首次适应算法和最佳适应算法-C++语言版

首次适应算法和最佳适应算法-C++语言版
首次适应算法和最佳适应算法-C++语言版

#include

#include

using namespace std;

#define Free 0 //空闲状态

#define Busy 1 //已用状态

#define OK 1 //完成

#define ERROR 0 //出错

#define MAX_length 512 //最大内存空间为512KB typedef int Status;

int flag;

typedef struct freearea//定义一个空闲区说明表结构{

long size; //分区大小

long address; //分区地址

int state; //状态

}ElemType;

// 线性表的双向链表存储结构

typedef struct DuLNode

{

ElemType data;

struct DuLNode *prior; //前趋指针

struct DuLNode *next; //后继指针

}

DuLNode,*DuLinkList;

DuLinkList block_first; //头结点

DuLinkList block_last; //尾结点

Status alloc(int);//内存分配

Status free(int); //内存回收

Status First_fit(int);//首次适应算法

Status Best_fit(int); //最佳适应算法

void show();//查看分配

Status Initblock();//开创空间表

Status Initblock()//开创带头结点的内存空间链表

{

block_first=(DuLinkList)malloc(sizeof(DuLNode));

block_last=(DuLinkList)malloc(sizeof(DuLNode));

block_first->prior=NULL;

block_first->next=block_last;

block_last->prior=block_first;

block_last->next=NULL;

block_last->data.address=0;

block_last->data.size=MAX_length;

block_last->data.state=Free;

return OK;

}

//分配主存

Status alloc(int ch)

{

int request = 0;

cout<<"请输入需要分配的主存大小(单位:KB):";

cin>>request;

if(request<0 ||request==0)

{

cout<<"分配大小不合适,请重试!"<

return ERROR;

}

if(ch==2) //选择最佳适应算法

{

if(Best_fit(request)==OK) cout<<"分配成功!"<

else cout<<"内存不足,分配失败!"<

return OK;

}

else //默认首次适应算法

{

if(First_fit(request)==OK) cout<<"分配成功!"<

else cout<<"内存不足,分配失败!"<

return OK;

}

}

//首次适应算法

Status First_fit(int request)

{

//为申请作业开辟新空间且初始化

DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));

temp->data.size=request;

temp->data.state=Busy;

DuLNode *p=block_first->next;

while(p)

{

if(p->data.state==Free && p->data.size==request)

{//有大小恰好合适的空闲块

p->data.state=Busy;

return OK;

break;

}

if(p->data.state==Free && p->data.size>request)

{//有空闲块能满足需求且有剩余

temp->prior=p->prior;

temp->next=p;

temp->data.address=p->data.address;

p->prior->next=temp;

p->prior=temp;

p->data.address=temp->data.address+temp->data.size;

p->data.size-=request;

return OK;

break;

}

p=p->next;

}

return ERROR;

}

//最佳适应算法

Status Best_fit(int request)

{

int ch; //记录最小剩余空间

DuLinkList temp=(DuLinkList)malloc(sizeof(DuLNode));

temp->data.size=request;

temp->data.state=Busy;

DuLNode *p=block_first->next;

DuLNode *q=NULL; //记录最佳插入位置

while(p) //初始化最小空间和最佳位置

{

if(p->data.state==Free && (p->data.size>=request) )

{

if(q==NULL)

{

q=p;

ch=p->data.size-request;

}

else if(q->data.size > p->data.size)

{

q=p;

ch=p->data.size-request;

}

}

p=p->next;

}

if(q==NULL) return ERROR;//没有找到空闲块

else if(q->data.size==request)

{

q->data.state=Busy;

return OK;

}

else

{

temp->prior=q->prior;

temp->next=q;

temp->data.address=q->data.address;

q->prior->next=temp;

q->prior=temp;

q->data.address+=request;

q->data.size=ch;

return OK;

}

return OK;

}

//主存回收

Status free(int flag)

{

DuLNode *p=block_first;

for(int i= 0; i <= flag; i++)

if(p!=NULL)

p=p->next;

else

return ERROR;

p->data.state=Free;

if(p->prior!=block_first && p->prior->data.state==Free)//与前面的空闲块相连{

p->prior->data.size+=p->data.size;

p->prior->next=p->next;

p->next->prior=p->prior;

p=p->prior;

