02 多重对应分析方法
对应分析方法与对应图解读方法

对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:概念发展(Concept Development)新产品开发 (New Product Development)市场细分 (Market Segmentation)竞争分析 (Competitive Analysis)广告研究 (Advertisement Research)主要回答以下问题:谁是我的用户?还有谁是我的用户?谁是我竞争对手的用户?相对于我的竞争对手的产品,我的产品的定位如何?与竞争对手有何差异?我还应该开发哪些新产品?对于我的新产品,我应该将目标指向哪些消费者?数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
多元统计分析——对应分析

一般,若总体中的个体可按两个属性 与 一般 若总体中的个体可按两个属性A与 若总体中的个体可按两个属性 B分类,A有n类A1,A2,…,An,B有p类 分类, 有 类 分类 , 有 类 B1,B2,…,Bp, 属于 和Bj的个体数目为 属于Ai和 的个体数目为 nij(i=1,2, …,n;j= 1,2, …,p),nij称为 ( ) 称为 频数,则可形成n× 的二维列联表 的二维列联表, 频数,则可形成 ×p的二维列联表,简 称n×p表。 × 表 若所考虑的属性多于两个, 若所考虑的属性多于两个,也可按类似 的方式作出列联表,称为多维列联表 称为多维列联表。 的方式作出列联表 称为多维列联表。
列联表中列出了表格单元频数和在零假设下 的期望频数,可以看出, 的期望频数,可以看出,吸烟人中患病的数 目比期望数目大。 目比期望数目大。检验的结果只要看后面的 统计量部分的Chi-Square一行,其值为 一行, 统计量部分的 一行 7.469,p值为 值为0.006,所以应否定零假设,吸 , 值为 ,所以应否定零假设, 烟与患慢性支气管炎是不独立的。 烟与患慢性支气管炎是不独立的。
pij pij n 1 ∑ E( )= . pi. = p. j = i =1 p pi. p. j p. j p. j i.
N个点的重心为: ( P.1 , P.2 ⋯ P. p ) 个点的重心为: 个点的重心为
列联表
B1 A1 n11 A2 n21 B2 n12 n22 Bj Bp
… n1j
n2j
…
n1p n2p
n 1. n 2.
Ai ni1
ni2
nij
nip
ni.
An nn1 n.1
nn2 n.2
nnj n.j
02 多重对应分析方法

第二讲 多重对应分析方法前面的一篇博文介绍了对应分析方法的解读技巧,不少读者看了后非常想知道如何操作多重对应分析。
其实多重对应分析在超过两个以上定类变量时有时候非常有效,当然首先我们要理解并思考,如果只有三个或有限的几个变量完全可以通过数据变换和交互表变量重组可以转换成两个定类变量,这时候就可以用简单对应分析了。
对应分析对数据的格式要求:•对应分析数据的典型格式是列联表或交叉频数表。
•常表示不同背景的消费者对若干产品或产品的属性的选择频率。
•背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
现在,我们还是来看看如何操作多重对应分析并如何解读对应图;我们假定有个汽车数据集,包括:来源国(1-美国、2-欧洲、3-日本),尺寸(1-大型、2-中型、3-小型),类型(1-家庭、2-运动、3-工作),拥有(1-自有、2-租赁)性别(1-男、2-女),收入来源(1-1份工资来源、2-2份工资来源),婚姻状况(1-已婚、2-已婚有孩子、3-单身、4-单身有孩子);从数据集看,我们有7个定类变量,如果组合成简单的交叉表是困难的事情,此时采用多重对应分析是恰当的分析方法。
下面我还是采用SPSS18.0,现在叫PASW Statistics 18.0来操作!注意:不同版本在多重对应分析方法有一些不同,但大家基本上可以看出了,高版本只能是更好,但选择会复杂和不同!在进行多重对应分析之前,研究者应该能够记住各个变量大致有多少类别,个别变量如果变量取值太偏或异常值出现,都会影响对应分析的结果和对应图分析!在SPSS分析菜单下选择降维(Data Redaction-数据消减)后选择最优尺度算法,该选项下,根据数据集和数据测量尺度不同有三种不同的高级定类分析算法,主要包括:多重对应分析、分类(非线性)主成分分析、非线性典型相关分析;注意:随着版本的增高,研究人员在统计分析时就要各位主要变量的测量尺度,并且最好在进行数据清理和分析前,明确定义好测量尺度;当然也要做好Lable工作!接下来,我们就可以选择变量和条件了!大家可以把要分析的变量都放到分析变量内,补充变量的含义是如果有哪个变量你并不想作为对应分析的变量,而只是作为附属变量表现在对应图上可以加入!这一点其实在简单对应分析也有这种定义。
对应分析、典型相关分析、定性数据分析

