随机事件的关系与运算

合集下载

随机事件的关系与运算

随机事件的关系与运算
(2)化简左式至右式
A B C AB C A BC A B C AB C A BC A B C
A B C.
目 录
前一页
后一页
退 出
后一页
退 出
5) 差事件
A B A AB AB
A B
A
S B S
A B
A A B
A B
发生当且仅当 A 发生 B 不发生.
目 录
前一页
后一页
退 出
第一章 概率论的基本概念
§1 随机事件的概率
6) 互不相容(互斥)
7) 对立事件 (逆事件)
A B
A B A B S
A
A
B
S
S
BA
请注意互不相容与对立事件的区别!
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件的概率
例如,在S4 中
事件 A={t|t1000} 表示 “产品是次品” 事件 B={t|t 1000} 表示 “产品是合格品” 事件 C={t|t1500} 表示“产品是一级品” 则 A与B是互为对立事件;
A B A B,
可推广 Ak Ak ,
k k
AB A B
A A .
k k k k
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件的概率
例1:设 A, B, C 为三个随机事件,用A, B, C 的运 算关系表示下列各事件. (1)A 发生.
A A A
A B B A, A B B A
A B C A B A C De Morgan(德摩根)定律:

第02讲 随机事件的关系与运算

第02讲 随机事件的关系与运算

概率论与数理统计主讲:四川大学四川大学第2讲随机事件的关系与运算1第2讲随机事件的关系与运算四川大学四川大学第2讲随机事件的关系与运算3在上一讲第1 讲随机试验样本空间随机事件我们介绍了样本空间、样本点和事件的概念这一讲我们来讲事件的运算四川大学第2讲随机事件的关系与运算4§1.2样本空间随机事件四川大学第2讲随机事件的关系与运算5(三)随机事件的关系与运算四川大学第2讲随机事件的关系与运算6回忆事件的概念随机试验E 的样本空间S的子集A 称为E 的随机事件,简称事件。

当A 中某一个样本点出现时,就说事件A 发生了。

由一个样本点e 组成的单点集{e} 称为基本事件。

一般的事件是由基本事件复合而成的,而基本事件是不能再分解的事件。

四川大学第2讲随机事件的关系与运算7一个事件A 是样本空间S的一个子集,因此事件之间的关系以及事件的运算可以用集合之间的关系和集合运算来处理。

设试验E的样本空间为S,而A, B,(k=1, 2,…)是S的子集。

Ak四川大学第2讲随机事件的关系与运算8事件间的关系四川大学第2讲随机事件的关系与运算10第2讲随机事件的关系与运算12四川大学2. 事件的相等如果事件A 包含事件B ( ),事件B 也包含事件A ( ) ,即A 与B 有相同的样本点,则称事件A 与事件B 相等,记作A B=即A B =⇔and A B B A⊂⊂A B ⊃A B ⊂第2讲随机事件的关系与运算13四川大学例如,记A =“考试及格”,B =“考试成绩为90分”记C =“至少有50人排队”,D =“至少有30人排队”抛两颗骰子,两颗骰子出现的点数分别记为x 和y .记E =“x +y 为奇数”,F =“两次的骰子点数奇偶性不同”{|60100}A x x =≤≤C D ⇒⊂E F⇒=A B ⇒⊃{90}B ={50,51,...}C ={30,31,...}D =事件的运算四川大学第2讲随机事件的关系与运算14第2讲随机事件的关系与运算16四川大学1kk A ∞=∑1k k A ∞= 12...n A A A n 个事件A 1, A 2, …, A n 中至少有一个发生的事件称为这些事件的和事件,1nkk A == 12...n A A A +++1nkk A ==∑或可列个事件A 1, A 2, …A n , …中至少有一个发生的事件称为这些事件的和事件,或事件的并(和)可以推广到有限或可列个事件。