}

if(p->next!=block_last && p->next->data.state==Free)//与后面的空闲块相连{

p->data.size+=p->next->data.size;

p->next->next->prior=p;

p->next=p->next->next;

}

if(p->next==block_last && p->next->data.state==Free)//与最后的空闲块相连{

p->data.size+=p->next->data.size;

p->next=NULL;

}

return OK;

}

//显示主存分配情况

void show()

{

int flag = 0;

cout<<"\n主存分配情况:\n";

cout<<"++++++++++++++++++++++++++++++++++++++++++++++\n\n";

DuLNode *p=block_first->next;

cout<<"分区号\t起始地址\t分区大小\t状态\n\n";

while(p)

{

cout<<" "<

cout<<" "<data.address<<"\t\t";

cout<<" "<data.size<<"KB\t\t";

if(p->data.state==Free) cout<<"空闲\n\n";

else cout<<"已分配\n\n";

p=p->next;

}

cout<<"++++++++++++++++++++++++++++++++++++++++++++++\n\n"; }

//主函数

int main()

{

int ch;//算法选择标记

cout<<"请输入所使用的内存分配算法:\n";

cout<<"(1)首次适应算法\n(2)最佳适应算法\n";

cin>>ch;

while(ch<1||ch>2)

{

cout<<"输入错误,请重新输入所使用的内存分配算法:\n";

cin>>ch;

}

Initblock(); //开创空间表

int choice; //操作选择标记

while(1)

{

show();

cout<<"请输入您的操作:";

cout<<"\n1: 申请内存\n2: 释放内存\n0: 退出\n";

cin>>choice;

if(choice==1) alloc(ch); // 申请内存

else if(choice==2) // 释放回收

{

int flag;

cout<<"请输入您要释放的分区号:";

cin>>flag;

free(flag);

}

else if(choice==0) break; //退出

else //输入操作有误

{

cout<<"输入有误,请重试!"<

continue;

}

}

}

顺序查找法适用于存储结构为顺序或链接存储的线行表

一判断题 1.顺序查找法适用于存储结构为顺序或链接存储的线行表。 2.一个广义表可以为其他广义表所共享。 3.快速排序是选择排序的算法。 4.完全二叉树的某结点若无左子树,则它必是叶子结点。 5.最小代价生成树是唯一的。 6.哈希表的结点中只包含数据元素自身的信息,不包含任何指针。 7.存放在磁盘,磁带上的文件,即可意识顺序文件,也可以是索引文件。8.折半查找法的查找速度一定比顺序查找法快。 二选择题 1.将两个各有n个元素的有序表归并成一个有序表,其最少的比较次数是()。 A. n B. 2n-1 C. 2n D. n-1 2.在文件"局部有序"或文件长度较小的情况下,最佳内部排序的方法是()。 A. 直接插入排序 B.气泡排序 C. 简单选择排序 D. 快速排序 3.高度为K的二叉树最的结点数为()。 A. 2 4.一个栈的输入序列是12345,则占的不可能的输出序列是() A.54321 B. 45321 C.43512 D.12345 5.ISAM文件和V ASM文件属于() A索引非顺序文件 B. 索引顺序文件 C. 顺序文件 D. 散列文件 6. 任何一棵二叉树的叶子结点在先序,中序和后序遍历序列中的相对次序() A. 不发生变化 B. 发生变化 C. 不能确定 D. 以上都不对 7.已知某二叉树的后序遍历序列是dabec, 中序遍历序列是debac , 它的前序遍历是()。 A. acbed B. decab C. deabc D.cedba 三.填空题 1.将下图二叉树按中序线索化,结点的右指针指向(),Y的左指针指向() B D C X E Y 2.一棵树T中,包括一个度为1的结点,两个度为2的结点,三个度为3的结点,四各度为4的结点和若干叶子结点,则T的叶结点数为()

