概率论—样本空间及其随机事件

合集下载

概率论全部

概率论全部
23.假設檢驗中可能犯的第Ⅰ類錯誤,也稱棄真錯誤,犯此類錯誤的概率是(D:P(拒絕Ho|Ho為真)
24.設正態總體X~N(μ,σ2),σ2未知, ,S2是樣本平均值和樣本方差,給定顯著性水準α,檢驗假設Ho:σ2= ,H1:σ2≠ 應使用的檢驗用統計量是(A: )。
11、設X~b(3,0.5),則P(X≥1)的值是(D:0.875)。
12、已知(X ,Y )的分佈律為
0
1
1
0
1/6
2
1/12
1/6
3
1/2
1/12
則X的邊緣分佈律為(C:
X
0
1
P
13、設連續型隨機變數X的分佈函數為F(x)= 則A的值為(C:0.5)。
14、設X的分佈律為
則E(X)=(C:0.8)
53.设X1,X2,…Xn是总体X的一个样本,g(X1,X2,…Xn)是X1,X2,…Xn的函数,若g是连续函数,且g中不含任何未知参数,则称g(X1,X2,…Xn)是一个统计量。
54.设A与 互为对立事件,则 。
55.若二维随机变量(X,Y)在平面区域D中的密度函数为 其中A为D的面积,则称(X,Y)在区域D上服从均匀分布。
19.设随机测得某化工产品得率的5个样本观察值为82,79,80,78,81,则样本平均值 80。
20.设总体X~N(μ,σ2),x1,x2,…,xn是来自总体X的样本,则σ2已知时,μ的1-a置信区间为 。
21.假设检验可能犯的两类错误是弃真错误和纳伪错误。
22.设总体X~N(μ,σ2),对假设 做假设检验时,所使用的统计量是 它所服从的分布是 。
X
0
1
P
0.2
0.8
15、已知X~b(n, 0.2)則E(X) =(D:0.2n)

1.2 样本空间与事件

1.2 样本空间与事件
这六个随机事件都包含一个共同的样本点:HHT
A = { 第一次是正面 } = { HHH,HHT,HTH,HTT }
B = { 第二次是正面 } = { HHH,HHT,THH,THT }
C = { 第三次是反面 } = { HHT,HTT,THT,TTT }
D = { 正面比反面多一次 } = { HHT,HTH,THH,} E = { 正面反面都出现 } = {HHT,HTH, HTT, THH, THT, TTH }
E 3 : 记录一小时落在地球上某一区域的粒子数 Ω3 :{ 0,1,2,3,······} 可数个点
E 4 :从一批电子元件里任意抽取一只测试寿命 Ω4 :{ t | t ≥ 0 } 不可数点构成的区间
E5 :从一副去掉大小王的扑克牌中任意抽出 一张,观察它的花色和点数
Ω5 :{ ( x,y ) | x 表示花色,有 4 种可能 ; y 是点数,1 ≤ y ≤ 13 }
A1∩A2 = { HHH };
A1 I A2 = {THH,THT,TTH } 。

例1.1.6 把 A∪B 分解成互不相容的事件的和。
B A
Ω
解. ① ②
A∪B = A + (B – A) = A + (B – AB) ; A∪B = (A – B) + AB + (B – A)
= (A – AB) + AB + (B – AB) 。
关于“差事件”的理解
1. A∪B 的样本点是 A 的样本点与B 的样本点的并集; AB 的样本点是 A 的样本点与B 的样本点的交集;
A – B 的样本点是从 A 中去掉同时也属于B 的样本点。 2. 如果 A B ,则 A – B 是不可能事件。

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

北邮概率论与数理统计样本空间及随机事件1.1

北邮概率论与数理统计样本空间及随机事件1.1

§1.1 随机事件及其运算1.随机现象自然界和社会上发生的现象多种多样.有些现象,我们可以准确预言他们在一定条件会出现何种结果,例如“在标准大气压下,纯水加热到C ︒100时必定沸腾”等等,这类现象我们称为确定性现象.然而自然界和社会上还有许多现象,他们在一定条件下,并不总是出现相同结果,而且事先我们无法准确预言会出现何种结果, 这类现象我们称为随机现象.随机现象随处可见。

