传热过程的计算及换热器2
合集下载
2.2 传热过程计算

Δt
m
Δt 2 Δt ln Δt 2
1
Δt 1
第二节 传热过程计算
二、平均温度差 错流和折流
tm tm'
f (P, R)
R T1 T2 t2 t1
P t2 t1 T1 t1
பைடு நூலகம்
第二节 传热过程计算
三、传热计算的题型
(qmcp)hT
KS tm Q
(qmcp)ct qmhrh
1. 设计型
对于平壁或薄壁: 1 1 b 1 K αi λ αo
第二节 传热过程计算
一、总传热速率 Q KSt
对于平壁或薄壁: 1 1 b 1 K αi λ αo
二、平均温度差
Q KStm
tm: 平均温度差
第二节 传热过程计算
二、平均温度差 流体的流向
逆流
并流
错流
折流
第二节 传热过程计算
二、平均温度差 逆流和并流
Q1=Q2=Q3 =... 一、传导传热
Q λ dt S dn 热通量(密度) 温度梯度 (W/m2) (K/m) 例:求平面壁定态热传导速率的表达式
Q λ t1 t2S
b
第一节 传热基本规律
二、对流传热 膜模型 湍流核心处温度一致 层流膜内符合热传导规律
牛顿冷却定律
S
Q t
,
t
Q St
第二节 传热过程计算
第二节 传热过程计算
第二节 传热过程计算
一、总传热速率 1b 1
R总 , T T t α iSi λ S m α oSo
Q t
Sot
R总 So bS o 1
α iSi λ Sm α o
令: 1 So bS o 1 K α iSi λ S m α o
10传热学-传热过程和换热器

Ah2 1 1 h1 h2 1
tf1 tf 2
K
For steady heat transfer through a series composite wall
K
1 1 n i 1 h1 i 1 i h2
二、通过圆筒壁的传热 (heat transfer through a cylinder)
二、对保温隔热材料的要求 1. 有最佳密度:使用时,应尽量使其使用密 度接近最佳密度; 2. 热导率小:选用热导率小的材料; 3. 温度稳定性好:在一定温度范围内,物性 值稳定 4. 有一定的机械强度; 5. 吸水、吸湿性小:水分会使材料导热系数 大大增加。 三、最佳保温隔热厚度
四、保温结构 为防止水或湿气进入,外加保护层。 为减少对环境的辐射散热,外加铝箔或聚酯镀铝薄膜。 五、保温隔热效率 设备和管道保温隔热前后的散热量(或冷损失量)之差 与保温隔热前散热量0(或冷损失量)之比,即:
Heat transfer rate:
KAt KA(t f 1 t f 2 )
where A—surface area, m2 t—temperature difference, C K—overall heat transfer coefficient, W/m2· C
一、通过平壁的传热 (heat transfer through a plane wall)
注意:对于低温、超低温管道和设备的保冷,一般的 保温隔热材料不能满足要求,须采用多层镀铝薄膜和 网状玻璃纤维布并抽真空。
0 0
§3 换热器(Heat exchangers)
一、换热器的种类(Heat exchanger types) 1. 按原理分 间壁式换热器:冷热流体被固体壁隔开,如蒸发 器、冷凝器等。 混合式换热器:在这种换热器中,两种流体相互 混合,依靠直接接触交换热量。如水和空气直接 接触的冷却水塔。 回热式(或蓄热式、再生式)换热器:在这种换热 器中,冷热流体交替地与固体壁接触,使固体壁 周期地吸热和放热,从而将热流体的热量传给冷 流体。如锅炉的再生式空气预热器和燃气轮机的 空气预热器。
tf1 tf 2
K
For steady heat transfer through a series composite wall
K
1 1 n i 1 h1 i 1 i h2
二、通过圆筒壁的传热 (heat transfer through a cylinder)
二、对保温隔热材料的要求 1. 有最佳密度:使用时,应尽量使其使用密 度接近最佳密度; 2. 热导率小:选用热导率小的材料; 3. 温度稳定性好:在一定温度范围内,物性 值稳定 4. 有一定的机械强度; 5. 吸水、吸湿性小:水分会使材料导热系数 大大增加。 三、最佳保温隔热厚度
四、保温结构 为防止水或湿气进入,外加保护层。 为减少对环境的辐射散热,外加铝箔或聚酯镀铝薄膜。 五、保温隔热效率 设备和管道保温隔热前后的散热量(或冷损失量)之差 与保温隔热前散热量0(或冷损失量)之比,即:
