(完整word版)定积分的方法总结

(完整word版)定积分的方法总结
(完整word版)定积分的方法总结

定积分的方法总结

定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求

s i n b a

x d x ?

(b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的

方法作积分和.取h =

n

a

b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

1

1

sin lim sin()lim sin()n n

b

a

h h k k xdx a kh h h a kh →→===+=+∑∑?

其中,

1

1

1

sin()2sin()sin()22sin()2n

n

k k h a kh a kh h ==+=+∑∑=112121

[cos()cos()]222sin()2

n

k k k a h a h h =-++-+∑ 113352121[cos()cos()cos()cos()cos()cos()]

2222222sin()2k k a h a h a h a h a h a h h -+=+-+++-++??????++-+=)()21cos()21cos()

2sin(21b nh a h b h a h =+]+-+[

将此结果代入上式之中,有

.cos cos )2

cos()2cos()2/sin(2/lim

sin 0b a h

b h a h h xdx h b

a

-=-=→?

]++[

从上面的例题可见,按照定积分的定义计算定积分要进行复杂的计算,

在解题时不常用,但它也不失为一种计算定积分的方法.

评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.

变式:

求3321

lim )n n n

→∞+.

分析:将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题

目中被积函数难以想到,可采取如下方法:先对区间[0,1]

n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.

解:将区间[0,1]

n 等分,则每个小区间长为1i x n

?=,然后把2111

n n n =?的一个因子1

n

乘入和式中各项.于是将

所求极限

转化为求定积分.即 3321lim

)n n

n →∞+=31

lim )n n n n →∞+=3

4

=?.

二、微积分基本定理法 例2、计算

dx x ?

sin 1.

解:

dx x ?

sin 1?

-=π

2cos 2sin dx x x =??-+-πππ

2

20)2cos 2(sin )2sin 2(cos dx x

x dx x x

=20

2

2(sin cos )

2(cos sin )

2222

x x

x x

π

π

π

+--=)12(4-.

练习:计算:(1)

xdx e ln 1

?

.(2)

xdx x 3cos 0

?

π

解: (1)1

1

ln (ln )e e

xdx x x x dx =?-??

()(01)1e e =---=.

(2)

x xd xdx x 3sin 313cos 00

??

=ππ

??????-=?xdx x x 3sin 3sin 3100ππ

11(sin 3cos3)33x x x π

=+92-=.

评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数. 一般地:

v d u uv udv b

a

b

a b

a

??

-=)(

三、几何意义法

例3、求定积

分2

2)dx -?的值.

分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.

:2

2

22

12dx dx --=??,

2

2

dx -?

表示圆x 2+y 2=4在第一、

二象限的上半圆的面积. 因为2S π=半圆

,又在x 轴上方.所

以2

2dx -?=π.

评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.

四、性质法

例4、求下列定积分:

44

tan xdx π

π-?;⑵22s i n 1

x x

dx x π

π

-

+?.

分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.

解:由被积函数tan x 及22sin 1

x x

x +是奇函数,所以在对称区间的积分值均为零.

所以⑴ 44

tan xdx ππ-

?=0;⑵2

2sin 1x x

dx x ππ-+?=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,

()a

a

f x dx -?

=20

()a

f x dx ?;②当f (x )为奇函数时,

()a

a

f x dx -?

=0

练习:计算:(1)

6

sin x xdx π

π

-

?.(0)

(2)1

21

(x dx -?(8).

五、定积分换元法

定理:假设(1) 函数)(x f 在区间],[b a 上连续;(2) 函数)(t x ?=在区间],[βα上有连续且不变号的导数;(3) 当t 在],[βα变化时,)(t x ?=的值在],[b a 上变化,且b a ==)(,)(β?α?,则有:

[]dt t t f dx x f b

a

??

'=β

α

??)()()(. (1)

本定理证明从略.在应用时必须注意变换)(t x ?=应满足定理的条件,在

改变积分变量的同时相应改变积分限,然后对新变量积分. 例5、求

?

+30

1dx x

x

解:

令t =,则2

1(0)x t t =->,2dx tdt =,当0x =时,1t =;当3x =时,

2t =。所以

?

+30

1dx x

x =221

12t tdt t -?

=2

31

1

2(t t)3-=83。 练习: 计算:(1)

?

-a

dx x a 0

2

2

)0(>a .(2)?20

5sin cos π

xdx x .

解:(1)令t a x sin =,则tdt a dx cos =.当0=x 时,0=t ;当a x =时,2

π

=

t .故

?

-a

dx x a 0

2

2

dt t a t a ??=20cos cos π

dt t a

)2cos 1(2

20

2

+=

?

π

20

2

2sin 212

π

??????+=

t t a

42

a π=. 显然,这个定积分的值就是圆2

2

2

a y x =+在第一象限那部分的面积.

