概率论一二章习题详解

合集下载

概率论第二章习题答案

概率论第二章习题答案

概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。

求X的分布律。

解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。

由于骰子是公正的,每个面出现的概率都是1/6。

因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。

求Y的概率密度函数。

解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。

解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。

解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。

求X的分布律和期望值。

解答:X服从参数为n和p的二项分布。

其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。

概率论第二章习题解答

概率论第二章习题解答

a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X

概率论一二章习题详解

概率论一二章习题详解

习题一(A )1. 用三个事件,,A B C 的运算表示下列事件:(1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB(4) ABBC CA (5) A B C (6) ABBC CA2. 在区间[0,2]上任取一数x , 记 1{|1},2A x x =<≤ 13{|}42B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) AB .解:(1){|1412132}x x x ≤≤<≤或 (2)∅(3){|014121x x x ≤<<≤或3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P A B C .解:0.2()()P A P AB =-,0.1()(())()()()()()()P CAB P C A B P C P CA CB P C P CA P CB P ABC -=-=-=--+()()()()()()()()P A B C P A P B P C P AB P BC P CA P ABC =++---+=0.40.20.10.7++=4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与()P AB .解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150.1P B A P B P AB -=-=-=, ()()1()()()P AB P AB P A P B P AB ==--+10.40.250.150.5=--+=5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率.解:232224813!13!p ⨯⨯⨯⨯==6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率.解:1254535099392C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率.解: 1212312p =:8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率.解:设i A 表示第i 次取到次品,1,2,3i =, 12395945()0.0461009998P A A A ==9. 两人相约7点到8点在校门口见面,试求一人要等另一人半小时以上的概率.解:1112122214p ⨯⨯⨯== 10. 两艘轮船在码头的同一泊位停船卸货,且每艘船卸货都需要6小时.假设它们在一昼夜的时间段中随机地到达,求两轮船中至少有一轮船在停靠时必须等待的概率.解:22246371()1()24416p -=-=-=11. 任取两个不大于1的正数,求它们的积不大于29,且它们和不大于1的概率. 解:29xy ≤ , 1x y +≤ ,所以 13x =,23x =23131212ln 23939p dx x =+=+⎰12. 设(),(),P A a P B b == 证明:1(|)a b P A B b+-≥. 证明: ()()()()()()()P AB P A P B P A B P A B P B P B +-==()()11()P A P B a b P B b+-+-≥≥13. 有朋自远方来,他坐火车、坐船、坐汽车和坐汽车的概率分别为0.3, 0.2,0.1,0.4 .若坐火车来,迟到的概率是0.25;若坐船来,迟到的概率是0.3;若坐汽车来,迟到的概率是0.1;若坐飞机来,则不会迟到.求他迟到的概率.解:0.30.250.20.30.10.10.145⨯+⨯+⨯=14. 设10个考题签中有4个难答,3人参加抽签,甲先抽,乙次之,丙最后.求下列事件的概率:(1)甲抽到难签;(2)甲未抽到难签而乙抽到难签; (3)甲、乙、丙均抽到难签.解;(1)42105p == (2)64410915p == (3) 4321109830p ==15. 发报台分别以概率0.6和0.4发出信号“*”和“-” .由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“-”;同样,当发出信号“-”时,收报台分别以0.9和0.1收到信号“-”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收到信号“*”时,发报台确实是发出信号“*”的概率.解:(1)0.60.80.40.10.52⨯+⨯= (2)0.48120.5213= 16. 