Heat transfer rate:
KAt KA(t f 1 t f 2 )
where A—surface area, m2 t—temperature difference, C K—overall heat transfer coefficient, W/m2· C
一、通过平壁的传热 (heat transfer through a plane wall)
注意:对于低温、超低温管道和设备的保冷,一般的 保温隔热材料不能满足要求,须采用多层镀铝薄膜和 网状玻璃纤维布并抽真空。
0 0
§3 换热器(Heat exchangers)
一、换热器的种类(Heat exchanger types) 1. 按原理分 间壁式换热器:冷热流体被固体壁隔开,如蒸发 器、冷凝器等。 混合式换热器:在这种换热器中,两种流体相互 混合,依靠直接接触交换热量。如水和空气直接 接触的冷却水塔。 回热式(或蓄热式、再生式)换热器:在这种换热 器中,冷热流体交替地与固体壁接触,使固体壁 周期地吸热和放热,从而将热流体的热量传给冷 流体。如锅炉的再生式空气预热器和燃气轮机的 空气预热器。
化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积
。
5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了
传热过程的计算

必须着力减少控制步骤的热阻,才更易以达到强化传热的目的。 。
实际计算换热管热流量,可依据管壁内表面积或外表面积写出两个方程 内表面: 外表面: Ql=KlA1 (T-t) Q2=K2A2 (T-t) (6-116)
式中,K1、K2分别为以内、外表面积为基准的传热系数,明显两者是不相等的。 但有 K1A1=K2A2 如圆管的内、外直径分别用d1、d2表示,结合式子: K 可导出: K 1
即
Q KAt m
称为传热过程基本方程式
式中
t m
T t 1 T t 2 T t 1 ln T t 2
称为对数平均温差或对数平均推动力。
对数平均推动力
对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬 殊时,对数平均值要比算术平均值小得多。 当换热器一端两流体温差接近于零时,对数平均推动力将急剧减小。 对数平均推动力这一特性,对换热器的操作有着深刻的影响。 例如,当换热器两端温差有一个为零时,对数平均温差必为零。 这意味着传递相应的热流量,需要无限大的传热面。 但是,当两端温差相差不大时,如0.5<(T-t)1/(T-t)2<2时,对数平均推动 力可用算术平均推动力代替。
qm1CP1dT=q1dA1=dQ (热流体在微元体内放出的热量) 同样,对冷流体作类似假定,并以微元体内环隙空 间为控制体作热量衡算,可得到 qm2CP2dt=q2dA2=dQ (冷流体在微元体内吸收的热量)
2、传热速率方程式 热流密度q是反映具体传热过程速率 大小的特征量。从理论上讲,根据前面 导热或对流给热规律,热流密度q已可以 计算。但是,这种做法必须引入壁面温 度;而在实际计算时,壁温往往是未知 的。为实用方便,希望能够避开壁温, 直接根据冷、热流体的温度进行传热速 率的计算。 如图所示的套管换热器中,热量序 贯地由热流体传给管壁内侧、再由管壁 内侧传至外侧,最后由管壁外侧传给冷 流体(参见 P201 图 6-35 )。在定态条 件下,并忽略管壁内外表面积的差异, 则各环节的热流量相等,即
传热过程和换热器热计算基础

tf1-tf2 tf1-tf2 q= = 1 δ 1 Rt = + ∑ + k h1 i =1 λi h2
(m2·℃) / W
多层平壁的传热:
q=
n δi 1 1 +∑ + h1 i =1 λi h2
tf1- tf2
二、圆筒壁的传热 每米长圆筒壁的总传热热阻热阻:
只有管道外径 d 2 超过某一值后包上热绝缘层才能 起到减少单位管长热损失的作用,把此直径称为临界 热绝缘直径,用 d c 表示。
d c 可由求 q1 对热绝缘层外径的一阶导数并令之 等于零而得到,即 d = 2λins c h2 ( d 2 > d c 加绝热层才能减少热损)
式中: 2 ——管道热绝缘层外表面对环境的表面传 h 热系数[W/(m2·K)]; λins ——保温材料的导热系数[W/(m·K)]。