1-1随机事件的关系与运算

1-1随机事件的关系与运算

E6: 将一枚硬币连抛三次,考虑正反面出现的情况; 将一枚硬币连抛三次,考虑正反面出现的情况;
S6 : {HHH, HHT, HTH, THH,HTT,THT,TTH, TTT } , , ,
E7: 将一枚硬币连抛三次,考虑正面出现的次数 将一枚硬币连抛三次,考虑正面出现的次数;
S7 : { 0, 1, 2, 3 }
B= A
请注意互不相容与对立事件的区别! 请注意互不相容与对立事件的区别!
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件Biblioteka 概率例如, 例如,在S4 中 产品是次品” 事件 A={t|t<1000} 表示 “产品是次品” < 产品是合格品” 事件 B={t|t ≥ 1000} 表示 “产品是合格品” 事件 C={t|t≥1500} 表示“产品是一级品” ≥ 表示“产品是一级品” 则 A与 B 是互为对立事件; 与 是互为对立事件; A与 C 是互不相容事件; 与 是互不相容事件;
经济、科技、教育、 概率论与数理统计 在经济、科技、教育、管理和 军事等方面已得到广泛应用。 军事等方面已得到广泛应用。 在生活当中,经常会接触到一 现象: 在生活当中,经常会接触到一些现象: 确定性现象:在一定条件下必然发生的现象。 确定性现象:在一定条件下必然发生的现象。 随机现象:在个别实验中其结果呈现出不确定性 随机现象:在个别实验中其结果呈现出不确定性; 不确定性; 在大量重复实验中其结果又具有统计规律性的现象。 在大量重复实验中其结果又具有统计规律性的现象。 统计规律性的现象 概率论与数理统计是研究和揭示随机现象统计规律 概率论与数理统计是研究和揭示随机现象统计规律 性的一门学科,是重要的一个数学分支。 性的一门学科,是重要的一个数学分支。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

概率论-1-2随机事件间的关系及运算

概率论-1-2随机事件间的关系及运算

若事件 A 的出现必然导致事件 B 不出现, B 出现也必然导致 A不出现,则称事件 A与B互不相
容, 即
A B AB .
实例 抛掷一枚硬币, “出现正面” 与 “出现反面” 是互不相容的两个事件.
实例 抛掷一枚骰子, 观察出现的点数 . “骰子出现1点”互斥 “骰子出现2点”
图示 A 与 B 互斥.
四、小结
1. 随机试验、样本空间与随机事件的关系
随机试验
样本空间 子集 随机事件
基本事件,复合事件,必然事件, 不可能事件都是随机事件
学习了事件的运算及运算律,运算的 目的是什么?
用简单事件表示复合事件(复合事件分解 成简单事件)
(*)2. 概率论与集合
S 样本空间,必然事件
互为对立事件
二、随机事件间的关系及运算
事件是集合,就可以用集合间的关系和运 算来处理,我们结合 p4 图来学习:
设试验 E 的样本空间为S, 而 A, B, Ak (k 1,2,)是 S 的子集.
二、随机事件间的关系及运算(续)
1. 包含关系 子事件 A B.
实例 “长度不合格” 必然导致 “产品不合格” 所以B=“产品不合格”包含A=“长度不合格”. 图示 B 包含 A.
(2) 三个事件都出现;
(3)三个事件至少有一个出现;
(4) 不多于一个事件出现; (5) A, B 至少有一个出现, C 不出现; (6) A, B, C 中恰好有两个出现.
解(1) ABC; (2) ABC; (3) A B C;
(4) ABC ABC ABC ABC;
(5) ( A B) C; (6) ABC ABC ABC.
复合事件—由若干个基本事件组合而成的事件.

新教材人教版高中数学必修第二册 10-1-2 事件的关系和运算 教学课件

新教材人教版高中数学必修第二册 10-1-2 事件的关系和运算 教学课件
第十八页,共二十三页。
知识点二 事件的运算 [例 2]在掷骰子的试验中,可以定义许多事件.例如,事件 C1={出 现 1 点},事件 C2={出现 2 点},事件 C3={出现 3 点},事件 C4={出现 4 点},事件 C5={出现 5 点},事件 C6={出现 6 点},事件 D1={出现的 点数不大于 1},事件 D2={出现的点数大于 3},事件 D3={出现的点数 小于 5},事件 E={出现的点数小于 7},事件 F={出现的点数为偶数}, 事件 G={出现的点数为奇数},请根据上述定义的事件,回答下列问题: (1)请举出符合包含关系、相等关系的事件; (2)利用和事件的定义,判断上述哪些事件是和事件.
(2)因为事件 D2={出现的点数大于 3}={出现 4 点或出现 5 点或出现 6 点},所以 D2=C4∪C5∪C6(或 D2=C4+C5+C6).
同理可得,D3=C1∪C2∪C3∪C4,E=C1∪C2∪C3∪C4∪C5∪C6,F =C2∪C4∪C6,G=C1∪C3∪C5.
第二十页,共二十三页。
[知识小结二]
事件运算应注意的 2 个问题 (1)进行事件的运算时,一是要紧扣运算的定义,二是要全 面考查同一条件下的试验可能出现的全部结果,必要时可利用 Venn 图或列出全部的试验结果进行分析. (2)在一些比较简单的题目中,需要判断事件之间的关系 时,可以根据常识来判断.但如果遇到比较复杂的题目,就得 严格按照事件之间关系的定义来推理.
第四页,共二十三页。
3.一个人打靶时连续射击两次,事件“至少有一次中靶”的互
斥事件是
()
A.至多有一次中靶
B.两次都中靶
C.只有一次中靶
D.两次都不中靶
解析:事件“至少有一次中靶”包括“中靶一次”和“中 靶两次”两种情况.由互斥事件的定义,可知“两次都不 中靶”与之互斥.