设,A B 相互独立,()0.6,()0.4P A B P B ==,求()P A .解:()0.6()()()0.4()()P AB P A P B P AB P A P AB ==+-=+-0.2()0.4()P A P A =-, 1()3P A =17. 两两独立的三事件,,A B C 满足,ABC =∅并且1()()()2P A P B P C ==<.若9()16P AB C =,求()P A . 解:293()3()16P A P A =- ,216()16()30P A P A -+= 21()(,()34P A P A ==舍) 18、证明:(1)若(|)()P A B P A >,则(|)()P B A P B >.(2)若(|)(|)P A B P A B =,则事件A 与B 相互独立.证明:(1)()()()P AB P A P B > ,()()()P AB P A P B > ()()()()()()()P AB P A P B P B A P B P A P A >= (2) ()()P A B P A B =,()()()1()P AB P A B P B P B -=-()()()P AB P A P B =19. 甲、乙、丙三人独立地向一架飞机射击.设甲、乙、丙的命中率分别为0.4,0.5,0.7.又飞机中1弹,2弹,3弹而坠毁的概率分别为0.2,0.6,1. 若三人各向飞机射击一次,求:(1)飞机坠毁的概率;(2)已知飞机坠毁,求飞机被击中2弹的概率.解:(1)0.2(0.40.50.30.60.50.30.60.50.7)0.6(0.40.50.30.40.50.70.60.50.7)0.40.50.70.20.360.60.410.140.458⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯+⨯+=(2)0.60.410.540.458⨯=20. 三人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4.求此密码能被译出的概率.解: 0.250.350.40.250.650.60.750.350.60.750.650.40.250.350.60.250.650.40.750.350.4⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.0350.09750.15750.1950.05250.0650.1050.7075=++++++=21. 在试验E 中,事件A 发生的概率为()P A p =,将试验E 独立重复进行三次,若在三次试验中“A 至少出现一次的概率为1927”,求p . 解:00333191(1)1(1)27C p p p =--=--,13p = 22. 已知某种灯泡的耐用时间在1000小时以上的概率为0.2,求三个该型号的灯泡在使用1000小时以后至多有一个坏掉的概率.解:31230.20.80.20.0830.80.040.104C +⋅=+⨯⨯=23. 设有两箱同种零件,在第一箱内装50件,其中有10件是一等品;在第二箱内装有30件,其中有18件是一等品.现从两箱中任取一箱,然后从该箱中不放回地取两次零件,每次1个,求:(1)第一次取出的零件是一等品的概率; (2)已知第一次取出的零件是一等品,,第二次取出的零件也是一等品的概率.解: (1) 1011810.4502302+= (2) 5110911817519117[][]225049230294549529+=+ 19512612499()0.4856449295684+=+==(B )1.箱中有α个白球和β个黑球,从中不放回地接连取1(1)k k αβ++≤+次球,每次1个.求最后取出的是白球的概率.解:(1)(2)()()(1)()k k αβαβαβαααβαβαβαβ+-+-+-=++-+-+2. 一栋大楼共有11层,电梯等可能地停在2层至11层楼的每一层,电梯在一楼开始运行时有6位乘客,并且乘客在2层至11层楼的每一层离开电梯的可能性相等,求下列事件的概率:(1)某一层有两位乘客离开;(2)没有两位及以上的乘客在同一层离开; (3)至少有两位乘客在同一层离开.解:(1)42242666199()()101010C C = (2) 61010!P(3) 610110!P -3.将线段(0,)a 任意折成3折,求此3折线段能构成三角形的概率. 解:{}(,)0,0,0x y x a y a x y a Ω=<<<<<+<,(,)0,0,222a a a A x y x y x y a ⎧⎫=<<<<<+<⎨⎬⎩⎭, 21122242a a p a ==4. 设平面区域D 由四点(0,0),(0,1),(1,0),(1,1)围成的正方形,现向D 内随机投10个点,求这10个点中至少有2个落在由曲线2y x =和直线y x =所围成的区域1D 的概率.解: 1201()6p x x dx =-=⎰, 001019101015151()()()()6666C C --91091051055151()()166662929687510.5260466176⨯=--=-=-= 5. 设有来自三个地区的10名、15名、25名考生的报名表,其中女生的报名表分别为3份、7份、5份. 随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率.解:( 1) 1317152931031532590++= (2) 13717815202020310931514325243029616119030++==-6. (Banach 问题)某数学家有两盒火柴,每盒装有N 根,每次使用时,他在任一盒中取一根,问他发现一空盒,而另一盒还有k 根火柴的概率是多少.解:222211112()(1)()2222N k N N N k N NN k N k p C C -----=-=习题二( A )1.同时抛掷3枚硬币,以X 表示出现正面的枚数,求X 的分布律。