' 肋面平均温度 t w2 (< tw2 )
肋片实际散热量:
h A (t
2
2
'
w2
− tf2
)
2
肋处于肋基温度下的理想散热量: h 肋片效率:
A2 (t w 2 − tf2 )
t w 2 − tf2 实际散热量 h2 A2 t w 2 − tf2 = = η= 理想散热量 h2 A2 (t w 2 − tf2 ) t w 2 − tf2
Φ = Ah2 (t w2 − tf2 )
λ Φ = A (t w1 − t W2 ) δ
Φ tf1 − t W1 = Ah Φ t w1 − t W2 = Aλ / δ Φ t w2 − t f2 = Ah2
传热方程:
A(t f1 − t f2 ) Φ= = KA ∆ t 1 / h1 + λ / δ + 1 / h2
(m2·℃) / W
多层平壁的传热:
q=
n δi 1 1 +∑ + h1 i =1 λi h2
tf1- tf2
二、圆筒壁的传热 每米长圆筒壁的总传热热阻热阻:
只有管道外径 d 2 超过某一值后包上热绝缘层才能 起到减少单位管长热损失的作用,把此直径称为临界 热绝缘直径,用 d c 表示。
d c 可由求 q1 对热绝缘层外径的一阶导数并令之 等于零而得到,即 d = 2λins c h2 ( d 2 > d c 加绝热层才能减少热损)
式中: 2 ——管道热绝缘层外表面对环境的表面传 h 热系数[W/(m2·K)]; λins ——保温材料的导热系数[W/(m·K)]。
' 肋面平均温度 t w2 (< tw2 )
肋片实际散热量:
h A (t
2
2
'
w2
− tf2
)
2
肋处于肋基温度下的理想散热量: h 肋片效率:
A2 (t w 2 − tf2 )
t w 2 − tf2 实际散热量 h2 A2 t w 2 − tf2 = = η= 理想散热量 h2 A2 (t w 2 − tf2 ) t w 2 − tf2
Φ = Ah2 (t w2 − tf2 )
λ Φ = A (t w1 − t W2 ) δ
Φ tf1 − t W1 = Ah Φ t w1 − t W2 = Aλ / δ Φ t w2 − t f2 = Ah2
传热方程:
A(t f1 − t f2 ) Φ= = KA ∆ t 1 / h1 + λ / δ + 1 / h2
第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )
传热学第九章-传热过程分析和换热器热计算-2

面总效率之间的区别. 3.已知肋化系数后, 通过肋面的传热系数的计算方法. 4.临界热绝缘直径的物理意义及计算方法. 5.换热器有那些主要形式? 6.换热器的对数平均温差计算方法 7.换热器热计算的基本方法. 8.什么是换热器的效能和传热单元数. 9.在换热器热计算中, 平均温差法和传热单元法各有什么
特点?
10.什么是污垢热阻? 工程实际中,怎样减小管路中的污垢 热阻? 举几个例子.
11.强化传热系数的原则是什么? 12.什么是有源强化换热(主动式强化换热)和无源强化换热
(被动式强化换热)? 13.怎样使用试验数据, 用威尔逊图解法求解传热过程分热
阻? 14.有那些隔热保温技术. 什么是保温效率?
1Cr
1Cr
上面的推导过程得到如下结果,对于顺流:
当 qmchhqmccc时
Cr
Cmin Cmax
Ch Cc
1exp
CkAh (1Cr
)
1Cr
当 qmchhqmccc时,同样的推导过程可得:
Cr
Cmin Cmax
Cc Ch
1exp
CkAc (1Cr
)
1Cr
上面两个公式合并,可得:
Cr
④ 利用NTU计算 ⑤ 利用(9-17)计算,利用(9-14)计算另一个 ⑥ 比较两个,是否满足精度,否则重复以上步骤
从上面步骤可以看出,假设的出口温度对传热量的影响 不是直接的,而是通过定性温度,影响总传热系数,从而 影响NTU,并最终影响 值。而平均温差法的假设温度 直接用于计算 值,显然-NTU法对假设温度没有平均温 差法敏感,这是该方法的优势。
传热学第九章-传热过程分析和换热器热计算
换热器的热计算有两种方法:平均温差法
特点?
10.什么是污垢热阻? 工程实际中,怎样减小管路中的污垢 热阻? 举几个例子.
11.强化传热系数的原则是什么? 12.什么是有源强化换热(主动式强化换热)和无源强化换热
(被动式强化换热)? 13.怎样使用试验数据, 用威尔逊图解法求解传热过程分热
阻? 14.有那些隔热保温技术. 什么是保温效率?