(2)解法一 令x t cos =,则x d x dt sin -=. 当0=x 时,1=t ;当2

π

=

x 时,0=t ,于是

6

1

61sin cos 01650120

5=-=-=??

t dt t xdx x π

解法二:也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变.即

x d x xdx x cos cos sin cos 20

5

20

5

?

?

-=π

π

61610cos 61206

=??? ?

?--=-=π

x .

作业:

1.求下列定积分: (1)

2

20

sin 2x dx π

?

;(2);(3)211(sin 2)21x dx x +-?

;(4)2-? 2.求下列定积分 (1)

xdx x sin c os 2π

3?

, (2)

dx x ?

-20

22,

(3)

51

?

。 答案:(1)

14 (2) 4π (3) 283

3.利用奇偶性计算下列定积分。 (1)

4

sin x

xdx π

π-

?,(2)

4

22

4cos d π

πθθ-?

(3)325

425sin 21

x x

dx x x -++?。 答案: 2 (1)0,(2)

3

2

π,(3)0,

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

专题13定积分与微积分基本定理知识点

专题13定积分与微积分基 本定理知识点 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

学习不定积分的方法总结

学习不定积分的方法总结 定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系,其它一点关系都没有!一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。下面是的关于学习不定积分的方法总结的相关资料,欢迎阅读! 一、不要过多关心为什么要学积分,尤其是手算求积分 不定积分的繁琐会令很多人望而生畏,累觉不爱后必然引出一个经典问题——我干嘛要爱它啊!离了它我照样活啊! 其实很多专业为什么要学高等数学是一个足够专门写一本书的争议话题,我个人认为最需要想清楚的还是以下几条: (1)可交换的概念,有些问题的学习顺序是不可交换的,比如一个人脑子里一旦有了钱,他就很难再静下心来学数学了——最多对付着教教数学基础课,嗯。所以不要总想着为什么不能一边学金融一边用到什么数学补什么。 (2)比起二十年前,眼下的社会并不妨碍偏才怪才的发展,如果你喜欢唱歌,大可以去参加各种选秀,其实大部分自以为唱歌很好的同学充其量也就是个企业年终晚会主唱的水平,不然这年代你可能早就脱颖而出了,参考tfboys。如果你只是个普通大学生,那么积分对你将来的发展大概率会有用的。 (3)除去个别生在“教育世家”的同学之外,要明白你现在能密切接触到的人里最懂教育学的是你的大学老师们,你不信我们去信网上的所谓心灵鸡汤,你自己说你4842。

(4)虽然时代发展了,计算机技术可以代替很多人类劳动,但是不定积分是个特例。你可以不去用手算十位数乘法,可以不去用手算求平方根,可以不去用手算sin2是多少,因为这些你都大概知道可以怎么算,只是算起来麻烦所以交给了计算机(sin2虽然上大学以前不会算,但是现在起码有taylor公式)。 但是不定积分不同,你问一百个普通数学老师,会有九十九个不清楚计算机到底是怎么实现的不定积分,注意是不定积分,定积分怎么做还是会的。所以你连它大概怎么算出来的都不清楚,就敢用它的结果吗?(我好像听见了学生说“敢”的声音……) 所以说,还是不要讨论为什么要学积分这个话题,为什么要学积分,因为考试考,少废话。少说多干,行胜于言,“我不相信教育会是完全快乐的。” 二、要清楚积分相关的教学和考试要求 (1)一定要清楚,不可积(这里指不定积分)函数类是比可积的“多”很多的,可积的没有初等函数表示的是比有初等函数表示的“多”很多的,有初等函数表示但是不容易算出来的是比容易算出来的多很多的,容易算出来的是比我们考试会考的多很多的。这里的多是个什么概念,近似的理解成就是无理数比有理数“多”的那种多。所以放心,把教材上所有题目都刷一遍也不存在“运动过量”的问题。 (2)充分重视因式分解在学习方法上的借鉴意义。因式分解和不定积分都是比较自然的思维方向的运算的逆运算,所以没学之前应该都觉得是很神奇的东西。想不明白怎么学积分,不妨回忆下初中是

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

不定积分解题方法及技巧总结

不定积分解题方法及技巧总 结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2)ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 ) ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法:

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

定积分知识点总结

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

不定积分的解题方法与技巧

不定积分的解题方法与技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一. 直接积分法(公式法) 利用不定积分的运算性质和基本积分公式直接求出不定积分 二. 第一类换元法 1.当遇到形如? ++c bx ax dx 2 的不定积分,可分为以下三种情况: (1)当0>?时,可将原式化为()()21x x x x --, 其中,21,x x 为c bx ax ++2的两个解,则原不定积分为: ()()()()()?? ? ?? ?------=--??? 221112211 x x x x d x x x x d x x x x x x dx ()C x x x x x x +---= 2 1 12ln 1 (2)当0=?时,可利用完全平方公式,化成() () ? --2 k x k x d 。然后根据基本积分 公式即可解决。 (3)当0