概率论与数理统计习题答案1-2

概率论与数理统计习题答案1-2

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

概率论课本答案2(龙版)

概率论课本答案2(龙版)

第二章 (证明题略)练习2-1练习题1. 2. 3. 见教材P259页解答。

4.解:X: 甲投掷一次后的赌本。

Y :乙……… 21214020p x 21213010Y p⎪⎩⎪⎨⎧≥<≤<=40,14020,2120,0)(F ~x x x x x X ⎪⎩⎪⎨⎧≥<≤<=30,13010,2110,0)(F ~Y x x x y Y5.解(1)∑∑∑∑=====⇒=⇒=⇒==10011001100110012112121)(i ii i i i ia a a i x p(2)31211112112121)(1111=⇒=--⇒=⇒=⇒=⇒==∑∑∑∑∞=∞=∞=∞=a a a a ai x p i i i i i i i6.解 21 51 101512 0 25X --p 7.解(1)X:有放回情形下的抽取次数。

P (取到正品)=107C C 11017=P (取到次品)=103 107)103( 107)103( 107103,107i 3 2 1X 1-i 2 ⋅p(2)Y:无放回情形下。

778192103 87 92103 97 103 1074 3 2 1 Y ⋅⋅⋅⋅⋅⋅p8.解54511)5(1)3(1)3P(=-=-=-=-≤-=->X p X p X 542)P(X 0)P(X )2()33()3X P(==+=+-==<<-=<X p X p 107)5()2()3()1()21P(2)1()21X P(=-=+==-<+>=-<++>+=>+X p X p X p X p X X p9.解(1)根据分布函数的性质11)1()(2lim 1lim 1=⇒=⇒=++→→A Ax F x F x x(2))5.0()8.0()8.05.0(F F X P -=≤<225.08.0-==0.3910.解:依据分布满足的性质进行判断: (1)+∞<<∞-x单调性:+∞<<<⇒<x x F x F x x 0).()(2121在时不满足。

第一二章概率论的答案

第一二章概率论的答案

详解:(1)依题意可知,记 9 个合格品分别为: A1, A2 ,... A9 , 记“不合格”为 B ,

A1,A2 ,A1,A3 ,...A1,A9 ,A1,B,A2,A3 ,A2,A4 ...A2,A9 ,A2,B, A3,A4 ,...A3,A9 A3,B
x1, x2 两 点 位 置 确 定 , x3 位 置 也 就 唯 一 确 定 , 故 共 有 C21 种 情 况 , 记
A
x2位于x1与x3之间
,则 P( A) C21C11 A31 A21
21. 63
(2)设线段 AB 为 1 个单位长度, x1, x2 , x3 分别为线段 Ax1, Ax2 , Ax3 的长度, 若
C A8,A9 ,A9,B, 共有
2 个样本点,其中任取两件得一不合格品的样本点集
10
为:A1,B, A2,B...A9,B
(2)记 2 个白球分别为:1,2 ,3 个黑球分别为: a1, a2, a3,4 个红球分别为:
b1, b2 , b3, b4 ,则 1,2 , a1, a2 , a3, b1, b2 , b3, b4,所以(i)= 1,2,
一、习题详解
1.1 写出下列随机试验的样本空间,并表示下列事件的样本点集合: (1) 10 件产品中有一件是不合格,从中任取 2 件得 1 件不合格品。 (2)一个口袋中有 2 个白球、3 个黑球、4 个红球,从中任取一球,(i)得白球; (ii)得红球。 分析:该题考查了样本空间和样本点的基本定义.
1 p P(B) P(AB)
又因为 P( AB) P( AB) P(B) 1 p 详解 2: A与B相互独立 A与B也相互独立
因此, P(AB) P(A)P(B),又 PA p ,故 P A 1 p