C语言几种常见的排序方法

C语言几种常见的排序方法 2009-04-2219:55 插入排序是这样实现的: 首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。 从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。 重复2号步骤,直至原数列为空。 插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。 冒泡排序 冒泡排序是这样实现的: 首先将所有待排序的数字放入工作列表中。 从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。 重复2号步骤,直至再也不能交换。 冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。 选择排序 选择排序是这样实现的: 设数组内存放了n个待排数字,数组下标从1开始,到n结束。 i=1 从数组的第i个元素开始到第n个元素,寻找最小的元素。 将上一步找到的最小元素和第i位元素交换。 如果i=n-1算法结束,否则回到第3步 选择排序的平均时间复杂度也是O(n²)的。 快速排序 现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。 堆排序 堆排序与前面的算法都不同,它是这样的: 首先新建一个空列表,作用与插入排序中的"有序列表"相同。 找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。 重复2号步骤,直至原数列为空。 堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。

实现顺序表各种基本运算的算法

实现顺序表各种基本运算的算法 要求:编写一个程序(algo2_1.cpp)实现顺序表的各种基本操作,并在此基础上设计一个主程序(exp2_1.cpp)完成如下功能: (1)初始化顺序表L (2)依次采用尾插法插入a,b,c,d,e元素 (3)输出顺序表L (4)输出顺序表L的长度 (5)判断顺序表L是否为空 (6)输出顺序表L的第3个元素 (7)输出元素a的位置 (8)在第4个元素位置上插入f元素 (9)输出顺序表L (10)删除L的第3个元素 (11)输出顺序表L (12)释放顺序表L /*文件名:exp2-1.cpp*/ #include #include #define MaxSize 50 typedef char ElemType; typedef struct { ElemType elem[MaxSize]; int length; } SqList; extern void InitList(SqList *&L); extern void DestroyList(SqList *L); extern int ListEmpty(SqList *L); extern int ListLength(SqList *L); extern void DispList(SqList *L); extern int GetElem(SqList *L,int i,ElemType &e); extern int LocateElem(SqList *L, ElemType e); extern int ListInsert(SqList *&L,int i,ElemType e); extern int ListDelete(SqList *&L,int i,ElemType &e); void main() { SqList *L; ElemType e; printf("(1)初始化顺序表L\n"); InitList(L); printf("(2)依次采用尾插法插入a,b,c,d,e元素\n"); ListInsert(L,1,'a'); ListInsert(L,2,'b');

C语言9种常用排序法

C语言9种常用排序法 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 5.希尔排序 6.归并排序 7.堆排序 8.带哨兵的直接插入排序 9.基数排序 例子:乱序输入n个数,输出从小到大排序后的结果1.冒泡排序 #include int main() { int i, j, n, a[100], temp; while(scanf("%d",&n)!=EOF) { for(i=0;i

for(i=0;ia[j+1]) //比较a[j]与a[j+1],使a[j+1]大于a[j] { temp = a[j+1]; a[j+1] = a[j]; a[j] = temp; } } } for(i=0;i int main() {

int i, j, n, a[100], t, temp; while(scanf("%d",&n)!=EOF) { for(i=0;ia[j]) t = j; } temp = a[i]; a[i] = a[t]; a[t] = temp; } for(i=0;i

实验报告一顺序表的操作

《数据结构》实验报告一 系别:班级: 学号:姓名: 日期:指导教师: 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 从键盘输入10个整数,产生顺序表,并输入结点值。 从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找不到,则显示“找不到”。 从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插入在对应位置上,输出顺序表所有结点值,观察输出结果。 从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。二、程序设计的基本思想,原理和算法描述: (包括程序的结构,数据结构,输入/输出设计,符号名说明等) 三、源程序及注释:

#include <> /*顺序表的定义:*/ #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; /*子函数的声明*/ void CreateList(SeqList * L,int n); /*创建顺序表函数*/ int LocateList(SeqList L,DataType x); /*查找顺序表*/ void InsertList(SeqList * L,DataType x,int i); /*在顺序表中插入结点x*/ void DeleteList(SeqList * L,int i);/*在顺序表中删除第i个结点*/ void PrintList(SeqList L,int n); /*打印顺序表中前n个结点*/ void main() { SeqList L; int n=10,x,i; /*欲建立的顺序表长度*/ =0;

