五年级奥数专题-抽屉原理
五年级奥数抽屉原理学生版

五年级奥数抽屉原理学生版1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.(一)、直接利用公式进行解题知识精讲知识点拨教学目标抽屉原理(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同【巩固】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩【巩固】试说明400人中至少有两个人的生日相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为÷=,所以,至少有1+1=2(个)学生的生日是同一天7303661364【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
五年级奥数之复杂抽屉原理

知识大总结 1. 抽屉原理: ⑴ 有余+1,无余取整 无余取整 ⑵ 找苹果、找抽屉 2 最不利原则: 2. ⑴ 保证发生,最少 ⑵ 个数=最倒霉+1 3. 难点:以某些东西的种类作为抽屉. 【今日讲题】 例1、例2、例3、 超常大挑战 超常 【讲题心得】 __________________________________________________________________. 【家长评价】 ________________________________________________________________. 2
【例5】(★★★★) ⑴ 在边长为1的正方形里随意放入3个点,以这3个点为顶点的三角形 的面积最大是_____. ⑵ 在边长为1的正方形里随意放入9个点,这9个点任意3个点不共线, 请说明 这9个点中一定有 请说明:这 个点中 定有3个点构成的三角形面积不超过正方形 1 的 . 8
【超常大挑战】(★★★★★) 假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的 线段连起来 都连好后 问你能不能找到 个由这些线构成的 角形 线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形, 使三角形的三边同色?
板块一:基本的抽屉原理 【例1】(★★★) 将能否在4×4的方格表的每一个格子中填入 的方格表的每 个格子中填入1、2、3中的一个数字,使 中的 个数字 使 得每行、每列以及它的两条对角线上数字的和互不相同?
【例3】(★★★) (华杯赛团体决赛口试题) 圆上的100个点将该圆等分为100段等弧,随意将其中的一些点染成红 点,要保证至少有4个红Байду номын сангаас是一个正方形的4个顶点,问:你至少要染 红多少个点?
本讲主线 1. 复习基本的抽屉原理 2. 关于抽屉原理的讨论
五年级奥数专题 抽屉原理(学生版)

抽屉原理 学生姓名授课日期 教师姓名授课时长 知识定位 1.充分理解和掌握抽屉原理的基本概念2.运用抽屉原理求解的较为复杂的组合计算与证明问题本讲的知识点必须让学生充分理解、吃透,因为所与这个知识点的变形很多,与其他知识点的结合类型也很多。
知识梳理一.抽屉原理的概念①举例:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
②定义:一般情况下,如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n +1或多于n +1个元素放到n 个集合中去,其中必定至少有一个集合里至少有两个元素。
我们称这种现象为抽屉原理。
集合:一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合。
元素:集合中各事物叫做集合的元素。
二. 抽屉原理的分类抽屉原理一:将n+1个元素放到n 个抽屉中去,则无论怎么放,必定有一个抽屉至少有两个元素.抽屉原理二:将nr+1个元素放到n 个抽屉中去,则无论怎么放,必定有一个抽 屉至少有r+1个元素.抽屉原理三:将m 个元素放到n 个抽屉中去(m ≥n),则无论怎么放,必定有一个抽屉至少有个元素.11m n -⎡⎤+⎢⎥⎣⎦例题精讲【试题来源】【题目】证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【试题来源】【题目】从1,2,3,…,2007,2008这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【试题来源】【题目】从1至1993这1993个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4?【试题来源】【题目】从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍?【试题来源】【题目】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【试题来源】【题目】证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.【试题来源】【题目】从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【试题来源】【题目】从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【试题来源】【题目】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.【试题来源】【题目】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?【试题来源】【题目】两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。
小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。
2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
奥数-18抽屉原理+答案

请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
29.五年级奥数第29讲——抽屉原理

学生课程讲义课程名称五年级奥数上课时间任课老师沈老师第29讲,本讲课题:抽屉原理内容概要桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。
这一现象就是我们所说的“抽屉原理”。
解决有关抽屉原理的问题时,首先在审题时要弄清楚问题中什么是抽屉,什么是苹果,如果问题比较复杂,一时在题目中没有直接给出抽屉和苹果,那就要依据给定的条件,自已来构造抽屉,明确苹果.常见的构造抽屉的方法有:“数的分组法”、“图形分割法”、“染色法”及“剩余类法”【例1】木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?随堂练习11、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
2、有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
用“数的分组法”构造抽屉【例2】从1,2,3,…,100这100个数中任意挑出51个数来, 证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50. 随堂练习2从1,2,3,…·,49,50这50个数中,取出若干个数使其中任意两个数的和都不能被7整除,最多可取()个数。
【例3】问在1,3,5,7,…,97,99这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数.随堂练习3从1,2,3,4,…,1988,1989这些自然数中,最多可以取( )个数,其中每两个数的差不等于4。
用“图形分割法”构造抽屉【例4】在一个边长为1的正方形内(含边界),任意给定9个点 (其中没有三点共线),证明:在以这些点为顶点的各个三角形中,必有1个三角形,它的面积不大于18。
随堂练习4在一个边长为1的等边三角形内随意放置10个点,试说明:至少有两个点之间的距离不超过13用“涂色法”分类【例5】如图,是一个3行10列共30个小正方形的长方形,现在把每个小方格图上红色或黄色,请证明无论怎么涂法一定能找到两列,他们的涂色方式完全相同。
五年级奥数抽屉原理