如抛一枚硬币,其结果可能是正面朝上,也可能反面朝上,而且在出现结果之前无法准确预言会出现何种结果.再比如用一仪器在相同条件下测量一物体的质量,各次测量结果会有差异,等等。

有的随机现象可以在相同条件下重复,也有很多随机现象是不能重复的,比如经济现象(如失业,经济增长速度等)大多不能重复. 对在相同条件下可以重复的随机现象的观察、记录、实验称为随机试验.对于这类随机现象,我们常常通过多次重复的随机试验,观察其出现的结果,以期发现随机现象的规律性。

长期的实践经验表明,在大量重复试验下,随机现象的结果的出现往往呈现出某种规律性.例如大量重复抛一枚硬币,正面出现的次数与反面出面出现的次数大致相当,等等.这种在大量重复试验中所呈现的规律性就是我们以后常说的统计规律性.概率论与数理统计的研究对象是随机现象,研究和揭示随机现象的统计规律性. 概率论与数理统计主要研究能重复的随机现象,但也十分注意研究不能重复的随机现象.2.样本空间数学理论的建立总是需要首先给出一些原始的无定义的概念(例如,“点”和“直线”是欧氏几何的公理化处理中无定义的概念)。

在概率论中,第一个“无定义”的原始概念是“样本点”,这一原始概念又联系着另一原始概念“随机试验”.概率论中所说的随机试具有下述特点:(1)可以在相同条件下重复地进行;(2)每次试验的可能结果不止一个,并且事先能明确试验的所有可能的结果;(3)进行一次试验之前不能确定哪个结果会发生.随机试验的可能结果称为样本点,用ω表示样本点;而随机试验的一切样本点组成的集合称为样本空间,记为}{ω=Ω.在具体问题中,认清“样本空间是哪些样本点构成的”是十分重要的. 有些随机试验凭“经验”可确定样本点和样本空间,有些随机试验需要“数学的理想化”去确定样本点和样本空间.样本点和样本空间的确定也与研究目的有关,或者说与观察或记录的是什么有关.看下面一些例子.例 1 考虑试验:掷一骰子,观察出现的点数.根据“实际经验”,该试验的基本结果有6个:1,2,3,4,5,6,从而其样本空间为}6,5,4,3,2,1{=Ω.如果我们只是观察出现奇数点还是偶数点,那么样本空间可以确定为{=Ω出现奇数点,出现偶数点}.例 2 考虑试验:观察一天内进入某商场的人数. 一天内进入某商场的人数是非负整数,但由于不知道最多的人数和最少的人数,我们把该试验的样本空间“理想化”地定为},3,2,1,0{⋅⋅⋅=Ω,即样本空间确定为全体非负整数构成的集合.例3考虑试验:考察一个元件的寿命.为了数学上处理方便, 我们把该试验的样本空间“理想化”地确定为),0[+∞=Ω.例 4 对于试验:将一硬币抛3次.若我们记录3次正反面出现的情况,则样本空间为},,,,,,,{TTT TTH THT HTT THH HTH HHT HHH =Ω;若我们记录正面出现的次数,则样本空间为}3,2,1,0{=Ω.若样本空间中的元素个数是有限个,我们称此样本空间为有限样本空间. 若样本空间中的元素个数是有限个或可列个,我们称此样本空间为离散样本空间.3.随机事件有了样本空间后,我们可以给出随机事件的概念.直观上, 随机事件是随机现象或随机试验中可能发生也可能不发生的事件.例如,在掷骰子试验中,“出现偶数点”是可能发生也可能不发生的,因此它是随机事件,而且当试验出现的结果是2或4或6时该事件就发生了,否则该事件就不发生.一个事件是否发生应当能由试验出现的结果判定,因此一个事件可以由使其发生的那些样本点组成,换言之, 随机事件可以由一个或多个样本点组成的集合来表示.因此有下面概念.设随机试验E 的样本空间为}{ω=Ω,我们称样本空间为}{ω=Ω的子集为随机事件,简称为事件,常用大写字母A,B,C,…表示.若一事件是由单个样本点组成,则称该事件为基本事件;由2个或2个以上样本点组成的事件称为复合事件.由全体样本点组成的事件称为必然事件,必然事件就是样本空间Ω本身.空集Φ作为样本空间Ω的子集也是事件,称此事件为不可能事件. 显然, 必然事件在每次试验中是必定发生的,不可能事件在任一次试验中都不会发生.这两种情况已无随机性可言,但我们把它们视为随机事件的特例.以后在理论上讨论概率论问题时,我们总是假定样本空间已经给定,随机事件就是该样本空间的子集。

