1 随机事件 样本空间及事件关系
1-2节 样本空间和随机事件

A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S
高中数学完整讲义——概率_随机事件的概率1.事件及样本空间

B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A =.若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A +若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n nP A A A P A P A P A =+++. 事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.中至少有一个发生.6.互为对立事件高中数学讲义版块一:事件及样本空间 1.必然现象与.必然现象与随机现象随机现象必然现象是在一定条件下必然发生某种结果的现象;必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.为试验的结果.一次试验是指事件的条件实现一次.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为在试验中可能发生,也可能不发生的结果称为随机事件随机事件.通常用大写通常用大写英文英文字母A B C ,,,来表示随机事件,简称为事件.来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为所有基本事件构成的集合称为基本事件空间基本事件空间,常用W 表示.表示.版块二:随机事件的版块二:随机事件的概率概率计算1.如果事件A B ,同时发生,我们记作A 与B 都是相互独立的.都是相互独立的.3.概率的.概率的统计统计定义定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个很大时,总是在某个常数常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B B 是由事件A 或B 所包含的基本事件组成的集合.件组成的集合.5.互斥事件的概率.互斥事件的概率加法加法公式:公式:若A 、B 是互斥事件,有()()()P A B P A P B =知识内容 板块一.事件及样本空间不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -ì=ïïï+=+íï×=×ï=-ïî等可能事件等可能事件: : 互斥事件: 独立事件: 次独立重复试验次独立重复试验::求解求解 第四步,答,即给提出的问题有一个明确的答复.第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;次才首次发生的概率;⑹ 对立事件的概率.对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.等.题型一 事件及样本空间【例1】 (2010安徽) 甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的典例分析 高中数学讲义有()1()P A P A =-.<教师教师备案备案> 1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.,与通常所说的事件不同.基本事件空间基本事件空间是指一次试验中所有可能发生的基本结果.有可能发生的基本结果.有时我们提到事件或有时我们提到事件或有时我们提到事件或随机事件随机事件,也包含不可能事件和必然事件,也包含不可能事件和必然事件,将其作为随机将其作为随机事件的事件的特例特例,需要根据情况作出判断.,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的,或者说是频率的一个近似,此处概率的定义叫做概率的统计统计定义.在实践中,很多时候采用这种方法求事件的概率.实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的它具有一定的稳定性稳定性,总是在某个总是在某个常数常数附近摆,且随着试验次数的增加,且随着试验次数的增加,摆动的幅度越来越小,摆动的幅度越来越小,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.概率可以看成概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.下可近似地看作这个事件的概率.3.基本事件一定是两两.基本事件一定是两两互斥互斥的,它是互斥事件的特殊情形.的,它是互斥事件的特殊情形.主要方法:主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:求概率的步骤是:第一步,确定事件性质ìïïíïïî等可能事件等可能事件互斥事件互斥事件 独立事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算ìíî和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是确的是 __ __(写出所有正确结论的编号). ① ()25P B =; ②(高中数学讲义)15|11P B A =; ③事件B 与事件1A 相互独立;相互独立;④1A ,2A ,3A 两两互斥的事件;两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选同学甲竞选班长班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ÍÍ,,则A C Í; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数; 其中属于其中属于随机事件随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何技术充分发达后,不需要任何能量能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面a 平面m b =,n b ∥,n a ∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的写出这个试验的基本事件空间基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件; ⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的球,观察球的颜色颜色.⑴写出这个试验的基本事件空间;事件,点数之和为的事件是 事件,点数之差为点的事件是 事43214321高中数学讲义 点间的事件是。
1.2样本空间、随机事件

二、随机事件的概念
1. 基本概念
随机试验 E 的样本空间 S 的子集称为 E 的随 机事件, 简称事件.
每次实验中, 当且仅当这一子集中的一个样本 点出现时, 称这一事件发生.
由一个样本点组成的单点集, 称为基本事件.
样本空间 S包含所有的样本 , 它点是S自身的 子集, 在每次实验中它总是发生的, S称为必然事 件.
A S
某种产品的合格与否是由该产品的长度与直
径是否合格所决定, 因此 “产品不合格”是“长
不合格”与“直径不度合格”的并.
n
推广 称 A k为 n个事 A 1,A 2 件 , ,A n的和事 k1
件, 称 A k为可列 A 1,A 个 2, 的 事和 件 . 事件 k1
3 . 事 A B x x 件 A 且 x B , 称为事件A
它既可以作为抛掷硬币出现正面或出现反面的模 型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型.
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品的 总件数.
所以在具体问题的研究 中, 描述随机现象的第一步 就是建立样本空间.