应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。
对应分析

, u
2
,L
, u
k
• 根据累计方差贡献率确定最终提取特征根的个数,并 计算出相应的因子载荷矩阵R,即: #
λ1 1 R = Uθ 2 = (u1 , u2 ,..., ul )
λ2
O
λl
其中, 其中,因子载荷是列变量的某分类在某个因子上的 载荷,反映了他们之间的相关关系。 载荷,反映了他们之间的相关关系。与因子分析类 可通过变量(列变量某分类) 似,可通过变量(列变量某分类)的共同度测度其 方差的解释程度和信息的丢失程度; 方差的解释程度和信息的丢失程度;可通过因子的 方差贡献测度因子的重要程度。 方差贡献测度因子的重要程度。
1.2 对应分析法的基本原理
第一步:编制交叉列联表并计算概率矩阵P 第一步:编制交叉列联表并计算概率矩阵P 设原始数据矩阵为: 设原始数据矩阵为:
x11 x 21 X= M x n1 x12 x 22 M xn 2 L L L x1 p x2 p M x np n× p
第一节 对应分析法
1.1 对应分析法的内涵 1.2 对应分析法的基本原理 1.3 实例分析
#
1.1对应分析法的内涵
1.1.1 对应分析的概念
• 对应分析(Correspondence Analysis)又称相应 分析,是一种多元相依变量统计分析技术,通过 分析由定性变量构成的交互汇总数据来解释变量 之间的内在联系。它可以揭示同一变量的各个类 别之间的差异以及不同变量各个类别之间的对应 关系。 • 也被称为R-Q型因子分析 R型因子分析适用的研究对象是变量; Q型因子分析适用的研究对象是样品。 #
#
Thank you
#
对应分析方法与对应图解读方法

对应分析方法与对应图解读方法——七种分析角度对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。
这里主要介绍大家了解对应分析的基本方法,如何帮助探索数据,分析列联表和卡方的独立性检验,如何解释对应图,当然大家也可以看到如何用SPSS操作对应分析和对数据格式的要求!对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
适用于两个或多个定类变量。
主要应用领域:概念发展(Concept Development)新产品开发 (New Product Development)市场细分 (Market Segmentation)竞争分析 (Competitive Analysis)广告研究 (Advertisement Research)主要回答以下问题:谁是我的用户?还有谁是我的用户?谁是我竞争对手的用户?相对于我的竞争对手的产品,我的产品的定位如何?与竞争对手有何差异?我还应该开发哪些新产品?对于我的新产品,我应该将目标指向哪些消费者?数据的格式要求对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
案例分析:自杀数据分析上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据!POISON(毒药)GAS(煤气)HANG(上吊)DROWN(溺水)GUN(开枪)JUMP(跳楼)(我们就不翻译成中文了,读者可以把六个方式想象成品牌或别的什么)当然,我们拿到的最初原始数据可能是SPSS数据格式记录表,其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
对应分析