§1.1随机事件与样本空间

§1.1随机事件与样本空间

§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。

⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。

例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。

若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。

1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。

因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。

2、样本空间基本事件的全体,称为样本空间。

也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。

在具体问题中,给定样本空间是研究随机现象的第⼀步。

例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。

例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。

1.2 样本空间、随机事件

1.2 样本空间、随机事件

S
A=B,则称事件 相等。 若 A ⊂ B 且 B ⊃ A ,即 A=B,则称事件 A 与事件 B 相等。
2°事件 A U B = { x | x ∈ A 或 x ∈ B }称为事件 A 与 B 的 ° 中至少有一个发生。 和事件,它指的是事件 A 与事件 B 中至少有一个发生。 事件,它指的是事件
如何来研究随机现象? 如何来研究随机现象 随机现象是通过随机试验来研究的! 随机现象是通过随机试验来研究的! 随机试验来研究的 研究方法?数学方法? 研究方法?数学方法? 将E的结果数量化!---用集合:S={e},A,B… 的结果数量化!---用集合:S={e}, 用集合 引进(随机)变量、函数(概率、分布函数) 引进(随机)变量、函数(概率、分布函数)… 概率论研究的主线? 概率论研究的主线? 1、事件表示:---利用事件间关系、运算表示较复 事件表示:---利用事件间关系、 利用事件间关系 杂事件… 杂事件 计算事件的概率:----利用概率的定义 性质、 利用概率的定义、 2、计算事件的概率:----利用概率的定义、性质、 概率运算公式… 概率运算公式
2. 几点说明
由一个样本点组成的单点集,称为基本事件。 由一个样本点组成的单点集,称为基本事件。 基本事件
S 作为自己的一个子集,在每次试验中必然发生,称为 作为自己的一个子集,在每次试验中必然发生, 必然发生 必然事件; 必然事件; 空集∅ 作为 S 的一个子集,在每次试验中都不会发生,称 的一个子集,在每次试验中都不会发生, 都不会发生 为不可能事件 不可能事件. 事件
子集
事件间关系。。。 随机事件→事件间关系。。。 事件间关系
集合→ 集合→集合间关系运算
定义于集合的函数: 定义于集合的函数:函数

随机事件与样本空间的关系

随机事件与样本空间的关系

随机事件与样本空间的关系在概率论中,随机事件与样本空间是密不可分的概念。

理解二者之间的关系对于概率计算和推理至关重要。

本文将介绍随机事件和样本空间的定义、关系以及在概率计算中的应用。

一、随机事件的概念随机事件是指在一次特定的试验中可能发生或不发生的现象。

它是样本空间中的一个子集。

例如,掷一枚硬币,其试验结果可以是正面朝上(事件A)或反面朝上(事件B)。

在这个例子中,事件A和事件B分别是试验的两个随机事件。

二、样本空间的定义样本空间是指一个随机试验中所有可能结果的集合。

它包含了实验中的每一个可能结果。

以掷一枚硬币为例,样本空间为{正面,反面}。

样本空间可以有有限个元素,也可以是一个无穷集合。

三、随机事件与样本空间的关系随机事件是样本空间的子集。

它们之间的关系可以用包含关系来描述。

具体而言,一个事件A发生意味着试验的结果属于A所对应的样本点集合。

相反,如果试验结果属于事件A,那么事件A就发生了。

四、概率计算中的应用概率计算是研究随机事件发生可能性的重要方法。

随机事件和样本空间的关系在概率计算中起着关键作用。

1. 计算概率概率可以通过事件发生的样本点数量与样本空间中样本点总数的比值来计算。

例如,假设在掷一枚硬币的试验中,事件A表示正面朝上,那么事件A发生的概率为P(A) = |A| / |样本空间|,其中|A|表示事件A中的样本点数量,|样本空间|表示样本空间中的样本点数量。