1Cr
1Cr
上面的推导过程得到如下结果,对于顺流:
当 qmchhqmccc时
Cr
Cmin Cmax
Ch Cc
1exp
CkAh (1Cr
)
1Cr
当 qmchhqmccc时,同样的推导过程可得:
Cr
Cmin Cmax
Cc Ch
1exp
CkAc (1Cr
)
1Cr
上面两个公式合并,可得:
Cr
④ 利用NTU计算 ⑤ 利用(9-17)计算,利用(9-14)计算另一个 ⑥ 比较两个,是否满足精度,否则重复以上步骤
从上面步骤可以看出,假设的出口温度对传热量的影响 不是直接的,而是通过定性温度,影响总传热系数,从而 影响NTU,并最终影响 值。而平均温差法的假设温度 直接用于计算 值,显然-NTU法对假设温度没有平均温 差法敏感,这是该方法的优势。
传热学第九章-传热过程分析和换热器热计算
换热器的热计算有两种方法:平均温差法
化工原理.传热过程的计算

16
三、总传热系数
QKAtm
如何确定K值,是传热过程计算中的重要问题。
17
T
Tw
热 流 体
对流 导 热
冷 流 体
Q tw
t
•热流体
Q1 对流
固体壁面一侧
•固体壁面一侧
Q2 热传导
另一侧
•固体壁面另一侧
Q3 对流
冷流体
对流
dQ Kd(TA t)
18
管外对流:
d1 Q 1d1( A TT w )
液体-气体
K 700~1800
300~800 200~500 50~300
100~350 50~250 10~60
25
两流体 气体-气体 蒸气冷凝-气体 液体沸腾-液体 液体沸腾-气体 水蒸气冷凝-水 有机物冷凝-有机物 水蒸气冷凝-水沸腾 水蒸气冷凝-有机物沸腾
K 10~40 20~250 100~800 10~60 1500~4700 40~350 1500~4700 500~1200
21
K1——以换热管的外表面为基准的总传热系数;
dm——换热管的对数平均直径。
dm(d1d2)/lndd12
(3)以内表面为基准:
1 1 d2bd2 1
K2 1 d1 dm 2
(4)以壁表面为基准:
1 1 dmb1 dm
Km 1 d1 2 d2
d 1 2 近似用平壁计算
d2
22
(5)污垢热阻
27
四、壁温的计算
稳态传热 QK AtmT1TWTw btWtw1t
1A1 Am 2A2
bQ
tW TW Am ,
Q
TW
T
1A1
,
三、总传热系数
QKAtm
如何确定K值,是传热过程计算中的重要问题。
17
T
Tw
热 流 体
对流 导 热
冷 流 体
Q tw
t
•热流体
Q1 对流
固体壁面一侧
•固体壁面一侧
Q2 热传导
另一侧
•固体壁面另一侧
Q3 对流
冷流体
对流
dQ Kd(TA t)
18
管外对流:
d1 Q 1d1( A TT w )
液体-气体
K 700~1800
300~800 200~500 50~300
100~350 50~250 10~60
25
两流体 气体-气体 蒸气冷凝-气体 液体沸腾-液体 液体沸腾-气体 水蒸气冷凝-水 有机物冷凝-有机物 水蒸气冷凝-水沸腾 水蒸气冷凝-有机物沸腾
K 10~40 20~250 100~800 10~60 1500~4700 40~350 1500~4700 500~1200
21
K1——以换热管的外表面为基准的总传热系数;
dm——换热管的对数平均直径。
dm(d1d2)/lndd12
(3)以内表面为基准:
1 1 d2bd2 1
K2 1 d1 dm 2
(4)以壁表面为基准:
1 1 dmb1 dm
Km 1 d1 2 d2
d 1 2 近似用平壁计算
d2
22
(5)污垢热阻
27
四、壁温的计算
稳态传热 QK AtmT1TWTw btWtw1t
1A1 Am 2A2
bQ
tW TW Am ,
Q
TW
T
1A1
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②选择冷却介质的出口温度。 冷却介质出口温度t2越高,其用量越少,回收的能量的价值也越高,同时, 输送流体的动力消耗即操作费用也减小。 但是,t2越高,传热过程的平均推动力△tm越小,传递同样的热流量所需的 加热面积A也越大,设备投资费用必然增加。