1随机事件与事件间的关系与运算介绍

1随机事件与事件间的关系与运算介绍


事件间的运算法则
1)幂等律: A A A,
AA A
2)交换律: A B B A, A B B A 3)结合律: 4)分配律:
A B C A B C A B C A B C
( A B) C A C B C; C ( A B) C A C B
2
A3
( 2 ) A1 A
2
A3 A 1 A2 A3 A 1 A2 A3
(3 ) A 1 A 2 A3
(4) A1 A2 A3
(5) (3) (2)
例2:已知A表示事件“全班学生英语成绩都及格”,则
A 表示什么含义?
§1
随机事件的概率
练习:设 A, B, C 为三个随机事件,用A, B, C 的运 算关系表示下列各事件. (1) A 发生,B 与 C 都不发生.
AB C .
(2) A ,B , C 都发生.
ABC .
(3) A ,B , C 至少有一个发生.
A B C.
目 录
前一页
后一页
退 出
(5) A ,B , C 都不发生.
ABC .
(6) A ,B , C 不多于一个发生.
ABC
AB C A BC A B C.
(7) A ,B , C 不多于两个发生.
A B A B , 且 B A.
例:若A=“不大于7的整数”,B=“小于或者等于7 的整数”,则A=B。
目 录 前一页 后一页 退 出
3) 和(并)事件 :“事件A与B至少有一个发生”,称 为A与B的和事件,记为 例:某产品分为一,二,三,四 等品,其中一、二等品为合格品, 三、四等品为不合格品。若 Ai=“i 等品” (i=1,2,3 ,4); B=“合格品”,C=“不合格品”, B A 则: B= A1+ A2 , C= A3+ A4