2. 事件间的运算根据随机事件和样本空间的关系,可以进行并、交、差等运算。

例如,事件A和事件B的并集为A∪B,表示A和B中至少有一个发生的样本点的集合。

交集为A∩B,表示A和B同时发生的样本点的集合。

差集为A-B,表示A发生而B不发生的样本点的集合。

3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率计算中,样本空间会根据已知事件的发生而被限制在一个子集中,从而影响概率的计算。

例如,已知事件A发生的条件下,事件B发生的概率可以表示为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。

概率论 样本空间、随机事件

概率论 样本空间、随机事件

S4 ={1,2,3,4,5,6}; S5 ={0,1,2…}; S6 ={t | t≥0} t为灯泡寿命; S7 ={(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y 表示最高温度,并设这一地区的温度不会小 于T0,也不会大于T1。 S8 ={(x,y)|x2+y2≤100}, 注意:样本空间的元素是由试验的目的所确 定的。例如,在E2和E3种同是将一枚硬币连 抛三次,由于试验的目的不一样,其样本空 间也不一样。
反之,当且仅当“接点a未闭合”与“接点 b、c都未闭合”二事件中至少有一事件发 生时,指示灯不亮;所以有

这个等式也可以由等式 D= A(B∪C) 利用De Morgan对偶律得到.事实上,我 们有
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D中至多一个不发生”
7. 事件的对立
AB , A B
— A 与B 互相对立 A 每次试验 A、 B中 有且只有一个发生 称B 为A的对立事件 (or 逆事件), 记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
B A
运算律
事件 运算 对应 集合 运算
吸收律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4, 5 4, 6

5, 6
第一节 样本空间与随机事件
12
例4
从上午8 : 00~9 : 00观察通过某交通路口 的汽车数.
令:n 在该时间间隔内通过n 辆车
则该试验的样本空间为
n : n 0, 1, 2, ,
第一节 样本空间与随机事件
13
例5
记 2个白球分别为1号球和2号球;
记 4个黑球分别为3号球至6号球.
令i, j表示取出i 号球和 j 号球,则该试验的
样本空间为
1, 2 1, 3 1, 4 1, 5 1, 6




2, 3
2, 4 3, 4
2, 5 3, 5
2, 3,
66
• 试验的所有可能结果是明确可知的, 并且不止一个;
• 每次试验总是恰好出现这些可能结 果中的一个,但在一次试验之前却 不能肯定会出现哪一个结果.
第一节 样本空间与随机事件
7
样本点与样本空间
• 随机试验的每一个可能结果称为样本 点,或为基本事件,样本点常用字母ω 来表示.
• 样本点的全体所成集合称为样本空间, 或称为基本事件空间,通常用字母Ω来 表示.
第一节 样本空间与随机事件
16
二.随机事件
第一节 样本空间与随机事件
17
随机事件
• 定义了样本空间与样本点,我们 可以把随机事件看作是某些样本 点组成的集合.
• 我们称一个随机事件发生当且仅 当它所包含的一个样本点在试验 中出现.
第一节 样本空间与随机事件
18
随机事件的表示
•我们常用大写的英文字 母 A、B、C、… 等来 表示随机事件.
A B
第一节 样本空间与随机事件
25
事件包含关系的例子
• 在本节例4中,若定义 A={ 至少通过200辆汽车 } B={ 至少通过100辆汽车 } 则: A B
第一节 样本空间与随机事件
26
注意此结论 ! • 对任何随机事件A,都有
A
第一节 样本空间与随机事件
27
2.随机事件的相等关系
• 若随机事件A与B满足
AB 且 B A
则称随机事件A与B相等,记作:
A B
第一节 样本空间与随机事件
28
随机事件相等关系的例子
• 在本节例2中,若定义
A 出现偶数点
B 2, 4, 6