对立事件与互斥事件的区别
A、B 互斥
A、B 对立
A
BS
AB
互斥
A
B A S
A B S 且 A B
对立
事件间的运算规律 设A,B,C为事,件 则有
(1)交换律 AB BA; AB BA.
(2)结合律 A(BC) (AB)C; A(BC) (AB)C.
(3)分配律 A(BC) (A B ) (A C ); A(BC) (A B ) (A C ).
概率论第一章

下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。
2022年《1随机事件和样本空间导学案教师版》优秀教案

§随机事件和样本空间目标要求1、理解并掌握随机试验,样本空间,随机事件、必然事件、不可能事件.2、理解并掌握事件的判断.3、理解并掌握样本空间及随机事件的结果.4、理解并掌握事件的关系及运算学科素养目标通过本章学习,使学生充分感受大千世界中的随机现象,并了解到不仅确定性现象有规律、可以预知结果,可以用数学方法去研究,而且不确定性现象也是有规律可循,能够用数学方法进行研究的.从而使学生对客观世界、自然科学和社会科学的看法和认识更深入、全面,初步形成用科学的态度、辩证的思想,用随机的观念去观察、分析和研究客观世界的态度,寻求并获得认识世界的初步知识和科学方法.重点难点重点:样本空间及随机事件的结果;难点:事件的关系及运算.教学过程根底知识点1随机试验对某随机现象进行的实验、观察,称为随机试验,简称__试验___2样本空间定义:①样本点:随机试验的每一个可能的结果②样本空间:所有样本点组成的集合记作:Ω3随机事件、必然事件、不可能事件1随机事件:样本空间的子集称为随机事件,也简称事件表示:一般用大写英文字母A,B,C表示2根本领件:当一个事件仅包含单一样本点时,称该事件为根本领件3必然事件:Ω全集是必然事件4不可能事件:空集是不可能事件【思考】判断一个事件A是必然事件、不可能事件还是随机事件的关键是什么提示:关键是看每次试验中事件A中某个样本点是否出现,假设试验中总有一个样本点发生,那么事件A为必然事件;假设试验中不包含任何样本点,那么事件A为不可能事件;假设试验中某个样本点可能发生也可能不发生,那么事件A为随机事件【课前根底演练】题1〔多项选择..........〕以下命题正确的选项是A随机试验的结果是不确定的B一次随机试验所有可能出现的结果只有一个C样本空间中的样本点是有限的D异性电荷相互吸引是必然事件【答案】选CD提示:A×随机试验的结果可能确定,也可能不确定B×一次随机试验所有可能出现的结果可能有多个C√只讨论样本点为有限的情况D√异性电荷相互吸引一定会发生,所以它是必然事件题2下面的事件:①掷一枚硬币,出现反面;②异性电荷相互吸引;③35>10必然事件是A②B③C①D②③【解析】选A①是随机事件;②是必然事件;③是不可能事件题3“抛掷一枚骰子,结果向上的点数为奇数〞记为事件A,“抛掷一枚骰子,结果向上的点数大于4〞B=________,AB=________【解析】记“抛掷一枚骰子,结果向上的点数为〞为,那么,那么答案:关键能力·合作学习类型一事件的判断数学抽象【题组训练】题4以下事件:①明天下雨;②3>2;③某国发射航天飞机成功;④;⑤某商船航行中遭遇海盗;⑥任给∈R,2=0其中随机事件的个数为【解析】选D①明天下雨这一事件可能发生也可能不发生,是随机事件;②3>2,是必然事件;③某国发射航天飞机成功可能发生也可能不发生,是随机事件;④是不可能事件;⑤这一事件可能发生也可能不发生,是随机事件;⑥任给∈R,2=0可能发生也可能不发生,是随机事件即①③⑤⑥是随机事件题5以下事件中,不可能事件为A三角形内角和为180°B三角形中大边对大角,大角对大边C锐角三角形中两个内角和小于90°D三角形中任意两边的和大于第三边【解析】选C假设两内角的和小于90°,那么第三个内角必大于90°,故不是锐角三角形,所以C为不可能事件,而A,B,D均为必然事件题6从6个篮球、2个排球中任选3个球,那么以下事件中,是必然事件的是个都是篮球B至少有1个是排球个都是排球D至少有1个是篮球【解析】选D从6个篮球、2个排球中任选3个球,A,B是随机事件,C是不可能事件,D是必然事件【解题策略】判断事件类型的方法1看条件:在事件阐述过程中,一定要看试验是在什么条件下,因为三种事件都是相对于一定条件而言的,随着条件的变化,试验的结果也可能会发生相应的改变2看结果:事件是按照事件发生与否标准分类的,结果一定发生的是必然事件;不一定发生的是随机事件;一定不发生的是不可能事件类型二样本空间及随机事件的结果数学抽象【典例】题7袋子中有5个大小和质地相同的小球,其中三个红球,标号为1,2