编程基础之顺序查找

01:查找特定的值 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个序列(下标从1开始)中查找一个给定的值,输出第一次出现的位置。 输入 第一行包含一个正整数n,表示序列中元素个数。1 <= n <= 10000。 第二行包含n个整数,依次给出序列的每个元素,相邻两个整数之间用单个空格隔开。元素的绝对值不超过10000。 第三行包含一个整数x,为需要查找的特定值。x的绝对值不超过10000。 输出 若序列中存在x,输出x第一次出现的下标;否则输出-1。 5 2 3 6 7 3 3 2

02:输出最高分数的学生姓名 查看 描述 输入学生的人数,然后再输入每位学生的分数和姓名,求获得最高分数的学生的姓名。 输入 第一行输入一个正整数N(N <= 100),表示学生人数。接着输入N行,每行格式如下: 分数姓名 分数是一个非负整数,且小于等于100; 姓名为一个连续的字符串,中间没有空格,长度不超过20。 数据保证最高分只有一位同学。 输出 获得最高分数同学的姓名。 5 87 lilei 99 hanmeimei 97 lily 96 lucy 77 jim hanmeimei 来源 习题(13-1)

03:不高兴的津津 查看 描述 津津上初中了。妈妈认为津津应该更加用功学习,所以津津除了上学之外,还要参加妈妈为她报名的各科复习班。另外每周妈妈还会送她去学习朗诵、舞蹈和钢琴。但是津津如果一天上课超过八个小时就会不高兴,而且上得越久就会越不高兴。假设津津不会因为其它事不高兴,并且她的不高兴不会持续到第二天。 请你帮忙检查一下津津下周的日程安排,看看下周她会不会不高兴;如果会的话,哪天最不高兴。 输入 包括七行数据,分别表示周一到周日的日程安排。每行包括两个小于10的非负整数,用空格隔开,分别表示津津在学校上课的时间和妈妈安排她上课的时间。 输出 包括一行,这一行只包含一个数字。如果不会不高兴则输出0,如果会则输出最不高兴的是周几(用1, 2, 3, 4, 5, 6, 7分别表示周一,周二,周三,周四,周五,周六,周日)。如果有两天或两天以上不高兴的程度相当,则输出时间最靠前的一天。 5 3 6 2 7 2 5 3 5 4 0 4 0 6 3

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

数据结构实现顺序表的各种基本运算(20210215233821)

实现顺序表的各种基本运算 一、实验目的 了解顺序表的结构特点及有关概念,掌握顺序表的各种基本操作算法思想及其实现。 二、实验内容 编写一个程序,实现顺序表的各种基本运算: 1、初始化顺序表; 2 、顺序表的插入; 3、顺序表的输出; 4 、求顺序表的长度 5 、判断顺序表是否为空; 6 、输出顺序表的第i位置的个元素; 7 、在顺序表中查找一个给定元素在表中的位置; 8、顺序表的删除; 9 、释放顺序表 三、算法思想与算法描述简图

主函数main

四、实验步骤与算法实现 #in clude #in clude #defi ne MaxSize 50 typedef char ElemType; typedef struct {ElemType data[MaxSize]; in t le ngth; void In itList(SqList*&L)〃 初始化顺序表 L {L=(SqList*)malloc(sizeof(SqList)); L->le ngth=0; for(i=0;ile ngth;i++) prin tf("%c ",L->data[i]); } void DestroyList(SqList*&L)〃 {free(L); } int ListEmpty(SqList*L)〃 {retur n( L->le ngth==O); } int Listle ngth(SqList*L)〃 {return(L->le ngth); } void DispList(SqList*L)〃 {int i; 释放顺序表 L

顺序查找

《数据结构》实验 题目:顺序查找班级:08计科 学号:10号姓名: #include #define MAX_SIZE 100 typedef struct{ int key; }element; element list[MAX_SIZE]; int seqsearch(element list[],int searchnum,int num); int main() { int i,num,searchnum,k; printf("请输入元素的个数:"); scanf("%d",&num); printf("请输入元素:\n"); for(i=0;i