A B
第一节 样本空间与随机事件
第一节 样本空间与随机事件
8
说明
• 由于随机试验的所有结果是明确的, 从而样本点也是明确的;
• 样本空间与随机试验有关,即不同 的随机试验有不同的样本空间;
• 刻画一个随机试验的样本空间是学 好概率论的基础.
第一节 样本空间与随机事件
9
例1
掷一枚硬币,令:
1 出现正面 ,2 出现反面
第一节 样本空间与随机事件
19
随机事件的例子
• 在本节例2中,我们定义了掷一颗骰子这一 随机试验的样本空间,若定义 A={ 出现偶数点 } 则A就是一个随机事件. 事件A发生当且仅当在试验中或者出现2点, 或者出现4点,或者出现6点.
第一节 样本空间与随机事件
20
随机事件的例子
• 在本节例4中,我们定义了在某一时间 间隔内观察通过某交通路口的车辆数这 一随机试验的样本空间,若定义 A={ 至少通过50辆汽车 } B={至多通过200辆汽车} 则A、B都是随机事件.
第一节 样本空间与随机事件
15
可列无穷与不可列无穷
如果无穷多个元素 an 可以按照某种顺序排成一排:
a1, a2 , , an ,
则称元素 an 是可列无穷多个;否则称元素 an 为不可列无穷多 个.
例如,自然数是可列无穷多个;整数是可列无穷多个;有理 数是可列无穷多个.但是无理数是不可列无穷多个,实数也是 不可列无穷多个.
观察某元件的使用寿命(单位:小 时),令:
t 使用寿命为 t 小时
则该试验的样本空间为: t : t 0.
第一节 样本空间与随机事件
14
注意
• 在上述例题中,例1~例3中样本空间中的 样本点的个数都是有限个;而例4与例5中 样本空间中的样本点的个数为无限个.
• 例4中的样本空间中的样本点的个数为可 列无穷个;而例5中样本空间中的样本点 的个数为不可列的.
则该随机试验的样本空间为: 1, 2 .
第一节 样本空间与随机事件
10
例2
掷一枚骰子,令:
ω i出现 i 点
i 1, 2, , 6
则该试验的样本空间为
Ω ω1 , ω2 , ω3 , ω4 , ω5 , ω6
第一节 样本空间与随机事件
11
例3
袋中有2 个白球,4 个黑球,从中任意取出2 球.
我们把必然事件与不可能事件看 作是随机事件的两种极端情形.
第一节 样本空间与随机事件
23
三.随机事件间的 关系与运算
第一节 样本空间与随机事件
24
1.事件的包含关系
• 若随机事件A的所有样点都包 含在随机事件B中,这时随机事 件A发生必然导致随机事件B发 生,我们称随机事件A包含在随 机事件B中,或者称随机事件B 包含随机事件A,记作:
第一节 样本空间与随机事件
4
随机试验
•对随机现象的 观察和试验称为 随机试验.
第一节 样本空间与随机事件
5
随机试验的例子
• 掷一枚硬币; • 掷一颗骰子; • 观察某交通路口在某时间间隔内
通过的汽车数; • 观察某电子元件的使用寿命;
•……
第一节 样本空间与随机事件
6
随机试验的特点
• 试验可以在相同条件下重复进行;
第一节 样本空间与随机事件
21
随机事件的例子
• 在本节例5中,我们定义了观察某一电 子元件使用寿命这一随机试验的样本空 间,若定义
A={ 该元件的使用寿命介于1000~2000 小时之间 }
则A是随机事件.
第一节 样本空间与随机事件
22
注意
为方便起见,我们把必然事件 与不可能事件 也看作是随机事 件.
第一章
随机事件及其概率
第一节 样本空间与随机事件
1
目录
• §1.1 样本空间与随机事件 • §1.2 频率与概率 • §1.3 古典概型与几何概型 • §1.4 条件概率 • §1.5 随机事件的独立性
第一节 样本空间与随机事件
2
§1.1 样本空间和随机事件
第一节 样本空间与随机事件
3
一.随机试验与样本 空间
相关文档
最新文档