,3,另外两个为黑球,标号为4,5,从中依次随机摸出两个球,写出试验的样本空间【解题策略】试验结果书写的考前须知1准确理解随机试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是求概率的根底2在写试验结果时,一般采用列举法,必须要明确事件发生的条件,根据日常生活经验,按一定次序列举,才能保证所列结果不重不漏【跟踪训练】题8集合,从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,那么事件“点落在轴上〞包含的样本点共有个个个个【解析】选C“点落在轴上〞这一事件记为M,那么,包含9个样本点类型三事件的关系及运算数学抽象、数学运算角度1 事件的关系【典例】题9在掷骰子的试验中,可以定义许多事件例如,事件{出现1点},事件{出现3点},事件{出现4点},{出现5点},事件{出现的点数大于3},事件{出现的点数小于5}与是什么关系【思路导引】判断事件发生时事件是否发生【解析】因为事件发生,那么事件必发生,所以,同理包含于【变式探究】题10 在掷骰子的试验中,可以定义许多事件例如,事件{出现1点},事件{出现3点},事件{出现4点},{出现5点},事件{出现的点数大于3},事件{出现的点数小于5}写出事件的和事件及事件的交事件【解析】设G={出现的点数为奇数}={出现1点,出现3点,出现5点},所以{出现的点数大于3}={出现4点,出现5点,出现6点},{出现的点数小于5}={出现1点,出现2点,出现3点,出现4点},所以角度2 事件的运算【典例】题11盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有一个红球,两个白球},事件B={3个球中有两个红球,一个白球},事件C={3个球中至少有一个红球},事件D={3个球中既有红球又有白球}那么:1事件D与事件A,B是什么样的运算关系2事件C与事件A的交事件是什么事件【思路导引】列举出事件中可能的样本点,然后进行各事件的运算【解析】1对于事件D,可能的样本点为1个红球2个白球或2个红球1个白球,故D=A∪B2对于事件C,可能的样本点为1个红球2个白球,2个红球1个白球或3个红球,故C∩A=A【解题策略】事件间运算的方法1利用事件间运算的定义列举出同一条件下的试验所有可能出现的样本点,分析并利用这些样本点进行事件间的运算2利用Venn图借助集合间运算的思想,分析同一条件下的试验所有可能出现的样本点,把这些样本点在图中列出,进行运算【题组训练】题12打靶3次,事件表示“击中i发〞,其中i=0,1,2,3那么表示A全部击中B至少击中1发C至少击中2发D以上均不正确【解析】选B所表示的含义是A1,A2,A3这三个事件中至少有一个发生,即可能击中1发、2发或3发题13抛掷一枚骰子,“向上的点数是1或2〞为事件A,“向上的点数是2或3〞为事件B,那么⊆B=BB表示向上的点数是1或2或3 表示向上的点数是1或2或3【解析】={1,2},B={2,3},A∩B={2},A∪B={1,2,3},AB表示向上的点数是1或2或3课堂检测·素养达标题14以下现象:①连续两次抛掷同一骰子,两次都出现2点;②走到十字路口,遇到红灯;③明天早晨有雨;④抛一石块,下落其中是随机现象的个数是【解析】选C由随机现象的概念可知①②③是随机现象,④是确定性现象题15为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,那么包含的样本点共有个个个个【解析】选C由题意可得,包含的样本点有“数学与计算机〞“数学与航空模型〞“计算机与航空模型〞,共3个题16一个家庭有两个小孩,把第一个孩子的性别写在前边,第二个孩子的性别写在后边,那么所有的样本点有A男,女,男,男,女,女B男,女,女,男C男,男,男,女,女,男,女,女D男,男,女,女【解析】选C由题知所有的样本点是男,男,男,女,女,男,女,女题17在10个学生中,男生有人现从10个学生中任选6人去参加某项活动,有以下事件:①至少有1个女生;②5个男生,1个女生;③3个男生,3个女生假设要使①为必然事件,②为不可能事件,③为随机事件,那么为______【解析】由题意知,10个学生中,男生人数少于5,但不少于3,所以=3或=4答案:3或4题18袋中有8个大小和质地相同的小球,标号为1,2,3,4,5,6,7,8,从中随机摸出一个球,用集合表示以下事件:1A=“摸到球的号码小于5〞;2B=“摸到球的号码为奇数〞【解析】从中摸出一个球,样本空间:Ω={1,2,3,4,5,6,7,8}1事件“摸到球的号码小于5〞表示为A={1,2,3,4}2事件“摸到球的号码为奇数〞表示为B={1,3,5,7}。