对应分析
问题的提出
分析分类变量间关系时,卡方检验只能给出总
体有无关系的结论,但不能精心分析,在变量 类别极多时于事无补
解决方案
直观展示:对应分析
问题在于:当属性变量A和B的状态较多时,很难透过
列联表作出直观地揭示出变量之间的联系以及变量各
分类之间的联系。主要表现在:
多重对应分析---多个定类变量
Optimal Scaling Optimal Scaling过程
所谓最优尺度分析的本质,就是根据数据本身 的关联,寻找出最佳的原始变量评分方法,将原始 变量一律转化为相应的分值,并在转化时将变量间 的关联一律变换为线性,这样就解决了以上问题。 可以同时分析多个分类变量间的关系,并同样 用图形方式表示出来。 在变量种类上更加丰富,已可以处理各种类型 的变量,如对无序多分类分析、有序多分类变量和 连续性变量同时进行分析的问题
同质性分析Homogeneity (HOMALS) 同质性分析,即多重对应分析 以图形化方式展示多个分类变量间的关系
观察原始的频数表也可以得到相关信息,但是,
当存在多个变量,并且变量类别较多时,就变成 了高维空间的观察,非常的不方便 通过数据变换,将各变量在高维空间中的主要 联系信息浓缩到低维度空间中,以便于观察
广告研究
(Advertisement Research)
2013-8-8
对应分析可以回答以下问题
谁是我的用户? 还有谁是我的用户? 谁是我竞争对手的用户? 相对于我的竞争对手的产品,我的产品的定位如何? 与竞争对手有何差异? 我还应该开发哪些新产品? 对于我的新产品,我应该将目标指向哪些消费者?
由于此处需要使用欧式距离来表示关联程度,首先需 要考虑应当采用何种距离标准化方法。 显然, 6 项指标的均数大不相同,而这并不是我们所 要关心的,同时它们的量纲也相差较大,最大、最小值 的倍数在数十到上千不等; 另一方面,各省市发展水平 的差异是我们希望考察的内容,即上海的平均发展水平 是否高于北京,诸如此类。 因此,本例中使用 Column Totals are Equalized and Column Means Removed 这一标化方法更为妥当, 它可以消除各指标均数和量纲不同的影响,同时又保留 了地区发展水平的差异。
对应分析,典型相关分析,定性数据分析,