概率论1至7章课后答案

概率论1至7章课后答案

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论课后1-8章 习题解答

概率论课后1-8章 习题解答

第一章习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B解:(1)()()A B A B AB AB B B == , (2) ()()A B A B ()AB AB B A A B B ==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一(A )1. 用三个事件,,A B C 的运算表示下列事件:(1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生.解:(1)A B C (2)A B C (3) AB C A BC C AB (4) AB BC CA (5) A B C (6) A B B C C A 2. 在区间[0,2]上任取一数x , 记 1{|1},2A x x =<≤13{|}42B x x =≤≤,求下列事件的表达式:(1)AB ; (2)AB ; (3) A B .解:(1){|1412132}x x x ≤≤<≤或 (2)∅(3){|014121x x x ≤<<≤或3. 已知()0.4,()0.2,()0.1P A P BA P C AB ===,求()P A B C . 解:0.2()()P A P AB =-,0.1()(())()()()()()()P C A B P C A B P C P C A C B P C P C A P C B P ABC -=-=-=--+()()()()()()()(P A B C P A P B P C P A B P B C P C AP A B C=++---+ =0.40.20.10++= 4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与()P AB .解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150.1P B A P B P AB -=-=-=, ()()1()()()P A B P A B P A P B P AB ==--+ 10.40.250.150.5=--+=5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“M A T H E M A T IC IA N ”的概率.解:232224813!13!p ⨯⨯⨯⨯==6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率.解:1254535099392C C p C==7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率.解: 1212312p =:8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率.解:设i A 表示第i 次取到次品,1,2,3i =, 12395945()0.0461009998P A A A ==9. 两人相约7点到8点在校门口见面,试求一人要等另一人半小时以上的概率. 解:1112122214p ⨯⨯⨯== 10. 两艘轮船在码头的同一泊位停船卸货,且每艘船卸货都需要6小时.假设它们在一昼夜的时间段中随机地到达,求两轮船中至少有一轮船在停靠时必须等待的概率.解:22246371()1()24416p -=-=-=11. 任取两个不大于1的正数,求它们的积不大于29,且它们和不大于1的概率.解:29xy≤,1x y+≤,所以13x=,23x=23131212ln23939p dxx=+=+⎰12. 设(),(),P A a P B b==证明:1 (|)a bP A Bb+-≥.证明:()()()() ()()()P AB P A P B P A B P A BP B P B+-==()()11()P A P B a bP B b+-+-≥≥13. 有朋自远方来,他坐火车、坐船、坐汽车和坐汽车的概率分别为0.3,0.2,0.1,0.4.若坐火车来,迟到的概率是0.25;若坐船来,迟到的概率是0.3;若坐汽车来,迟到的概率是0.1;若坐飞机来,则不会迟到.求他迟到的概率.解:0.30.250.20.30.10.10.145⨯+⨯+⨯=14. 设10个考题签中有4个难答,3人参加抽签,甲先抽,乙次之,丙最后.求下列事件的概率:(1)甲抽到难签;(2)甲未抽到难签而乙抽到难签;(3)甲、乙、丙均抽到难签.解;(1)42105 p==(2)64410915 p==(3)4321109830 p==15. 发报台分别以概率0.6和0.4发出信号“*”和“-” .由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“-”;同样,当发出信号“-”时,收报台分别以0.9和0.1收到信号“-”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收到信号“*”时,发报台确实是发出信号“*”的概率.解:(1)0.60.80.40.10.52⨯+⨯=(2)0.4812 0.5213=16. 设,A B相互独立,()0.6,()0.4P A B P B==,求()P A. 解:()0.6()()()0.4()() P A B P A P B P AB P A P AB ==+-=+-0.2()0.4()P A P A =-, 1()3P A =17. 两两独立的三事件,,A B C 满足,ABC =∅并且1()()()2P A P B P C ==<.若9()16P A B C =,求()P A .解:293()3()16P A P A =- ,216()16()30P A P A -+=21()(,()34P A P A ==舍)18、证明:(1)若(|)()P A B P A >,则(|)()P B A P B >.(2)若(|)(|)P A B P A B =,则事件A 与B 相互独立.证明:(1)()()()P AB P A P B > ,()()()P AB P A P B >()()()()()()()P A B P A P B P B A P BP A P A >= (2) ()()P A B P A B =, ()()()1()P AB P A B P B P B -=-()()()P A B P A P B = 19. 甲、乙、丙三人独立地向一架飞机射击.设甲、乙、丙的命中率分别为0.4,0.5,0.7.又飞机中1弹,2弹,3弹而坠毁的概率分别为0.2,0.6,1. 若三人各向飞机射击一次,求:(1)飞机坠毁的概率;(2)已知飞机坠毁,求飞机被击中2弹的概率.解:(1)0.2(0.40.50.30.60.50.30.60.50.7)0.6(0.40.50.30.40.50.70.60.50.7)0.40.50.70.20.360.60.410.140.458⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯+⨯+=(2)0.60.410.540.458⨯=20. 三人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4.求此密码能被译出的概率.解: 0.250.350.40.250.650.60.750.350.60.750.650.40.250.350.60.250.650.40.750.350.4⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.0350.09750.15750.1950.05250.0650.1050.7075=++++++=21. 在试验E 中,事件A 发生的概率为()P A p =,将试验E 独立重复进行三次,若在三次试验中“A 至少出现一次的概率为1927”,求p .解:333191(1)1(1)27C p p p =--=--,13p =22. 已知某种灯泡的耐用时间在1000小时以上的概率为0.2,求三个该型号的灯泡在使用1000小时以后至多有一个坏掉的概率.解:31230.20.80.20.0830.80.040.104C +⋅=+⨯⨯=23. 设有两箱同种零件,在第一箱内装50件,其中有10件是一等品;在第二箱内装有30件,其中有18件是一等品.现从两箱中任取一箱,然后从该箱中不放回地取两次零件,每次1个,求:(1)第一次取出的零件是一等品的概率; (2)已知第一次取出的零件是一等品,,第二次取出的零件也是一等品的概率. 解: (1) 1011810.4502302+= (2)5110911817519117[][]225049230294549529+=+ 19512612499()0.4856449295684+=+==(B )1.箱中有α个白球和β个黑球,从中不放回地接连取1(1)k k αβ++≤+次球,每次1个.求最后取出的是白球的概率.解:(1)(2)()()(1)()k k αβαβαβαααβαβαβαβ+-+-+-=++-+-+2. 一栋大楼共有11层,电梯等可能地停在2层至11层楼的每一层,电梯在一楼开始运行时有6位乘客,并且乘客在2层至11层楼的每一层离开电梯的可能性相等,求下列事件的概率:(1)某一层有两位乘客离开;(2)没有两位及以上的乘客在同一层离开; (3)至少有两位乘客在同一层离开.解:(1)42242666199()()101010C C=(2)61010!P(3) 610110!P -3.将线段(0,)a 任意折成3折,求此3折线段能构成三角形的概率. 解:{}(,)0,0,0x y x a y a x y a Ω=<<<<<+<, (,)0,0,222a a a A x y x y x y a ⎧⎫=<<<<<+<⎨⎬⎩⎭, 211222142a ap a ==4. 设平面区域D 由四点(0,0),(0,1),(1,0),(1,1)围成的正方形,现向D 内随机投10个点,求这10个点中至少有2个落在由曲线2y x =和直线y x =所围成的区域1D 的概率.解: 121()6p x x dx =-=⎰,1019101015151()()()()6666C C --91091051055151()()166662929687510.5260466176⨯=--=-=-=5. 设有来自三个地区的10名、15名、25名考生的报名表,其中女生的报名表分别为3份、7份、5份. 随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率. 解:( 1)131********31532590++=(2) 13717815202020310931514325243029616119030++==-6. (Banach 问题)某数学家有两盒火柴,每盒装有N 根,每次使用时,他在任一盒中取一根,问他发现一空盒,而另一盒还有k 根火柴的概率是多少.解:222211112()(1)()2222N kNNN k NNN k N k p C C -----=-=习题二( A )1.同时抛掷3枚硬币,以X 表示出现正面的枚数,求X 的分布律。

相关文档
最新文档