随机事件与样本空间

随机事件与样本空间“随机事件”和“概率”是概率论中最基本的两个概念,“独立性”和“条件概率”是概率论中特有的概念。
一、随机事件的关系与运算[1]样本空间:由一个特定的随机试验所有可能发生的基本结果构成的一个集合,成为该实验的“样本空间”,以大写字母Ω表示;试验的每一个可能发生的基本结果称为“样本点”,用小写字母ω表示。
由Ω的一个样本点组成的单点集合称为“基本事件”;Ω的一个子集称为一个“随机事件”。
样本空间Ω和空集∅为两个特殊的子集,分别称为“必然事件”和“不可能事件”。
[2]事件的关系运算:[3] 事件的运算法则:❶A ∅⊂⊂Ω❷A B A A B ⋃⊃⊃- A A B ⊃ ❸A A ⋃∅= A ⋂∅=∅ ❹A A ⋃=Ω A A ⋂=∅ ❺A A == -Ω=∅-∅=Ω❻A A A ⋃= A A A = ()A B A A B A -⋃=⋃≠ ❼如果A B ⊃,则A B A ⋃=,A B B ⋂= ❽满足交换律:A B B A ⋃=⋃,AB BA =❾满足结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C= ❶⓿满足分配率:()A B C AB AC ⋃=⋃ ()()()A BC A B B C ⋃=⋃⋃ ❶❶= =二、随机事件的概率:[1]古典概型:设随机事件的样本空间Ω包含有有限个样本点(此模型称为古典概型),则事件A 发生的概率为: #()#A P A E n==Ω有利于事件A 的样本点数m实验的样本空间所含的样本点数 [2]几何定义: 设Ω是n R (n=1、2、3)中任何一个可度量的区域,从Ω中随机的选择一点,即Ω中任何一点都有相同的机会被选到,则相应的随机试验的样本空间就是Ω,假设事件A 是Ω中任何一个可度量的子集,则:()()()A P A μμ=Ω 此式定义的概率称为几何概率,符合上述假定模型的称为几何概型。
[3]统计定义:对一特定的实验,进行多次重复试验,实验的某一结果A ,即随机试验A ,在大量的重复试验中出现的频率的稳定值p 称为A 的概率。
§1.1随机事件与样本空间

§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。
在具体问题中,给定样本空间是研究随机现象的第⼀步。
例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。
1.2 样本空间、随机事件

S
A=B,则称事件 相等。 若 A ⊂ B 且 B ⊃ A ,即 A=B,则称事件 A 与事件 B 相等。
2°事件 A U B = { x | x ∈ A 或 x ∈ B }称为事件 A 与 B 的 ° 中至少有一个发生。 和事件,它指的是事件 A 与事件 B 中至少有一个发生。 事件,它指的是事件
如何来研究随机现象? 如何来研究随机现象 随机现象是通过随机试验来研究的! 随机现象是通过随机试验来研究的! 随机试验来研究的 研究方法?数学方法? 研究方法?数学方法? 将E的结果数量化!---用集合:S={e},A,B… 的结果数量化!---用集合:S={e}, 用集合 引进(随机)变量、函数(概率、分布函数) 引进(随机)变量、函数(概率、分布函数)… 概率论研究的主线? 概率论研究的主线? 1、事件表示:---利用事件间关系、运算表示较复 事件表示:---利用事件间关系、 利用事件间关系 杂事件… 杂事件 计算事件的概率:----利用概率的定义 性质、 利用概率的定义、 2、计算事件的概率:----利用概率的定义、性质、 概率运算公式… 概率运算公式
2. 几点说明
由一个样本点组成的单点集,称为基本事件。 由一个样本点组成的单点集,称为基本事件。 基本事件
S 作为自己的一个子集,在每次试验中必然发生,称为 作为自己的一个子集,在每次试验中必然发生, 必然发生 必然事件; 必然事件; 空集∅ 作为 S 的一个子集,在每次试验中都不会发生,称 的一个子集,在每次试验中都不会发生, 都不会发生 为不可能事件 不可能事件. 事件
子集
事件间关系。。。 随机事件→事件间关系。。。 事件间关系
集合→ 集合→集合间关系运算
定义于集合的函数: 定义于集合的函数:函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3’n个事件A1, A2,…, An同时发生,记作 A1A2…An
4.差事件(p5) :A-B称为A与B的差事件,表示事件A发生而B不发 生
思考:何时A-B=?何时A-B=A?