现实中: 如鸡蛋、猪肉的价格(作为第一组变量)和 相应产品的销量(第二组变量)有相关关系。如投资 性变量(劳力投入、财力投入、固定资产投资等)与 国民收入(工农业收入、建筑业收入、等)具有相关 关系。 如何研究两组变量之间的相关关系? 设两组变量用X1,X2….,XP以及Y1,Y2…YP表示。 (1)分别研究Xi和Yj之间的相关关系,列出相关系数表。 其缺陷:当两组变量较多时,处理较烦琐,不易抓住 问题的实质。(2)采用主成分分析的方法,每组变量 分别提取主成分,再通过主成分之间的关系反映两组 变量之间的关系。
ln 1 p a0 a1 x1 .... ak xk
17 cxt 2014-5-20
第七章 对应分析
zf
对应分析的重点
1、什么是对应分析? 2、理解对应分析的基本思想 3、对应分析的基本步骤 4、结合SPSS软件进行案例分析
2014-5-20
2 cxt
7.1 交叉列联表
描述属性变量(定类或定序尺度变量)的各种状态 或是相关关系。
例:研讨患肺癌与吸烟是否有关?
是否吸烟 是否 患肺癌 患肺癌 未患肺癌 合计
2014-5-20
4 cxt
***7.2
对应分析的基本理论
1、什么是对应分析?
对应分析是利用“降维”的方法,以两变量的交叉 列联表为研究对象,通过图形的方式,直接揭示变量 之间以及变量的不同类别之间的联系,特别适合于多 分类属性变量研究的一种多元统计分析方法。
2、对应分析的基本思想:
首先,编制两品质型变量的交叉列联表,将交叉列联表中的每个 数据单元看成两变量在相应类别上的对应点; 然后,对应分析将变量及变量之间的联系同时反映在一张二维或 三维的散点图上,并使联系密切的类别点较集中,联系疏远的类别 点较分散; 最后,通过观察对应分布图就能直观地把握变量类别之间的联 系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 多重对应分析方法
前面的一篇博文介绍了对应分析方法的解读技巧,不少读者看了后非常想知道如何操作多重对应分析。
其实多重对应分析在超过两个以上定类变量时有时候非常有效,当然首先我们要理解并思考,如果只有三个或有限的几个变量完全可以通过数据变换和交互表变量重组可以转换成两个定类变量,这时候就可以用简单对应分析了。
对应分析对数据的格式要求:
•对应分析数据的典型格式是列联表或交叉频数表。
•常表示不同背景的消费者对若干产品或产品的属性的选择频率。
•背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析。
多个变量间——多元对应分析。
现在,我们还是来看看如何操作多重对应分析并如何解读对应图;
我们假定有个汽车数据集,包括:来源国(1-美国、2-欧洲、3-日本),尺寸(1-大型、2-中型、3-小型),类型(1-家庭、2-运动、3-工作),拥有(1-自有、2-租赁)性别(1-男、2-女),收入来源(1-1份工资来源、2-2份工资来源),婚姻状况(1-已婚、2-已婚有孩子、3-单身、4-单身有孩子);
从数据集看,我们有7个定类变量,如果组合成简单的交叉表是困难的事情,此时采用多重对应分析是恰当的分析方法。
下面我还是采用SPSS18.0,现在叫PASW Statistics 18.0来操作!注意:不同版本在多重对应分析方法有一些不同,但大家基本上可以看出了,高版本只能是更好,但选择会复杂和不同!
在进行多重对应分析之前,研究者应该能够记住各个变量大致有多少类别,个别变量如果变量取值太偏或异常值出现,都会影响对应分析的结果和对应图分析!
在SPSS分析菜单下选择降维(Data Redaction-数据消减)后选择最优尺度算法,该选项下,根据数据集和数据测量尺度不同有
三种不同的高级定类分析算法,主要包括:多重对应分析、分类(非线性)主成分分析、非线性典型相关分析;注意:随着版本的增高,研究人员在统计分析时就要各位主要变量的测量尺度,并且最好在进行数据清理和分析前,明确定义好测量尺度;当然也要做好Lable工作!
接下来,我们就可以选择变量和条件了!
大家可以把要分析的变量都放到分析变量内,补充变量的含义是如果有哪个变量你并不想作为对应分析的变量,而只是作为附属变量表现在对应图上可以加入!这一点其实在简单对应分析也有这种定义。
(我们将在专门的简单对应分析方法中再讲!)
然后我们要选择“变量”选项,大家可以选择类别图:每一个变量的分类图,重点是选择联合类别图,我们把7个变量全部放入,执行!(其它选项大家可以测试,我还有一些没有搞清楚)
下面我们看结果:
从图中我们可以看出:美国车都比较大,家庭型,主要购买者是已婚带孩子的;日本和欧洲车主要是小型、运动的和已婚没有孩子的人购买;特别注意:单身和单身带孩子的往往是租赁汽车,收入单一来源,但这个地区没有车满足这个市场,或许是市场空白;
具体的解读大家可以根据自己的研究设计和假设去寻找答案!
主要统计指标可以看:
上图主要给我们了对应图维度的解释比率,最下面的图大家会看吗?
提示:夹角是锐角意味着相关,所以:定类变量的相关性是不是可以解释啦!总结:(同样适合简单对应分析)
对应分析的优点:
•定性变量划分的类别越多,这种方法的优势越明显。
•揭示行变量类别间与列变量类别间的联系。
•将类别联系直观地表现在二维图形中(对应图)。
•可以将名义变量或次序变量转变为间距变量。
对应分析的缺点:
•不能用于相关关系的假设检验。
•维度要由研究者决定。
•有时候对应图解释比较困难。
•对极端值比较敏感。