因此,冷却介质的选择是一个经济上的 权衡问题。 换热器的设备投资费与冷却介质操作费的总 值可用总费用C表示: C=CAA+Cwqm2 式中,CA、Cw为相应的价格系数。 上式右边第一项为设备费,右边第二项为操 作费,它们与t2的关系见右图。 按总费用最低的原则可以确定冷却介质的最 优出口温度t2obt 二、为求得传热系数K,须计算两侧的给热系数α,故设计者必须决定: ①冷、热流体各走管内还是管外; ②选择适当的流速。 流速的选择一方面涉及传热系数K即所需传热面的大小,另一方面又与流体通 过换热面的阻力损失有关。 因此,流速选择也是经济上权衡得失的问题。 但管内、外都尽量避免层流状态。 同时,还必须选定适当的污垢热阻。
设冷、热流体在换热器内无相变化,在冷流体入口端和任意截面间取控制体
作热量衡算可得
q m 2c p 2 q m 2c p 2 T t T t 2 1 q m 1c p 1 q m 1c p 1
若忽略cp1、cp2随温度的变化,上式为一直
线方程式,如右图中的直线AB所示。
设计型计算中参数的选择
由传热基本方程式可知,为确定所需的传热面积,必须知道平均推动力△tm 和传热系数K。 一、为计算对数平均温差△tm,设计者首先必须: ①选择流体的流向,即决定采用逆流、并流还是其他复杂流动方式; (1)在A相同的条件下,逆流操作时,加热剂(冷却剂)用量较并流少。 (2)在加热剂(冷却剂)用量相同条件下,逆流操作的换热器传热面积较并流 的少。 另外,逆流操作还有冷、热流体间的温度差较均匀的优点。 所以说,在一般情况下,逆流操作总是优于并流,应尽量采用。
1 1 1
1
1
1 2
A1 A1 A1 A11 Am 2 A2
1 d2 d 2 1 d1 d m 2 1
1
d 1 d1 d m 2d 2
K2
1 式中,dm为d2与d1的对数均值,在d2/d1≤2时可用算术均值代替,在传热计算中,
用内表面或外表面作为传热面积计算结果相同。
工程上习惯以外表面作为计算的传热面积,因此下述传热系数K都是基 于管外表面。当管壁不太厚,则传热系数仍可按式 : K 1 1 1 2 计算。
污垢热阻
1
当换热器传热面存在污垢时,因污垢热阻较大,在传热计算时,应加上 污垢热阻。 又因为污垢层厚度及其热导率难以测量,污垢热阻一般取经验值。(课 本表6-5有常见流体的污垢热阻表)。假如管壁两侧的污垢热阻分别为R2和R1, 则传热系数变为:
换热器的操作型计算
判断一个现有换热器对指定的生产任务是否适用,或者预测某些参数的 变化对换热器传热能力的影响等都属于操作型问题。 (1)第一类命题 给定条件:换热器的传热面积以及有关尺寸,冷、热流体的物理 性质,冷、热流体的流量和进口温度以及流体的流动方式。 计算目的:冷热流体的出口温度。 (2)第二类命题 给定条件:换热器的传热面积以及有关尺寸,冷、热流体的物理 性质,热流体的流量和进、出口温度,冷流体的进口温度以及流动方 式。 计算目的;所需冷流体的流量及出口温度。
t2 t1
A dA
0
A
qm1c p1 K
dT T2 T t
T1
A dA
0
A
qm 2 c p 2 K
t2
t1
dT T t
各得
A
qm1c p1 K
T1 T2 T t 1 T t 2
d T t T t 2 T t d T t T t 2 T t
在冷、热流体进出口温度相同的条件下,并流操作两端推动力相差较大, 其对数平均值必小于逆流操作。 因此,逆流传热过程推动力△tm,比并流的大。 在原则上,式 t m T t 1 T t 2
ln
T t 1 T t 2
只适用于逆流和并流。
但实际换热器内,纯粹的逆流和并流是不多见的。 但对工程计算来说,如图所示的流体经过管束的流动,只要曲折次数超过
qm1CP1dT=q1dA1=dQ (热流体在微元体内放出的热量) 同样,对冷流体作类似假定,并以微元体内环隙空 间为控制体作热量衡算,可得到 qm2CP2dt=q2dA2=dQ (冷流体在微元体内吸收的热量)
2、传热速率方程式 热流密度q是反映具体传热过程速率 大小的特征量。从理论上讲,根据前面 导热或对流给热规律,热流密度q已可以 计算。但是,这种做法必须引入壁面温 度;而在实际计算时,壁温往往是未知 的。为实用方便,希望能够避开壁温, 直接根据冷、热流体的温度进行传热速 率的计算。 如图所示的套管换热器中,热量序 贯地由热流体传给管壁内侧、再由管壁 内侧传至外侧,最后由管壁外侧传给冷 流体(参见 P201 图 6-35 )。在定态条 件下,并忽略管壁内外表面积的差异, 则各环节的热流量相等,即