{ int j; list[num].key=searchnum; for(j=0;list[j].key!=searchnum;j++) ; return j #define MAX_SIZE 100 #define COMPARE(a,b) (a)>(b)?1:(a)==(b)?0:-1 typedef struct{ int key; }element; element list[MAX_SIZE]; int binsearch(element list[],int searchnum,int num); int main() { int i,num,searchnum,k; printf("请输入元素的个数:"); scanf("%d",&num); printf("请输入元素:\n"); for(i=0;i

数据结构经典算法 C语言版

//插入排序法 void InsertSort() { int s[100]; int n,m,j,i=0,temp1,temp2; printf("请输入待排序的元素个数:"); scanf("%d",&n); printf("请输入原序列:"); for (i=0; is[n-1]); s[n]=m; for (i=0; im) { temp1=s[i]; s[i]=m; for (j=i+1; j

//堆排序 static a[8] = {0,25,4,36,1,60,10,58,}; int count=1; void adjust(int i,int n) { int j,k,r,done=0; k = r = a[i]; j = 2*i; while((j<=n)&&(done==0)) { if(j=a[j]) done = 1; else { a[j/2] = a[j]; j = 2* j; } } a[j/2] = r; } void heap(int n) { int i,j,t; for(i =n/2;i>0;i--) adjust(i,n); printf("\n初始化成堆===> "); for(i = 1;i < 8;i++) printf("%5d",a[i]); for(i = n-1;i>0;i--) { t = a[i+1]; a[i+1] = a[1]; a[1] = t; adjust(1,i); printf("\n第%2d步操作结果===>",count++); for(j = 1;j<8;j++) printf("%5d",a[j]); } }

顺序查找

顺序查找 #include #define MAXL 10 typedef int KeyType; typedef struct { KeyType key; }NodeType; typedef NodeType SeqList[MAXL]; int SeqSearch(SeqList R,int n,KeyType k) { int i=0; while(i=n) return -1; else { printf("%d",R[i].key); return i; } } void main(){ SeqList R; int n=10; KeyType k; int a[10],i; printf("输入数字:\n"); for(i=0;i

#include /* INT_MAX等*/ #include /* EOF(=^Z或F6),NULL */ #define OK 1 #define ERROR 0 #define N 5 /* 数据元素个数*/ typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等*/ typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */ typedef int KeyType; /* 设关键字域为整型*/ typedef struct /* 数据元素类型(以教科书图9.1高考成绩为例) */ { long number; /* 准考证号*/ char name[9]; /* 姓名(4个汉字加1个串结束标志) */ int politics; /* 政治*/ int Chinese; /* 语文*/ int English; /* 英语*/ int math; /* 数学*/ int physics; /* 物理*/ int chemistry; /* 化学*/ int biology; /* 生物*/ KeyType key; /* 关键字类型应为KeyType,域名应为key,与bo9-1.c中一致*/ } ElemType; ElemType r[N]={{179324,"何芳芳",85,89,98,100,93,80,47}, {179325,"陈红",85,86,88,100,92,90,45}, {179326,"陆华",78,75,90,80,95,88,37}, {179327,"张平",82,80,78,98,84,96,40}, {179328,"赵小怡",76,85,94,57,77,69,44}}; /* 全局变量*/ #define total key /* 定义总分(total)为关键字*/ #define EQ(a,b) ((a)==(b)) #define LT(a,b) ((a)<(b)) #define LQ(a,b) ((a)<=(b)) typedef struct { ElemType *elem; /* 数据元素存储空间基址,建表时按实际长度分配,0号单元留空*/ int length; /* 表长度*/ }SSTable; Status Creat_Seq(SSTable *ST,int n) { /* 操作结果: 构造一个含n个数据元素的静态顺序查找表ST(数据来自全局数组r) */ int i; (*ST).elem=(ElemType *)calloc(n+1,sizeof(ElemType)); /* 动态生成n个数据元素空间(0号单元不用) */ if(!(*ST).elem) return ERROR; for(i=1;i<=n;i++) *((*ST).elem+i)=r[i-1]; /* 将全局数组r的值依次赋给ST */