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

不定积分知识点总结

三一文库(https://www.360docs.net/doc/607499317.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

定积分知识点汇总(新、选)

定积分 一.定积分的几何意义 ① ()0f x >时,()b a f x dx S =? ()0f x <时, ()b a f x dx S =-? ()f x 有正有负时, 1(), b a f x dx S =?2(), c b f x dx S =-? 3()d c f x dx S =? 面积和123()()()b c d a b c S S S f x dx f x dx f x dx ++=-+? ?? [()()]b a f x g x dx S -=? 二.定积分基本性质 ①当a b =时,()0b a f x dx =? . ②()()b b a a kf x dx k f x dx =? ? ③1212[()()()]()()()b b b b n n a a a a f x f x f x dx f x dx f x dx f x dx ±±???±=±±÷??±? ??? ④ 12 1 ()()()()n b c c b a a c c f x dx f x dx f x dx f x dx =++???+? ??? ⑤若奇函数()y f x =在[,]a a -上连续不断,则()0a a f x dx -=? ⑥若偶函数()y f x =在[,]a a -上连续不断,则0()2()a a a f x dx f x dx -=? ? 123()()()().d b c d a a b c f x dx f x dx f x dx f x dx S S S =++=-+? ? ??

微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则 ()() ()()b b a a f x dx F x F b F a ==-? (牛顿—莱布尼兹公式) 1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为 2.用定积分表示抛物线2 23y x x =-+与直线3y x =+所围成图形的面积为 3.曲线2 1,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为 4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( ) 4 2 .(4)A x dx -? 4 20 .|(4)|B x dx -? 420 .|4|C x dx -? 24 2202 .(4)(4)D x dx x dx -+-?? 5.计算下列定积分 (1)3 23 9x dx --? (2)1 21 44x dx --?

不定积分解题技巧汇编

不定积分解题技巧探讨 数学与计算机科学学院 数学与应用数学(s ) 2011031103 作者:方守强 指导 老师:邓勇平 【摘要】在微分学中不定积分是数学分析的一个重要内容,我们经常用的解题方法有:直接积分法、换元积分法和分部积分法等。在我们接触过的有限的教材中,不定积分显得十分简明,但是利用基本积分公式及其性质,只能求出部分相对简单的积分,对于一些比较复杂的积分,则有一定难度。有时,我们在计算中会发现有的不定积分是无法用直接的方法来计算的,这就要求我们在平时的学习中,多进行归纳总结和概括推广。针对我们在学习中经常遇到的一些困难,本文将总结求不定积分的几种基本方法和技巧,列举一些典型例子,运用技巧解题。 【关键词】 不定积分;难度;典型;技巧 引言 《数学分析》是数学与应用数学专业的大学生必修的基础理论课程,其核心任务是训练逻辑思维、应用技巧、提高学生研究能力和分析问题解决问题的能力,为今后其他数学课程的学习提供可靠的理论基础和强有力的解决问题的工具。不定积分是积分学的基础,掌握的深浅会影响相关课程的学习和理解,对于学习其他知识也有着相当重要的意义。对不定积分求解方法进行探讨,不仅会使求解不定积分的方法易于掌握,而且有助于提高对不定积分概念的理解和学习,激发学生学习数学的兴趣。为此,在前人的基础上,本文对常规的不定积分求解方法进行了一些归纳总结及探讨。 一:不定积分的概念与性质 定义1 如果F (x )是区间I 上的可导函数,并且对任意的x ∈I ,有)()(x f x F ='dx 则称F (x )是f(x)在区间I 上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I 上连续,那么f(x)在区间I 上一定有原函数,即存在可导函数F (x ),使得)()(x f x F ='(x ∈I )。 定理2 设F (x )是f(x)在区间I 上的一个原函数,则 (1) F (x )+C 也是f(x)在区间I 上的原函数,其中C 是任意函数; (2) f(x)在I 上的任意两个原函数之间只相差一个常数。 定义2 设F (x )是f(x)在区间I 上的一个原函数,那么f(x)的全体原函数F (x )+C 称为f(x)在区间I 上的不定积分,记为 ()?dx x f ,即()()?+=C x F dx x f 。其中记号? 称为积 分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x 称为积分变量,C 称为积分常数。 性质1 设函数f(x)和g(x)存在原函数,则 ()()[]()()???±=±dx x g dx x f dx x g x f 性质2 设函数f(x)存在原函数,k 为非零常熟,则()()? ? =dx x f k dx x kf 。 附:常用积分公式

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法: