宁夏固原市第一中学2021届高三下学期第一次模拟考试数学(文)试题+Word版含答案
宁夏固原市2021届新高考数学第一次押题试卷含解析

宁夏固原市2021届新高考数学第一次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义域为R 的偶函数()f x 满足任意x ∈R ,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+至少有三个零点,则a 的取值范围是( )A .0,2⎛ ⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎛ ⎝⎭【答案】B 【解析】 【分析】由题意可得()f x 的周期为2,当[2,3]x ∈时,2()21218f x x x =-+-,令()log (1)a g x x =+,则()f x 的图像和()g x 的图像至少有3个交点,画出图像,数形结合,根据(2)(2)g f >,求得a 的取值范围. 【详解】()f x 是定义域为R 的偶函数,满足任意x ∈R ,(2)()(1)f x f x f +=-,令1,(1)(1)(1)x f f f =-=--,又(1)(1),(1))(2)(0,f f x f x f f -=∴+==,()f x ∴为周期为2的偶函数,当[2,3]x ∈时,22()212182(3)f x x x x =-+-=--,当2[0,1],2[2,3],()(2)2(1)x x f x f x x ∈+∈=+=--, 当2[1,0],[0,1],()()2(1)x x f x f x x ∈--∈=-=-+, 作出(),()f x g x 图像,如下图所示:函数()log (1)a y f x x =-+至少有三个零点, 则()f x 的图像和()g x 的图像至少有3个交点,()0f x ≤Q ,若1a >,()f x 的图像和()g x 的图像只有1个交点,不合题意,所以01a <<,()f x 的图像和()g x 的图像至少有3个交点, 则有(2)(2)g f >,即log (21)(2)2,log 32a a f +>=-∴>-,221133,,01,033a a a a ∴><<<∴<<Q . 故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.2.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( )A .4B .-4C .8D .-8【答案】B 【解析】 【分析】根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m . 【详解】由{}2A B =-I ,可知2B -∈, 又因为{}2|120B x x mx =+-=, 所以2x =-时,2(2)2120m ---=, 解得4m =-. 故选:B. 【点睛】本题考查交集的概念,属于基础题.3.一个几何体的三视图如图所示,则该几何体的体积为( )A.103B.3C.83D.73【答案】A【解析】【分析】根据题意,可得几何体,利用体积计算即可. 【详解】由题意,该几何体如图所示:该几何体的体积11110222222323 V=⨯⨯⨯-⨯⨯⨯=.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.4.已知数列满足:.若正整数使得成立,则( )A.16 B.17 C.18 D.19【答案】B【解析】【分析】由题意可得,,时,,将换为,两式相除,,,累加法求得即有,结合条件,即可得到所求值.【详解】解:,即,,时,,,两式相除可得,则,,由,,,,,可得,且,正整数时,要使得成立,则,则,故选:.【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.5.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是()A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18% 【答案】D 【解析】 【分析】A.从第一个图观察居住占23%,与其他比较即可.B. CPI 一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI 一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI 一篮子商品中所占权重约为2.1%+2.5%=4.6%. 【详解】A. CPI 一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI 一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI 一篮子商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI 一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误. 故选:D 【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.6.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,若点(2,1)P -在角α的终边上,则sin 22πα⎛⎫-= ⎪⎝⎭( ) A .45-B .45C .35-D .35【答案】D 【解析】 【分析】 由题知25cos α=,又2sin 2cos 22cos 12πααα⎛⎫-==- ⎪⎝⎭,代入计算可得.【详解】由题知cos α=,又23sin 2cos 22cos 125πααα⎛⎫-==-= ⎪⎝⎭.故选:D 【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.7.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题. 8.设i 是虚数单位,a R ∈,532aii a i+=-+,则a =( ) A .2- B .1-C .1D .2【答案】C 【解析】 【分析】 由532aii a i+=-+,可得()()()5323232ai a i i a a i +=+-=++-,通过等号左右实部和虚部分别相等即可求出a 的值. 【详解】解:532aii a i+=-+Q,()()()5323232ai a i i a a i ∴+=+-=++- 53232a a a =+⎧∴⎨-=⎩,解得:1a =.故选:C. 【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把2i 当成1进行运算. 9.在ABC ∆中,“sin sin A B >”是“tan tan A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】通过列举法可求解,如两角分别为2,63ππ时【详解】当2,36A B ππ==时,sin sin A B >,但tan tan A B <,故充分条件推不出; 当2,63A B ππ==时,tan tan A B >,但sin sin A B <,故必要条件推不出;所以“sin sin A B >”是“tan tan A B >”的既不充分也不必要条件. 故选:D. 【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题 10.5()(2)x y x y +-的展开式中33x y 的系数为( ) A .-30 B .-40 C .40 D .50【答案】C 【解析】 【分析】先写出()52x y -的通项公式,再根据33x y 的产生过程,即可求得.【详解】对二项式()52x y -,其通项公式为()()()555155221rrrrr rr r r T C x y C x y ---+=-=-5()(2)x y x y +-的展开式中33x y 的系数是()52x y -展开式中23x y 的系数与32x y 的系数之和.令3r =,可得23x y 的系数为()33252140C -=-; 令2r =,可得32x y 的系数为()22352180C -=;故5()(2)x y x y +-的展开式中33x y 的系数为804040-=.故选:C. 【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.11.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+u u u u v u u u v u u u v(,)x y ∈R ,则2x y +的最大值为( )A .2B .3C .2D .22【答案】C 【解析】 【分析】建立坐标系,写出相应的点坐标,得到2x y +的表达式,进而得到最大值. 【详解】以D 点为原点,BC 所在直线为x 轴,AD 所在直线为y 轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆; 根据三角形面积公式得到011sin 6022l r S AB AC ⨯⨯==⨯⨯⨯周长,可得到内切圆的半径为1; 可得到点的坐标为:()()()()()3,0,3,0,0,3,0,0,cos ,1sinB CA D M θθ-+ ()cos 3,1sin ,BM θθ=++u u u u v ()()3,3,3,0BD BA ==u u u r u u u v故得到 ()()cos 3,1sin 33,3x BM y x θθ=++=+u u u u v故得到cos 333,sin 31x y x θθ=+-=-1sin 3sin 2333x y θθ+⎧=⎪⎪⇒⎨⎪=-+⎪⎩,()sin 4242sin 2.33333x y θθϕ+=++=++≤ 故最大值为:2. 故答案为C. 【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.12.如图,点E 是正方体ABCD-A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF//BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 【答案】C 【解析】 【分析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果. 【详解】 A 错误由EF ⊂平面AEC ,1BC //1AD 而1AD 与平面AEC 相交,故可知1BC 与平面AEC 相交,所以不存在EF//BC 1 B 错误,如图,作11B M BD ⊥由11,,AC BD AC BB BD BB B ⊥⊥⋂=又1,BD BB ⊂平面11BB D D ,所以AC ⊥平面11BB D D 又1B M ⊂平面11BB D D ,所以1B M AC ⊥ 由OE //1BD ,所以1B M OE ⊥AC OE O =I ,,AC OE ⊂平面AEC所以1B M ⊥平面AEC ,又AE ⊂平面AEC 所以1B M AE ⊥,所以存在 C 正确四面体EMAC 的体积为13M AEC AEC V S h -∆=⋅⋅ 其中h 为点M 到平面AEC 的距离,由OE //1BD ,OE ⊂平面AEC ,1BD ⊄平面AEC 所以1BD //平面AEC ,则点M 到平面AEC 的距离即点B 到平面AEC 的距离, 所以h 为定值,故四面体EMAC 的体积为定值D 错误由AC //11A C ,11A C ⊂平面11A C B ,AC ⊄平面11A C B 所以AC //平面11A C B ,则点F 到平面11A C B 的距离1h 即为点A 到平面11A C B 的距离,所以1h 为定值所以四面体FA 1C 1B 的体积1111113F A C B A C B V S h -∆=⋅⋅为定值 故选:C 【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.二、填空题:本题共4小题,每小题5分,共20分。
2021-2022年高三第一次模拟考试 文科数学 含答案

2021年高三第一次模拟考试 文科数学 含答案xx.03本试卷分第I 卷和第Ⅱ卷两部分,共4页.满分150分.考试时间120分钟.考试结束后, 将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}lg 0,2,M x x N x x M N =>=≤⋂=则A. B. C. D.2.在复平面内,复数所对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.下列命题中,真命题是A. B.C.函数的图象的一条对称轴是D.4.设a,b 是平面内两条不同的直线,l 是平面外的一条直线,则“”是“”的A.充分条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要条件5.函数的大致图象是6.已知双曲线的一个焦点与圆的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为A. B.C. D.7.已知等比数列的公比为正数,且,则的值为A.3B.C.D.8.设的最小值是A.2B.C.4D.89.右图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为的矩形.则该几何体的表面积是A.8B.C.16D.10. 已知实数,执行如右图所示的流程图,则输出的x不小于55的概率为A. B. C. D.11.实数满足如果目标函数的最小值为,则实数m的值为A.5B.6C.7D.812.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确..的是A.满足的点P必为BC的中点B.满足的点P有且只有一个C.的最大值为3D.的最小值不存在第II卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.抛物线的准线方程为____________.14.已知为第二象限角,则的值为__________.15.某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分布五组:第一组,第二组,……,第五组.右图是按上述分组方法得到的频率分布直方图,若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数等于________________.16.记…时,观察下列,,观察上述等式,由的结果推测_______.三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在中,角A ,B ,C 所对的边分别为a,b,c,若向量()()1cos ,sin ,cos ,sin ,.2m B C n C B m n =-=--⋅=且 (I )求角A 的大小;(II )若的面积,求的值.18.(本小题满分12分)海曲市教育系统为了贯彻党的教育方针,促进学生全面发展,积极组织开展了丰富多样的社团活动,根据调查,某中学在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“曲艺”三个社团,三个社团参加的人数如表所示:为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为n 的样本,已知从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人.(I )求三个社团分别抽取了多少同学;(II )若从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“剪纸”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率.19.(本小题满分12分)如图,已知平面ACD ,DE//AB ,△ACD 是正三角形,且F 是CD 的中点.(I )求证:AF//平面BCE ;(II )求证:平面.20.(本小题满分12分)若数列:对于,都有(常数),则称数列是公差为d 的准等差数列.如数列:若是公差为8的准等差数列.设数列满足:,对于,都有.(I )求证:为准等差数列;(II )求证:的通项公式及前20项和21.(本小题满分13分)已知长方形EFCD,以EF的中点O为原点,建立如图所示的平面直角坐标系(I)求以E,F为焦点,且过C,D两点的椭圆的标准方程;(II)在(I)的条件下,过点F做直线与椭圆交于不同的两点A、B,设,点T坐标为的取值范围.22.(本小题满分13分)已知函数.(I)求函数的单调区间;(II)若函数上是减函数,求实数a的最小值;(III)若,使成立,求实数a的取值范围.xx届高三模拟考试文科数学参考答案及评分标准xx.03 说明:本标准中的解答题只给出一种解法,考生若用其它方法解答,只要步骤合理,结果正确,均应参照本标准相应评分。
2021年3月6日宁夏固原市第一中学2021届高三下学期第一次高考模拟考试数学(文)试题(解析版)

绝密★启用前宁夏自治区固原市第一中学2021届高三年级下学期第一次高考模拟考试数学(文)试题(解析版)2021年3月6日一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={−3,−2,0,2,3},B ={x|−3<x <3},那么A ∩B =( )A.{−1,1}B.{−2,2}C.{−2,0,2}D.{−2,−1,0,1}【答案】C【解答】解:∵ A ={−3,−2,0,2,3},B ={x|−3<x <3},∴ A ∩B ={−2,0,2}.故选C .2.若53cos =α,且为第四象限角,则=αtan ( ) A. 34- B. 43- C. D. 【答案】A【解析】由已知利用诱导公式,求得,进一步求得,再利用三角函数的基本关系式,即可求解。
【详解】由题意, 又由为第四象限角,所以54sin -=α, 所以34tan -=α。
故选A. 【点睛】本题主要考查了三角函数的化简、求值问题,其中解答中熟记三角函数的诱导公式和三角函数的基本关系式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题。
3. 已知向量)1,1(-=a ,b →=(−2,−m +1),若)(b a a +⊥,则m =( )A. -1B.0C.1D.3【答案】C 【解答】解:因为向量)1,1(-=a ,b →=(−2,−m +1),所以a →+b →=(m −2,−m).因为a →⊥(a →+b →),所以m(m −2)+m =0,解得m =1.故答案为:C4. .小荣家庭一周的支出数据如图,问其中肉类支出占总支出的百分比约()A .6.8%B .8%C .10%D .12% 解:由扇形图可知,食品类支出占家庭总支出的36%,由条形统计图可知:肉类支出占食品类支出的=, 因此肉类支出占家庭总支出的比例为12%.故选:D .5.设D 为ABC △的边BC 的延长线上一点,3BC CD =,则( ) A.1433AD AB AC =- B.4133AD AB AC =+ C.1433AD AB AC =-+ D.4133AD AB AC =-答案:C 解析:BD AB AD += 34+= )(34-+= AC AB 3431+-=。
宁夏固原市第一中学2021届高三第三次模拟数学(理)试题 Word版含答案

固原一中2021届高三班级第三次模拟数学(理)试卷2021.5.27本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其它题为必考题。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求. 1. 已知集合}03|{2<-=x x x A ,},1{a B =,且B A 有4个子集,则实数a 的取值范围是( )A .)3,0(B .)3,1()1,0(C .)1,0(D .),3()1,(+∞-∞2.已知命题:,2lg p x R x x ∃∈->,命题:,1xq x R e ∀∈>,则( )A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∨⌝是假命题D .命题()p q ∧⌝是真命题3. 函数)4sin2cos 4cos2(sin log 21ππx x y -=的单调递减区间是( )A . Z k k k ∈++),83,8(ππππ B . Z k k k ∈++),85,8(ππππC .Z k k k ∈+-),83,8(ππππ D .Z k k k ∈++),85,83(ππππ4.数列{}n a 是正项等比数列,{}n b 是等差数列,且67a b =,则有 ( ) A .39410a a b b +≤+ B .39410a a b b +≥+C .39410a a b b +≠+D .39a a +与410b b +大小不确定5. 若程序框图如图示,则该程序运行后输出k 的值是( )A .5B .6C .7D .86. 1,3OA OB ==,0,OA OB =点C 在AOB ∠内,且30AOC ∠=︒,设,OC mOA nOB =+(),m n R ∈,则nm等于( ) A .31B .3C .33D .3 7.函数()sin()()2f x x πωϕϕ=+<其中的图象如图所示,为了得到sin y x ω=的图象,只需把()y f x =的图象上全部点( ) A .向左平移6π个单位长度 B .向右平移12π个单位长度C .向右平移6π个单位长度 D .向左平移12π个单位长度8.若A 为不等式组0,0,2x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ( )A .1B .32 C .34 D . 749. 多面体MN ABCD -的底面ABCD 矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为 ( )A .163 B .6 C .203D .6 10. 若两个正实数y x ,满足141=+yx ,且不等式 m m yx 342-<+有解,则实数m 的取值范围是( )A .)4,1(-B .),4()1,(+∞--∞C .)1,4(-D .),3()0,(+∞-∞11.已知双曲线22:13x C y -=的左,右焦点分别为1F ,2F ,过点2F 的直线与双曲线C 的右支相交于P ,Q两点,且点P 的横坐标为2,则△1PFQ 的周长为( ) A .1633 B .53 C .1433D .43 12.设函数()f x 在R 上存在导数()f x ',x R ∀∈,有2()()f x f x x -+=,在()0,+∞上()f x x '<,若(4)()84f m f m m --≥-,则实数m 的取值范围为( )A .[]-22,B .[)2+∞,C . [)+∞0,D .(][)--22+∞⋃∞,, 第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案写在横线上.13.设等比数列{}n a 中,前n 项和为n S ,已知38S =,67S =,则789a a a ++= 14.10)1)(1(x x -+ 开放式中3x 的系数为_________.15.某班有50名同学,一次数学考试的成果ξ听从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估量该班同学数学成果在115分以上的人数为16. 定义:假如函数)(x f y =在定义域内给定区间],[b a 上存在0x )(0b x a <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是],[b a 上的“平均值函数”,0x 是它的一个均值点,例如2x y =是]1,1[-上的平均值函数,EADCB第18题图0就是它的均值点.现有函数mx x x f +=3)(是]1,1[-上的平均值函数,则实数m 的取值范围是 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)如图,中国渔民在中国南海黄岩岛四周捕鱼作业,中国海监船在A 地侦察发觉,在南偏东60°方向的B 地,有一艘某国军舰正以每小时13海里的速度向正西方向的C 地行驶,企图抓捕正在C 地捕鱼的中国渔民.此时,C 地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的距离赶往C 地救援我国渔民,能不能准时赶到?(2≈1.41,3≈1.73,6≈2.45)18.(本小题满分12分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面相互垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥. (1)求证:AB DE ⊥;(2)求直线EC 与平面ABE 所成角的正弦值;(3)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求 出EFEA;若不存在,说明理由.19.(本小题满分12分)某校对参与高校自主招生测试的同学进行模拟训练,从中抽出N 名同学,其数学成果的频率分布直方图如图所示.已知成果在区间[90,100]内的同学人数为2人。
2021年高三下学期第一次模拟考试数学数学(文)试题 Word版含答案

2021年高三下学期第一次模拟考试数学数学(文)试题 Word版含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合,集合,则()(A)(B)(C)(D)2. 设命题p:,则p为()(A)(B)(C)(D)3. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()(A)(B)(C)(D)4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示. 若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()(A)(B)(C)(D)5. 在平面直角坐标系中,向量=(1, 2),=(2, m) ,若O, A, B三点能构成三角形,则()(A)(B)(C)(D)6. 执行如图所示的程序框图,若输入的分别为0, 1,则输出的()(A)4 (B)16 (C)27 (D)367. 设函数,则“”是“函数在上存在零点”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件8. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元. 已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误..的是()(A)最多可以购买4份一等奖奖品甲乙8901m 823(B )最多可以购买16份二等奖奖品 (C )购买奖品至少要花费100元 (D )共有20种不同的购买奖品方案第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 在复平面内,复数与对应的点关于虚轴对称,且,则____. 10.在△ABC 中,,,,则_____.11.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____. 12.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为____.13. 有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.14. 设函数 则____;若,,则的大小关系是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分) 设函数.(Ⅰ)求函数的最小正周期; (Ⅱ)求函数在上的最大值与最小值.16.(本小题满分13分)已知等差数列的公差,,. (Ⅰ)求数列的通项公式;侧(左)视图正(主)视图 俯视图(Ⅱ)设,记数列前n 项的乘积..为,求的最大值.17.(本小题满分14分)如图,在四棱柱中,底面,,,. (Ⅰ)求证:平面; (Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.18.(本小题满分13分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”. 已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)D 1DA C 1 A 1B 1B CO 体育成绩45 55 6575 85 95 各分数段人数19.(本小题满分14分)已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.20.(本小题满分13分)已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.北京市西城区xx年高三一模试卷参考答案及评分标准高三数学(文科)xx.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.A 3.B 4. C 5.B 6.D 7.A 8.D二、填空题:本大题共6小题,每小题5分,共30分.9. 10.11. 12.13.1464 14.注:第11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为……………… 4分.……………… 6分所以函数的最小正周期为. ……………… 7分(Ⅱ)解:由(Ⅰ),得. ……………… 8分因为,所以,所以.所以.……………… 11分且当时,取到最大值;当时,取到最小值. ……………… 13分16.(本小题满分13分)(Ⅰ)(Ⅰ)解:由题意,得……………… 3分解得或(舍).……………… 5分所以. ……………… 7分 (Ⅱ)解:由(Ⅰ),得. 所以.所以只需求出的最大值. ……………… 9分 由(Ⅰ),得2121(1)17(1)222n n n n n S a a a na n -=+++=+⨯-=-+.因为, ……………… 11分 所以当,或时,取到最大值.所以的最大值为. ……………… 13分17.(本小题满分14分) (Ⅰ)证明:因为,平面,平面, 所以平面. ………… 2分 因为,平面,平面, 所以平面.又因为,所以平面平面. ………… 3分 又因为平面,所以平面. ……………… 4分 (Ⅱ)证明:因为底面, 底面,所以. ……………… 5分 又因为,, 所以平面. ……………… 7分又因为底面,所以. ……………… 9分 (Ⅲ)结论:直线与平面不垂直. ……………… 10分 证明:假设平面,由平面,得. ……………… 11分 由棱柱中,底面, 可得,,D 1D AC 1A 1B 1B C又因为,所以平面,所以. ……………… 12分又因为,所以平面,所以. ……………… 13分这与四边形为矩形,且矛盾,故直线与平面不垂直. ……………… 14分18.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有人,………………2分所以该校高一年级学生中,“体育良好”的学生人数大约有人. ……4分(Ⅱ)解:设“至少有1人体育成绩在”为事件,………………5分记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,, (7)分因此事件的概率. ………………9分(Ⅲ)解: a,b,c的值分别是为,,. ………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C:,所以,,………………1分故,解得,所以椭圆的方程为. ………………3分因为,所以离心率. ………………5分(Ⅱ)解:由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,………………7分由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,………………9分令,得,则,由,得,化简,得. ………………11分所以. ………………13分当且仅当,即时等号成立.所以的最小值为. ……………… 14分20.(本小题满分13分)(Ⅰ)解:对求导,得,…………………1分所以,解得,所以. …………………3分(Ⅱ)解:由,得,因为,所以对于任意,都有. …………………4分设,则 .令,解得. …………………5分当x变化时,与的变化情况如下表:所以当时,. …………………7分因为对于任意,都有成立,所以 .所以的最小值为. …………………8分(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可. …………………10分设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方. …………………13分8v32436 7EB4 纴334053 8505 蔅-726100 65F4 旴K 35477 8A95 誕31458 7AE2 竢33606 8346 荆D。
宁夏银川一中2021届高三毕业班下学期第一次高考模拟考试数学(文)试题及答案

绝密★启用前宁夏银川市第一中学2021届高三毕业班下学期第一次高考模拟考试数学(文)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2650A x x x =-+≤,{}3B x y x ==-,A B 等于 A .[1,)+∞ B .[]1,3 C .(3,5] D .[]3,52.已知z 是纯虚数,若()31a i z i +⋅=-,则实数a 的值为A .1B .3C .-1D .-33.已知曲线C :x 2+y 2=2(x ·y ≥0),曲线C 与坐标轴围成封闭图形M 以及函数y =x 3的部分图象如图所示,若向M 内任意投掷一点,则该点落入阴影部分的概率为A .12B .14C .16D .184.任取一个正整数m ,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”).如取正整数3m =,根据上述运算法则得出3→10→5→16→8→4→2→1,共需经过7个步骤首次变成1(简称为7步“雹程”).则下列叙述不正确的是A .当12m =时,经过9步雹程变成1B .若m 需经过5步雹程首次变成1,则m 所有可能的取值集合为{}5,32C .当m 越大时,首次变成1需要的雹程数越大D .当()*2k m k N =∈时,经过k 步雹程变成15.若π1tan43α⎛⎫-=- ⎪⎝⎭,则cos2α等于 A .35 B .12 C .13D .3- 6.执行如右图所示的程序框图,输出的S 值为A .3lg 1-B .4lg 1-C .5lg 1-D .6lg 1-7.下图是一个正方体的展开图,则在该正方体中A .直线AB 与直线CD 平行 B .直线AB 与直线CD 相交C .直线AB 与直线CD 异面垂直 D .直线AB 与直线CD 异面且所成的角为60°8.设抛物线2:12C y x =的焦点为F ,准线为l ,点M 在C 上,点N 在l 上,且()0FN FM λλ=>,若4MF =,则λ的值 A .5 2 B .32 C .3 D .29.定义行列式运算12142334a a a a a a a a =-,将函数()3sin 1cos x f x x =的图像向左平移(0)n n >个单位,所得图像关于原点对称,则n 的最小值为A .6πB .3πC .23πD .56π 10.某口罩厂一年中各月份的收入、支出情况如图所示(单位:万元,下列说法中错误的是(注:月结余=月收入一月支出)A .上半年的平均月收入为45万元B .月收入的方差大于月支出的方差。
高考专题固原一中高三第一次模拟文数试题.docx

固原一中2015届高三第一次模拟文数试题命题人:孙荣 审题人陈永文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若集合{}{}22|228,|20x A x Z B x R x x +=∈<≤=∈->,则R C B A I ()所含的元素个数为( ) A .0 B .1 C .2 D .3 2.复数1z i =-,则1z z+对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若,a R ∈则“3a >”是“方程22(9)y a x =-表示开口向右的抛物线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知双曲线的一个焦点与抛物线220x y =的焦点重合,且其渐近线的方程为340x y ±=,则该双曲线的标准方程为( )A .221916x y -=B .221169x y -=C .221916y x -=D .221169y x -=5.已知等比数列{}n a ,且482,a a +=则62610(2)a a a a ++的值为( )A .4B .6C .8D .10 6.如图所示是用模拟方法估计圆周率π值的程序框图, P 表示估计的结果,则图中空白框内应填入 A.p=1000M B. p=1000M C. p=41000MD.p=10004M7. 0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 46980371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该射击运动员射击4次至少击中3次的概率为( ) A .0.852 B .0.8192 C .0.8 D .0.758.已知0a >,,x y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .12B .13C .1D .29.设函数()f x 是定义在R 上的奇函数,当0x >时,()23,xf x x =+-则()f x 的零点个数为( )A .1B .2C .3D .410.某几何体的三视图如图所示,则该几何体的体积为 ( )11..6225..36A B C D11.设P 是双曲线2214y x -=上除顶点外的任意一点,1F 、2F 分别是双曲线的左、右焦点,△12PF F 的内切圆与边12F F 相切于点M ,则12F M MF ⋅=u u u u r u u u u r A .5 B .4 C .2 D .112.已知数列{}n a 满足:1a m =(m 为正整数),16(1231nn n n n a a a a a a +⎧⎪==⎨⎪+⎩当为偶数时)若(当为奇数时) 则m 的所有可能值为A. 2或4或8B. 4或5或8C. 4或5或32D. 4或5或16第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.三棱锥P ABC -中,PA ⊥平面ABC ,,1,3AC BC AC BC PA ⊥===,则该三棱锥外接球的表面积为14.ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=u u u r u u u r u u u r r ,则OC AB ⋅u u u r u u u r的值为15.如图,在ABC ∆中,45,B D ∠=o是BC 边上一点,5,7,3AD AC DC ===,则AB 的长为16. 已知|log |)(2x x f =,正实数n m ,满足n m <,且)()(n f m f =,若)(x f 在区间[]n m ,2上的最大值为2,则n m +=_______。
宁夏固原市2021届新高考数学仿真第一次备考试题含解析

宁夏固原市2021届新高考数学仿真第一次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭ B .{}1,0,1- C .{}1,0,1,2- D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x xx x y =-⋅+=-⋅+,令2x t=(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.2.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=u u u r u u u r,则()2AE AC +u u u r u u u r 的最小值为( ) A .232B .12C .252D .13【答案】C 【解析】 【分析】分别以直线AB 为x 轴,直线AD 为y 轴建立平面直角坐标系,设(,)E x y ,根据2AE AC ⋅=u u u r u u u r,可求1x y +=,而222()(2)(2)AE AC x y u u u r u u u r +=+++,化简求解.解:建立以A 为原点,以直线AB 为x 轴,直线AD 为y 轴的平面直角坐标系.设(,)E x y ,(0,2)x ∈,(0,2)y ∈,则(,)AE x y =u u u r ,(2,2)AC =u u u r ,由2AE AC ⋅=u u u r u u u r,即222x y +=,得1x y +=.所以222()(2)(2)AE AC x y u u u r u u u r +=+++224()8x y x y =++++22213x x =-+=21252()22x -+,所以当12x =时,2()AE AC +u u u r u u u r 的最小值为252. 故选:C. 【点睛】本题考查向量的数量积的坐标表示,属于基础题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.已知抛物线2:8C y x =的焦点为F ,A B 、是抛物线上两个不同的点,若||||8AF BF +=,则线段AB的中点到y 轴的距离为( ) A .5 B .3C .32D .2【答案】D 【解析】 【分析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知12||||228AF BF x x +=+++=,继而可求出124x x +=,从而可求出AB 的中点的横坐标,即为中点到y 轴的距离.解:由抛物线方程可知,28p =,即4p =,()2,0F ∴.设()()1122,,,A x y B x y 则122,2AF x BF x =+=+,即12||||228AF BF x x +=+++=,所以124x x +=. 所以线段AB 的中点到y 轴的距离为1222x x +=. 故选:D. 【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得A B 、两点横坐标的和. 5.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =…,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集U N ð,再求出集合M 与U N ð的交集,即为所求阴影部分表示的集合. 【详解】由U =R ,{|||1}N x x =…,可得{1U N x x =<-ð或1}x >, 又{|31}M x x =-<<所以{31}U M N x x ⋂=-<<-ð. 故选:D. 【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.6.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.1 B.43C.3 D.4【答案】A【解析】【分析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果. 【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥A BCD-,长度如上图所以111121,11222 MBD DEC BCNS S S∆∆∆==⨯⨯==⨯⨯=所以3 222 BCD MBD DEC BCNS S S S∆∆∆∆=⨯---=所以113A BCD BCDV S AN -∆=⋅⋅=故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.7.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B .后4年我国入境游客万人次呈逐渐增加趋势C .这6年我国入境游客万人次的中位数大于13340万人次D .前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差 【答案】D 【解析】 【分析】ABD 可通过统计图直接分析得出结论,C 可通过计算中位数判断选项是否正确. 【详解】A .由统计图可知:2014年入境游客万人次最少,故正确;B .由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C .入境游客万人次的中位数应为13340.13与13604.33的平均数,大于13340万次,故正确;D .由统计图可知:前3年的入境游客万人次相比于后3年的波动更大,所以对应的方差更大,故错误. 故选:D. 【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.8.已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,cos2tan 1sin 2βαβ=-,则( ) A .22παβ+=B .4παβ+=C .4αβ-=πD .22παβ+=【答案】C 【解析】 【分析】利用二倍角公式,和同角三角函数的商数关系式,化简可得cos 2tan tan 1sin 24βπαββ⎛⎫==+ ⎪-⎝⎭,即可求得结果. 【详解】2222cos 2cos sin 1tan tan tan 1sin 2cos sin 2sin cos 1tan 4ββββπαβββββββ-+⎛⎫====+ ⎪-+--⎝⎭,所以4παβ=+,即4αβ-=π. 故选:C. 【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.9.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( ) A .1- B .12-C .12D .1【答案】B 【解析】 【分析】先根据导数的几何意义写出()f x 在,A B 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出()122112x a x e =-,令函数()()()22102xg x x e x =-≤ ,结合导数求出最小值,即可选出正确答案. 【详解】解:当0x ≤ 时,()2f x x x a =++,则()'21f x x =+;当0x >时,()ln x x a f x =-则()'ln 1f x x =+.设()()()()1122,,,A x f x B x f x 为函数图像上的两点, 当120x x << 或120x x <<时,()()12''f x f x ≠,不符合题意,故120x x <<. 则()f x 在A 处的切线方程为()()()2111121y x x a x x x -++=+-;()f x 在B 处的切线方程为()()2222ln ln 1y x x a x x x -+=+-.由两切线重合可知 21221ln 121x x x a a x +=+⎧⎨--=-⎩ ,整理得()()12211102x a x e x =-≤.不妨设()()()22102xg x x e x =-≤ 则()()22',''12xxg x x e g x e =-=- ,由()''0g x = 可得11ln 22x =则当11ln 22x =时,()'g x 的最大值为11111'ln ln 022222g ⎛⎫=-< ⎪⎝⎭. 则()()2212x g x x e =-在(],0-∞ 上单调递减,则()102a g ≥=-. 故选:B. 【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出a 和x 的函数关系式.本题的易错点是计算.10.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直,则该双曲线的离心率为( )A .2B .5 C .102D .23【答案】B 【解析】 【分析】由题中垂直关系,可得渐近线的方程,结合222c a b =+,构造齐次关系即得解 【详解】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直.∴双曲线的渐近线方程为12y x =±. 12b a ∴=,得2222214,4b ac a a =-=. 则离心率5c e a ==. 故选:B 【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题. 11.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .6 C 3D 2 【答案】A 【解析】 【分析】首先找出PC 与面PAB 所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值. 【详解】由题知ABC V 是等腰直角三角形且90ACB ∠=︒,ABP △是等边三角形,设AB 中点为O ,连接PO ,CO ,可知62PO =,2CO =同时易知AB PO ⊥,AB CO ⊥,所以AB ⊥面POC ,故POC ∠即为PC 与面PAB 所成角,有22222cos 23PO CO PC POC PO CO +-∠==⋅, 故1sin 1cos 3POC POC ∠=-∠=. 故选:A. 【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.12.已知定义在[)1,+∞上的函数()f x 满足()()33f x f x =,且当13x ≤≤时,()12f x x =--,则方程()()2019f x f =的最小实根的值为( ) A .168 B .249C .411D .561【答案】C 【解析】 【分析】先确定解析式求出(2019)f 的函数值,然后判断出方程()()2019f x f =的最小实根的范围结合此时的5()3f x x =-,通过计算即可得到答案.【详解】当1x ≥时,()()33f x f x =,所以22()3()3()33x x f x f f ===L 3()3n n x f =,故当 +133n n x ≤≤时,[1,3]3n x ∈,所以()13,233(12)33,23n n nn n nx x x f x x x +⎧-≥⋅=--=⎨-<⋅⎩,而 672019[3,3]∈,所以662019(2019)3(12)3f =--=732109168-=,又当13x ≤≤时,()f x 的极大值为1,所以当+133n n x ≤≤时,()f x 的极大值为3n ,设方程()168f x =的最小实根为t ,45168[3,3]∈,则56533(3,)2t +∈,即(243,468)t ∈,此时5()3f x x =-令5()3168f x x =-=,得243168411t =+=,所以最小实根为411. 故选:C. 【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.设 , , ,则 , , 的大小关系是( )
A. B. C. D.
8.函数 的图象大致是()