因此,根据式
K
1 1 2
1
1
由壁面两侧的给热系数α求出传热系数K,可以避开未知的壁温计算热流密度q。
传热系数和热阻
由式
q
1 1 2
1
T t
可知,传热过程的总热阻1/K系由各串联环节的热阻叠加而成。
原则上减小任何环节的热阻都可提高传热系数,增大传热过程的速率。
K
1 1
1
R1
1 R2 2
壁温计算
由式:
T Tw Tw t w t w t q总 1 1
1
2
可以看出,在传热过程中热阻大的环节其温差也必然大,而上式包括三个
方程,可以解出热流密度q及两侧壁温Tw和tw。 金属壁的热阻通常可以忽略,即Tw≈tw,于是
பைடு நூலகம்
计算方法 由逆流操作换热器的热流量计算及热量衡算式可得:
T1 t 2 T2 t1 qm1c p1 T1 T2 KA T t
ln T2 t1
1 2
热量恒算式;Q=qm1cp1(T1-T2)=qm2cp2(t2-t1) 各种操作型问题,可用上两式联立求解,得出下式。
q
1 1 2
1
分别为各传热环节的热阻。
T t
式中,
1 1 、 、 1 2
上式也可写为
Q=KA(T-t) 式中: K
1 称为(总)传热系数。 1 2
1
1
比较式q=α(tw-t)和q=K(T-t)式两式可知,给热系数α同流体与壁面的温差相 联系,而传热系数K则同冷、热流体的温差相联系。
即
Q KAt m
称为传热过程基本方程式
式中
t m
T t 1 T t 2 T t 1 ln T t 2
称为对数平均温差或对数平均推动力。
对数平均推动力
对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬 殊时,对数平均值要比算术平均值小得多。 当换热器一端两流体温差接近于零时,对数平均推动力将急剧减小。 对数平均推动力这一特性,对换热器的操作有着深刻的影响。 例如,当换热器两端温差有一个为零时,对数平均温差必为零。 这意味着传递相应的热流量,需要无限大的传热面。 但是,当两端温差相差不大时,如0.5<(T-t)1/(T-t)2<2时,对数平均推动 力可用算术平均推动力代替。
传热过程的计算 及换热设备
组员:周宇杰 聂家达 汪佳安
一、传热过程的计算 传热过程的数学描述
在连续化的工业生产中, 换热器内进行的大都是定态传 热过程。采用欧拉考察方法, 可使传热过程的计算大为简化 。 1、热量衡算微分方程式 如图为一定态逆流操作的套管式换热器,热流体走管内,流量为qm1, 冷流体走环隙,流量为qm2 。冷、热流体的主体温度分别以 t和T表示。在 与流动垂直方向上取一微元管段dL,其传热面积为dA。若所取微元处的局 部热流密度为q,则热流体通过dA传给冷流体的热流量为 dQ=qdA 以微元体内内管空间为控制体作热量衡算,并假定 (1)热流体流量qm1和比热容CP1沿传热面不变, (2)热流体无相变化, (3)换热器无热损失, 控制体两端面的热传导可以忽略(因轴向温度梯度很小,此假定基本 符合实际),可以得到
直线AB两个端点分别代表换热器两端冷、 热流体的温度,线上的每一点代表换热器某一
截面上冷、热流体的温度,故称之为换热器的
操作线。
传热基本方程式
将式 d(T t )
dT
分别代入
(T t) T t)2 1 - ( T T
1 2
和式 d(T t )
dt
(T t) T t)2 1 - (
4次,就可作为纯逆流和纯并流处理。
换热器设计型计算
(一)、设计型计算的命题方式 设计任务:将流量qm1的热流体由温度T1冷却至温度T2 设计条件:可供使用的冷却介质温度,即冷流体的进 口温度t1。 计算目的:确定经济上合理的传热面积及换热器其他 有关尺寸。 设计型问题的计算方法 设计计算步骤: ①计算换热器热流量(或称热负荷) Q=qm1cp1(T1-T2) ②作出适当的选择并计算平均推动力△tm ③计算冷、热流体与管壁的对流给热系数及总传热系 数 K; ④由传热基本方程Q=KA△tm计算传热面积。
T t 1
T t 1
A
qm 2 c p 2 K
t 2 t1 T t 1 T t 2
再设换热器的总热流量为Q,由整个换热器作热量衡算可得
Q=qm1cp1(T1-T2)=qm2cp2(t2-t1) 于是,以上两式中A均可写成