =1时,原式=-2-1=-3. ………………………………………………………6分 19.(本题8分) (1)证明: ∵F 是CD 中点, ∴DF =CF .∵四边形ABCD 是矩形, ∴AD ∥BC ,即AD ∥CE .∴∠ADF =∠ECF . ………………………………………………………………………………2分 在△ADF 和△ECF 中,∠ADF =∠ECF ,DF =CF ,∠AFD =∠EFC .∴△ADF ≌△ECF . ………………………………………………………………………………4分 (2)解:∵四边形ABCD 是矩形, ∴AD =BC =2,AB =CD =1,CD ⊥AD . 由(1)知,△ADF ≌△ECF . ∴AD =CE . ∵AD ∥CE ,∴四边形ACED 是平行四边形. ………………………………………………………………6分 ∴四边形ACED 的面积=AD ×DC =2. ………………………………………………………8分 20.(本题8分)(1)28,30; ………………………………………………………3分(2)图(2)中丙班合格人数为27,图略; ……………………………………………5分(3)42+35+27+40150=96﹪. ∴上学期期末数学成绩各班的平均合格率为96﹪. …………………………………………8分 21.(本题8分)解:列表如下(或画树状图正确)……………………………………………………5分 共有6种等可能的结果.…………………………………………………………………………………6分CABD EF∴ P (甲,乙)=26=13. …………………………………………………………………………………8分 22.(本题8分)解:如图,过A 作AF ⊥BC ,交点为F .…………………………………………………………………1分 ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60o . 在△ABF 中,sin ∠ABC =AFAB , ∵∠ABC =60o ,AB =2, ∴sin60o =AF 2,即32=AF2.∴AF =3.…………………………………………………………………………………………………4分 在△ADF 中,sin D =AFAD , ∵∠D =20o ,AF =3, ∴sin20o =AF 3,即3AD ≈0.34, ∴AD ≈5.1,…………………………………………………………………………………………………7分 由题知,∴AE =AC =2,∴DE =3.1. …………………………………………………………………………8分 23.(本题8分) 解:(1)……………………………………………………………………………………4分 (2)-10x 2+1300x -30000, 解之得:x 1=50,x 2=80. 答:玩具销售单价为50元或80元时,可获得10000元销售利润.……………………………………………………………………………………8分 24.(本题8分)(1)画图正确; ……………………………………………………………………………………4分 (提示:借助以AB 为直径画圆,圆上除A 、B 之外的点均可为C 点)(2)画图正确. ……………………………………………………………………………………8分(提示:作出△ABD 的外接圆,以圆内接四边形对角互补为依据,在优弧上取一点为C ) 25.(本题8分)(1)40,120; ……………………………………………………………………………………2分 (2)如图:DBAECF……………………………………………………………………………………4分 (3)解:OA 的函数关系式为y =40x ,BC 的函数关系式为y =120-120(x -2)=-120x +360; 根据题意,得:-120x +360+40x =120+50,解得:x =198.所以,慢车行驶198小时,快、慢两车相距的路程为50千米. …………………………………………8分 26.(本题9分) 解:(1)△DEF 是直角三角形理由 ∵四边形ABCD 为矩形,∴∠C =90°. 又∵AB =6cm ,BC =8cm ,根据勾股定理得∴BD =10.Q 点E 的运动速度为5cm/s ,点F 的运动速度为4cm/s ,运动时间为t (s), ∴BE =5t ,BF =4t . ∴BF BC =BEBD .又∵∠DBC 为公共角,∴△BEF ∽△BDC .∴∠ BFE =∠ C =90°.∴△DEF 是直角三角形. …………………………………………………………………………………3分 (2)254; …………………………………………………………………………………5分 (3)∵∠ DFE =90°,∴DE 为△DEF 的外接圆直径,点O 为圆心,①当⊙O 与AB 边相切于点G 时,连接GO 并延长交BC 于H 点, ∴GH ∥AD ∥BC . ∴BG AG =BM MD =DO EO =DH CH .又∵点O 是DE 的中点,∴点G 、M 、H 分别为AB 、DB 、CD 的中点,∴OH =12EC =12(8-5t )=4-52t ,OG =8-12(8-5t )=4+52t .ABFEOGM DCEB A H又∵OD 2=OH 2+DH 2=(4-52t )2+32,∴由OD 2=OG 2,得(4-52t )2+32=(4+52t )2,解得t =940. …………………………………………7分②当点E 运动到点C 时,⊙O 与AD 、BC 边相切,由5t =8,得t =85 .所以,当t =940或t =85时,△DEF 的外接圆⊙O 与矩形ABCD 的边相切. (9)分27.(本题11分)解:(1)∵函数y =-x +b 图像和y =-x 2+2x 图像“共一点”,∴-x +b =-x 2+2x ,且b 2-4ac =9-4b =0.∴b =94.………………………………………………………………………………………………………2分当b =94时,y =-x +94,-x +94=-x 2+2x .解得x =32,把x =32代入y =-x +94中,得y =34.∴P 坐标为(32,34). ……………………………………………………………………………………4分(2)a>-94,且a ≠0. ………………………………………………………………………………6分(3)设A 的横坐标为m ,则B 的横坐标为m +2,∵A 、B 在y =2x 图像上,∴A 、B 分别表示为(m ,2m ),(m +2,2m +2). ∵两点之间垂直距离是A 到y 轴距离的倒数,∴2m -2m +2=1m . 解得m =2, (4)经检验,m =2是原方程的根.………………………………………………………………………8分当m =2时,A 、B 分别为(2,1),(4,12),∵A 、B 在函数y =ax 2+bx 图像上,∴1=4a +2b ,12=16a +4b .解得a =-316,b =78.………………………………………………………10分∴y =-316x 2+78x ,其顶点坐标C 为(73,4948).………………………………………………………11分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.。