随机事件的关系与运算

随机事件的关系与运算

随机事件的关系与运算随机事件是指在一定条件下具有随机性质的事件,其发生与否是由随机因素决定的。

在随机事件中,我们需要对其进行运算,以便得到更加准确的结果。

本文将从随机事件的关系与运算角度,对随机事件的基本概念、性质、运算规则等进行探讨。

一、随机事件的基本概念与性质随机事件是指在一定条件下具有随机性质的事件,其发生与否是由随机因素决定的。

随机事件的基本概念包括:样本空间、随机事件、必然事件和不可能事件。

样本空间是指一个试验中所有可能的结果构成的集合,记作S。

随机事件是指样本空间S中的一个子集,即一个具有一定概率的事件。

必然事件是指在样本空间中所有结果都属于该事件的事件,记作Ω。

不可能事件是指在样本空间中没有任何结果属于该事件的事件,记作∅。

随机事件具有以下性质:1. 互斥性:若两个事件A和B之间没有公共结果,则称它们互斥。

2. 相对补集:若事件A的发生导致事件B的不发生,则称事件A是事件B的补事件,记作A的补集,即A^c。

3. 包含关系:若事件A的发生导致事件B的发生,则称事件A包含事件B,记作A⊇B。

二、随机事件的运算规则在随机事件的运算中,我们需要对事件之间的关系进行分析和计算。

随机事件的运算包括并、交、差和补四种运算。

1. 并运算并运算是指将两个事件A、B的结果集合并为一个结果集的操作,用符号“∪”表示。

即:A∪B={x|x∈A或x∈B}。

并运算的性质:(1)交换律:A∪B=B∪A。

(2)结合律:(A∪B)∪C=A∪(B∪C)。

(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C)。

2. 交运算交运算是指将两个事件A、B的公共结果构成一个新的事件的操作,用符号“∩”表示。

即:A∩B={x|x∈A且x∈B}。

交运算的性质:(1)交换律:A∩B=B∩A。

(2)结合律:(A∩B)∩C=A∩(B∩C)。

(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)。

3. 差运算差运算是指事件A中除去事件B的结果所构成的新事件,用符号“-”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. 许多服务系统,如电话通信、船舶 装卸、器维修、病人候诊、存货控制、 水库调度、购物排队、红绿灯转换等,都
可用一类概率模型来描述,其涉及到 的知
识就是 《排队论》.
目前, 概率统计理论进入其他自然科学 领域的趋势还在不断发展. 在社会科学领 领域 , 特别是经济学中研究最优决策和经
济的稳定增长等问题 , 都大量采用《概率
3. 寻求最佳生产方案要进行《实验设计》 和《数据处理》;
4. 电子系统的设计, 火箭卫星的研制及其 发射都离不开《可靠性估计》;
5. 处理通信问题, 需要研究《信息论》;
6. 探讨太阳黑子的变化规律时,《时间 序列分析》方法非常有用;
7. 研究化学反应的时变率,要以《马尔 可夫过程》 来描述;
8. 生物学中研究 群体的增长问题时, 提出了生灭型《随机模型》,传染病流行问 题要用到多变量非线性《生灭过程》;
§1 随机事件的概率
一、 随 机 试验
1) 随机试验(Experiment )
这里试验的含义十分广泛,它包括各种各样
的科学实验,也包括对事物的某一特征的观察。
其典型的例子有:
目 录 前一页 后一页 退 出
E1:(抛T一ai枚ls)硬出币现,的观情察况正。面H(Heads)、反面T E2:抛一颗骰子,观察出现的点数。 E3:观察某一时间段通过某一路口的车辆数。 E4:观察某一电子元件的寿命。 E5:观察某地区一昼夜的最低温度和最高温度。 E6: 将一枚硬币连抛三次,考虑正反面出现的情况; E7: 将一枚硬币连抛三次,考虑正面出现的次数;
E2:抛一颗骰子,观察出现的点数。 S2 : { 1, 2, 3, 4, 5, 6 }
E3:观察某一时间段通过某一路口的车辆数。S3 : {0,1,2,3……}
E4:观察某一电子元件的寿命。
S4 : { t | t 0 }
E5:观察某地区一昼夜的最低温度和最高温度。
S5 : { ( x , y ) | T 0 x y T1 }
学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
本学科的应用
概率统计理论与方法的应用几乎遍及 所有科学技术领域、工农业生产和国民经 济的各个部门中. 例如
1. 气象、水文、地震预报、人口控制 及预测都与《概率论》紧密相关;
2. 产品的抽样验收,新研制的药品能 否在临床中应用,均要用到《假设检验》;
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随机事件的概率 §2 等可能概型 §3 条件概率 §4 独立性
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
§1 随 机 事 件 的 概率
一 随机试验 二 事件间的关系与运算 三 频率与概率
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
数理统计Ⅱ
教材:《概率论与数理统计》 第三版 浙江大学 盛骤等 编 高等教育出版社
教 师: 杨晓霞 办公室: 理学院 203 电 话: 62338357
e-mail: yxx77@
概率(或然率或几率) —— 随机事件出现 的可能性的量度—— 其起源与博弈问题有关.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
对客观世界中随机现象的分析产生了概率 论;使 概率论 成为 数学的一个分支的真正奠 基人是瑞士数学家J.伯努利;而概率论的飞速 发展则在17世纪微积分学说建立以后.
第一章 概率论的基本概念
§1 随机事件的概率
这些试验具有以下特点:
1. 可以在相同的条件下重复进行; 2. 进行一次试验之前不能确定哪一个结果会出现; 3. 每次试验的可能结果不止一个,并且能事先明确 试验的所有可能结果。
称具备上面三个特点的试验为随机试验。
目 录 前一页 后一页 退 出
第一章 概率论的基本概念
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
E6: 将一枚硬币连抛三次,考虑正反面出现的情况;
S6 : {HHH, HHT, HTH, THH,HTT,THT,TTH, TTT }
E7: 将一枚硬币连抛三次,考虑正面出现的次数;
S7 : { 0, 1, 2, 3 }
第一章 概率论的基本概念
3) 随 机 事 件
§1 随机事件的概率
随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件,记作 A, B, C 等等;
基本事件 : 由一个样本点组成的单点集;
必然事件 : 样本空间 S 本身;
2) 样本空间(Space)
§1 随机事件的概率
定义 将随机试验 E 的所有可能结果组成的集合 称为 E 的样本空间, 记为 S 。样本空间的 元素,即 E 的每个结果,称为样本点。
要求:会写出随机试验的 样本空间。
目 录 前一页 后一页 退 出
E1:(抛T一ai枚ls)硬出币现,的观情察况正。面H(Heads)、S1反: 面{TH , T }
统计方法》. 法国数学家拉普拉斯(Laplace) 说: “ 生活中最重要的问题 , 其中绝大
多数在实质上只是概率的问题.”
概率论与数理统计 在经济、科技、教育、管理和 军事等方面已得到广泛应用。
在生活当中,经常会接触到一些现象: 确定性现象:在一定条件下必然发生的现象。 随机现象:在个别实验中其结果呈现出不确定性; 在大量重复实验中其结果又具有统计规律性的现象。 概率论与数理统计是研究和揭示随机现象统计规律 性的一门学科,是重要的一个数学分支。
相关文档
最新文档