A. B.
C. D.
9.将函数 的图象向右平移 个单位长度得到 图像,则下列判断错误的是( )
A.函数 的最小正周期是 B. 图像关于直线 对称
C.函数 在区间 上单调递减D. 图像关于点 对称
10.双曲线 的两个焦点为 、 ,若 为其上一点,且 ,则双曲线离心率的取值范围为( )
3.已知向量 , ,若 ,则 ()
A. -1 B.0 C.1 D.3
【答案】C
【解答】解:因为向量 , ,所以 .因为 ,所以 ,解得 .故答案为:C
5..小荣家庭一周的支出数据如图,问其中肉类支出占总支出的百分比约( )
A.6.8%B.8%C.10%D.12%
解:由扇形图可知,食品类支出占家庭总支出的36%,
19.某企业投资ቤተ መጻሕፍቲ ባይዱ个新型项目,投资新型项目 的投资额 (单位:十万元)与纯利润 (单位:万元)的关系式为 ,投资新型项目 的投资额 (单位:十万元)与纯利润 (单位:万元)的散点图如图所示.
(1)求 关于 的线性回归方程;
(2)根据(1)中的回归方程,若 , 两个项目都投资6(单位:十万元),试预测哪个项目的收益更好.
17.(本小题满分12分)在 中,内角 , , 对应的边分别为 , , ,已知 .
(1)求 ;
(2)若 , ,求 的值.
18.(本小题满分12分)
18.如图,BE,CD为圆柱的母线, 是底面圆的内接正三角形,M为BC的中点.
(1)证明:平面AEM⊥平面BCDE;
(2)设BC=BE,圆柱的体积为 ,求四棱锥A-BCDE的体积.
(1)求函数 的极小值;
(2)若关于x的方程 在区间 上有唯一实数解,求实数 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答的第一题评分.
22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系 中,曲线 的参数方程为 ( 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线 的极坐标方程为 .
(1)写出 的极坐标方程;
(2)设点M的极坐标为 ,射线 分别交 , 于A,B两点(异于极点),当 时,求 .
23.[选修4-5:不等式选讲](10分)
23.已知函数 .
求不等式 的解集;
若 , , 为正实数,函数 的最小值为 ,且满足 ,求 的最小值.
固原一中高三第一次模拟考试文科数学题(附答案)
2020.3.5
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,那么 ( )
A. B. C. D.
A. B. C. D.
11.在正方体 中, 是 的中点,直线 交平面 于点 ,则下列结论正确的是( )
① 、 、 三点共线;② 、 、 、 四点共面;
③ 、 、 、 四点共面;④ 、 、 、 四点共面.
A.①②B.①②③④C.①②③D.①③④
12.设 是递增的等差数列, , 为 , 的等比中项,则数列 的前 项和为()
A.8 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分.
13.若 满足约束条件 则 的最大值为__________.
14.某中学有高中生3000人,初中生2000人,男、女生所占的比例如图所示 为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是.
15.已知正四棱锥 的侧棱长与底面边长都相等, 是 的中点,则 所成的角的余弦值为.
16.已知点 是抛物线 的焦点, , 是该抛物线上的两点,若 ,则线段 中点的纵坐标为.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
由条形统计图可知:肉类支出占食品类支出的 = ,
因此肉类支出占家庭总支出的比例为12%.
故选:D.
5.设 为 的边 的延长线上一点, ,则()
A. B. C. D.
答案:C
解析:
6.已知 为等比数列 的前 项和, , ,则 ().
A. -85 B. 255 C. 85 D.-255
【答案】
【解答】解:设等比数列 的公比为 , , ,即 , , , ,
A. -1 B.0 C.1 D.3
4..小荣家庭一周的支出数据如图,问其中肉类支出占总支出的百分比约( )
A.6.8%B.8%C.10%D.12%
5.设 为 的边 的延长线上一点, ,则()
A. B. C. D.
6.已知 为等比数列 的前 项和, , ,则 ().
A. -85 B. 255 C. 85 D.-255
固原一中高三第一次模拟考试文科数学题(附答案)
2020.3
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,那么 ( )
A. B. C. D.
2.若 ,且 为第四象限角,则 ()
A. B. C. D.
3.已知向量 , ,若 ,则 ()
【答案】C
【解答】解:∵ , ,
∴ .故选 .
2.若 ,且 为第四象限角,则 ()
A. B. C. D.
【答案】A
【解析】
由已知利用诱导公式,求得 ,进一步求得 ,再利用三角函数的基本关系式,即可求解。
【详解】由题意 ,
又由 为第四象限角,所以 ,
所以 。故选A.
【点睛】本题主要考查了三角函数的化简、求值问题,其中解答中熟记三角函数的诱导公式和三角函数的基本关系式,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题。
附:回归直线 的斜率和截距的最小二乘估计分别为 , .
20.(本小题满分12分)已知椭圆 的离心率为 ,短轴长为 .
(1)求椭圆 的标准方程;
(2)点 ,斜率为 的直线 不过点 ,且与椭圆 交于 , 两点, ( 为坐标原点).直线 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.
21.(本小题满分12分)设函数 .