5.互斥的事件(p5) :AB=
6. 互逆的事件(p5) AB= , 且AB=
记作B A ,称为A的对立事件; 易见A B AB
可见,可以用文字表示事件,也可以将事件表示为样本空 间的子集,后者反映了事件的实质,且更便于今后计算概 率 还应注意,同一样本空间中,不同的事件之间有一定的关 系,如试验E2 ,当试验的结果是HHH时,可以说事件A和B 同时发生了;但事件B和C在任何情况下均不可能同时发生 。易见,事件之间的关系是由他们所包含的样本点所决定 的,这种关系可以用集合之间的关系来描述。
可推广 Ak Ak ,
A
k
k
Ak .
k
随 机 现 象
样本空间
随机事件 随 机 试 验
事件的关系
包含、和、积、差、 互不相容、互逆
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C的 运算关系表示下列事件:
A B C A2 : “恰有一人命中目标” ABC ABC ABC : A3 : “恰有两人命中目标” ABC ABC ABC : A4 : “最多有一人命中目标” : BC AC AB
概率论与数理统计
序 言
概率论是研究什么的?
随机现象:不确定性与统计规律性
概率论——研究和揭示随机现象 的统计规律性的科学
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
1.1随机事件及其概率
一、随机试验(简称“试验”)
随机试验的特点(p2) 1.可在相同条件下重复进行; 2.试验可能结果不止一个,但能确定所有的可能结果; 3.一次试验之前无法确定具体是哪种结果出现。 随机试验可表为E
五、事件的运算(p5)
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、对偶(De Morgan)律:
A B A B,
k k
AB A B
随机事件
二、样本空间(p2)
1、样本空间:实验的所有可能结果所组成的 集合称为样本空间,记为S={e}; 2、样本点: 试验的每一个结果或样本空间的 元素称为一个样本点,记为e. 3.由一个样本点组成的单点集称为一个基本事 件,也记为e. EX 给出E1-E7的样本空间
幻灯片 6
随机实验的例
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。
三、事件之间的关系
1.包含关系(p4)“ A发生必导致B发生”记为AB A=B AB且BA.
2.和事件: (p4)“事件A与B至少有一个发生”,记作 AB
2’n个事件A1, A2,…, An至少有一个发生,记作
i 1
Ai
n
3.积事件(p4) :A与B同时发生,记作 AB=AB
A1 : “至少有一人命中目标” : A5 : “三人均命中目标” :
ABC
A6 : “三人均未命中目标” B C : A
• 例:设A,B,C为三个事件,用A,B,C 的运算关系表示下列各事件: 1、A发生,B与C不发生 2、A与B都发生,而C不发生 3、A,B,C中至少有一个发生 4、A,B,C都发生 5、A,B,C都不发生 6、A,B,C中不多于一个发生 7、A,B,C中不多于两个发生 8、A,B,C中至少有两个发生
N(A)={HHH,HHT,HTH,THH 7 P( A) N (S ) 8
随机实验的例
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。
1.2 概率的定义及其运算
从直观上来看,事件A的概率是指事件A发 生的可能性
P(A)应具有何种性质?
抛一枚硬币,币值面向上的概率为多少? 掷一颗骰子,出现6点的概率为多少? 出现单数点的概率为多少? 向目标射击,命中目标的概率有多大?
1.2.1.古典概型与概率
(p6)若某实验E满足
1.有限性:样本空间S={e1, e 2 , … , e n };
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 N(S)={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
随机事件
随机事件
1.定义 (p3定义1.1.2) 试验中可能出现或可能不出现的情 况叫“随机事件”, 简称“事件”.记作A、B、C等 任何事件均可表示为样本空间的某个子集. 称事件A发生当且仅当试验的结果是子集A中的元素
2.两个特殊事件: 必然事件S 、不可能事件.(p3)
例如 对于试验E2 ,以下A 、 B、C即为三个随机事件: A=“至少出一个正面” ={HHH, HHT, HTH, THH,HTT,THT,TTH}; B=“三次出现同一面”={HHH,TTT} C=“恰好出现一次正面”={HTT,THT,TTH} 再如,试验E6中D=“灯泡寿命超过1000小时” ={x:1000<x<T(小时)}。
2.等可能性:(公认)
P(e1)=P(e2)=…=P(en).
则称E为古典概型也叫等可能概型。
古典概型中的概率(P7):
设事件A中所含样本点个数为N(A) ,以N(S)记 样本空间S中样本点总数,则有
N ( A) P ( A) N (S )
P(A)具有如下性质(P7)
(1) 0 P(A) 1;