在上一篇文章中,我们介绍了抽屉原理的基本概念和一些相关例题。
在这篇文章中,我们将进一步讨论抽屉原理,并通过更多的例题来加深对这一概念的理解。
我们先回顾一下抽屉原理的表述:如果有n+1个物体被放进n个抽屉,那么至少有一个抽屉里面至少有两个物体。
现在,我们通过一些例题来具体说明抽屉原理的应用。
例题1:有一袋子里装着10只红球和15只蓝球,现在我们从袋子里任意取出3个球。
证明:至少有两个球颜色相同。
解析:这道题目可以通过排除法来解决。
我们假设取出的3个球的颜色都不相同,即一个球是红色,一个球是蓝色,还有一个是其他非红、蓝的颜色。
那么根据抽屉原理,至少有两个球是同一种颜色,与我们的假设矛盾。
因此,我们可以得出结论:至少有两个球的颜色相同。
例题2:20日,小明去书店买了15本书,其中包含3本数学书,4本英语书,8本科普书。
现在我们需要证明,如果随机取出其中的3本书,那么至少有两本是同一科目的书。
解析:我们可以使用类似于例题1的方法来解决这个问题。
先假设取出的3本书中没有任意两本是同一科目的,即每个科目都有且仅有一本书被取出。
根据抽屉原理,我们可以推断至少有两个科目的书被取出,与假设矛盾。
因此,我们可以得出结论:至少有两本是同一科目的书。
例题3:小明有10个板块,每个板块上的数字都是从1到5的整数。
现在小明需要从这些板块中任意取出6个。
证明:至少有两个板块上的数字相同。
解析:我们可以使用与前两个例题相似的思路来解决这个问题。
设想将6个板块放进5个抽屉,将每个板块上的数字当作抽屉的标号。
根据抽屉原理,至少有一个抽屉里面有两个板块。
而在这个问题中,抽屉就是指板块上的数字。
因此,我们可以得出结论:至少有两个板块上的数字相同。
通过以上三个例题,我们可以看到抽屉原理的应用非常广泛。
它不仅用于奥数问题,同时也可以应用于生活中的诸多场景中。
对于学生们来说,理解抽屉原理可以帮助他们在解决问题时更加灵活和深入地思考。
除了以上的例题外,还有许多与抽屉原理相关的问题等待我们去发现和解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数专题-抽屉原理
如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。
同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。
以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n 个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
一、例题与方法指导
例1. 某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?
分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名小朋友看作367个物品。
这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。
因此至少有2名小朋友的生日相同。
例2. 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?
分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。
将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。
这两个数的差必能被3整除。
例3. 在任意的五个自然数中,是否其中必有三个数的和是3的倍数?
分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。
现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。
第一种情形。
有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。
因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。
第二种情形。
至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个
抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。
因此这三个数之和能被3整除。
综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。
二、巩固训练
1. 有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?
分析与解:由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计。
对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:
(奇,奇),(奇,偶),(偶,奇),(偶,偶),
其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性。
将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形。
由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数。
2. 用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。
是否存在两列,它们的小方格中涂的颜色完全相同?
分析与解:用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:
将上面的四种情形看成四个“抽屉”。
根据抽屉原理,将五列放入四个抽屉,至少有一个抽屉中有不少于两列,这两列的小方格中涂的颜色完全相同。
在上面的几个例子中,例1用一年的366天作为366个抽屉;例2与例3用整数被3除的余数的三种情形0,1,2作为3个抽屉;例4将一条线段的10等份作为10个抽屉;例5把每堆水果中,苹果数与桔子数的奇偶搭配情形作为4个抽屉;例6将每列中两个小方格涂色的4种情形作为4个抽屉。
由此可见,利用抽屉原理解题的关键,在于恰当地构造抽屉。
3. 在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?
分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图)。
将每段线段看成是一个“抽屉”,一共有10个抽屉。
现在将这11个点放到这10个抽屉中去。
根据抽屉原理,至少有一个抽屉里有两个或两个以上的点(包括这些线段的端点)。
由于这两个点在同一个抽屉里,它们之间的距离当然不会大于1厘米。
所以,在长度是10厘米的线段上任意取11个点,至少存在两个点,它们之间的距离不大于1厘米。
三、拓展提升
1. 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
2.一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
分析与解答扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。
3. 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:
凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。