基于C语言的多种排序方法的实现

基于C语言地多种排序方法地实现 1 引言 1.1 课题背景 排序问题源远流长,一直是数学地重要组成部分.随着各种信息地快速更新,排序问题也走进了其他领域以及我们地日常生活.如何高效地排序一直困扰着我们. 1.2 课程设计目地 排序是数学地重要组成部分,工作量大是其存在地问题.如何高效地排序?本程序就是解决这个问题而设计.程序中,把数列储存在数组中,采用插入排序等十种排序方法对数组元素进行排序,高效地解决了排序问题.本软件开发地平台为最新地微软公司出版地市面最新系统Windows 2000,而且可以作为自身地运行平台非常广泛,包括 Windows 98/2000/XP/Vista等等. 1.3课程设计内容 本程序把对数列地排序转化为对数组元素地排序,用户可以根据自己地实际问题选择系统提供地七种排序方法地任意一种进行排序.程序通过自身地判断以及处理实现排序.程序最后输出每趟排序及初始排序结果. 2 系统分析与设计方案 2.1 系统分析 设计一个排序信息管理系统,使之能够操作实现以下功能: 1) 显示需要输入地排序长度及其各个关键字 2) 初始化输入地排序序列 3) 显示可供选择地操作菜单

4) 显示输出操作后地移动次数和比较次数 5) 显示操作后地新序列 5) 可实现循环继续操 2.2 设计思路 通过定义C语言顺序表来存储排序元素信息,构造相关函数,对输入地元素进行相应地处理. [2] 2.3 设计方案 设计方案如图2.1所示 图2.1 设计方案 具体流程见图2.2

图 2.2 程序流程图

3功能设计 3.1 SqList顺序表 其中包括顺序表长度,以及顺序表.源代码如下:[1] typedef struct { KeyType key。 //关键字项 InfoType otherinfo。 //其他数据项 }RedType。 typedef struct { RedType r[MaxSize+1]。 //r[0]作为监视哨 int length。 //顺序表长度 }SqList。 3.2 直接插入排序 直接插入排序是将一个记录插入到已排好序地有序表中,从而得到一个新地、记录数增1地有序表 图3.1 直接插入排序示意图 将第i个记录地关键字r[i].key顺序地与前面记录地关键字r[i-1].key,r[i-2].key,……,r[1].key进行比较,把所有关键字大于r[i].key地记录依次后移一位,直到关键字小于或者等于r[i].key地记录

各种查找算法的性能比较测试(顺序查找、二分查找)

算法设计与分析各种查找算法的性能测试

目录 摘要 (3) 第一章:简介(Introduction) (4) 1.1 算法背景 (4) 第二章:算法定义(Algorithm Specification) (4) 2.1 数据结构 (4) 2.2顺序查找法的伪代码 (5) 2.3 二分查找(递归)法的伪代码 (5) 2.4 二分查找(非递归)法的伪代码 (6) 第三章:测试结果(Testing Results) (8) 3.1 测试案例表 (8) 3.2 散点图 (9) 第四章:分析和讨论 (11) 4.1 顺序查找 (11) 4.1.1 基本原理 (11) 4.2.2 时间复杂度分析 (11) 4.2.3优缺点 (11) 4.2.4该进的方法 (12) 4.2 二分查找(递归与非递归) (12) 4.2.1 基本原理 (12) 4.2.2 时间复杂度分析 (13) 4.2.3优缺点 (13) 4.2.4 改进的方法 (13) 附录:源代码(基于C语言的) (15) 声明 ................................................................................................................ 错误!未定义书签。

摘要 在计算机许多应用领域中,查找操作都是十分重要的研究技术。查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。 我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。比较的指标为关键字的查找次数。经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。 关键字:顺序查找、二分查找(递归与非递归)

C语言常用排序算法

/* ===================================================================== ======== 相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义): 1、稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就 说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为 a1,a2,a4,a3,a5, 则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4, a2,a3,a5就不是稳定的了。 2、内排序和外排序 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 3、算法的时间复杂度和空间复杂度 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 ===================================================================== =========== */ /* ================================================ 功能:选择排序 输入:数组名称(也就是数组首地址)、数组中元素个数 ================================================ */ /* ==================================================== 算法思想简单描述:

快速排序法(C语言)

#include #include #include #include #define randx(x) (rand()%x) typedef int KeyType; typedef int DataType; typedef struct { KeyType key;/*排序码字段*/ DataType info; /*记录的其它字段*/ }RecordNode; typedef struct { int n; /*文件中的记录个数,可以视为常量*/ RecordNode *record; }SortObject; void creatsort(SortObject * pvector, int &l, int &r)//新建二叉排序树{ int i; int k; printf("您即将要创建一个序列\n");

printf("\n请输入该序列元素的个数\n"); scanf("%d", &pvector->n); pvector->record = (RecordNode*)malloc((sizeof(RecordNode))*(pvector->n)); printf("\n你要以什么方式创建序列?\n方式1:自动创建请输入1,方式2:手动创建请输入0\n"); scanf("%d", &k); if (k) { srand((int)time(0)); for (i = 0; i < pvector->n; i++) { if(pvector->n<100) pvector->record[i].key = randx(100); else if((pvector->n<1000)) pvector->record[i].key = randx(1000); else pvector->record[i].key = randx(pvector->n); } } else { printf("\n请输入%d个大小不一样的整数\n", pvector->n);

算法与数据结构的顺序查找

#include"stdio.h" #include"stdlib.h" #include"string.h" #define MAX 31 typedef struct {int*k; int*elem; char*aa; int length; }SSTable; int lw_Search(SSTable ST,int key) { int i; ST.elem[0]=key; for(i=ST.length;ST.elem[i]!=ST.elem[0];--i); return i; } int lw_Search2(SSTable ST,int n,int key) { int low=1;int high=ST.length;int mid,a=0; while(low<=high) { mid=(low+high)/2; printf("第%d次查找:在[%d,%d]中找到元素 ST[%d]: %d\n",++a,low,high,mid,ST.k[mid]); if(ST.k[mid]==key) return mid; else if(ST.k[mid]>key) high=mid-1; else low=mid+1; } return 0; } int lw_bubble(SSTable ST,int n) {int i,j,temp;int*a; for(i=1;iST.k[j]) {

temp=ST.k[i]; ST.k[i]=ST.k[j]; ST.k[j]=temp; } } int lw_prit(SSTable ST,int n) { int i;int*a; for(i=1;ikey) high=mid-1; else low=mid+1; } return 0; } char lw_bubble2(SSTable ST,int n) {int i,j;char temp; for(i=1;i

C语言常用排序算法

1、稳定排序和非稳定排序 简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。 比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。 2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。 3、算法的时间复杂度和空间复杂度 所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。 ================================================ 功能:选择排序 输入:数组名称(也就是数组首地址)、数组中元素个数 ==================================================== 算法思想简单描述: 在要排序的一组数中,选出最小的一个数与第一个位置的数交换; 然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环 到倒数第二个数和最后一个数比较为止。 选择排序是不稳定的。算法复杂度O(n2)--[n的平方] ===================================================== void select_sort(int*x,int n) { int i,j,min,t; for(i=0;i

输出在顺序表{3,6,2,10,1,8,5,7,4,9},中采用顺序方法查找关键字5的过程。

/* 设计一个程序exp9-1.cpp, 输出在顺序表{3,6,2,10,1,8,5,7,4,9} 中采用顺序方法查找关键字5的过程。 */ #include #define MAXL 100 //定义表中最多记录个数 typedef int KeyType; typedef char InfoType[10]; typedef struct { KeyType key; //KeyType为关键字的数据类型InfoType data; //其他数据 } NodeType; typedef NodeType SeqList[MAXL]; //顺序表类型 int SeqSearch(SeqList R,int n,KeyType k) //顺序查找算法 { int i=0; while (i=n) return -1; else { printf("%d",R[i].key); return i; } } void main() { SeqList R; int n=10,i; KeyType k=5; int a[]={3,6,2,10,1,8,5,7,4,9}; for (i=0;i

printf("\n"); printf("查找%d所比较的关键字:\n\t",k); if ((i=SeqSearch(R,n,k))!=-1) printf("\n元素%d的位置是%d\n",k,i); else printf("\n元素%d不在表中\n",k); printf("\n"); }

相关文档
最新文档