对应分析
多元统计分析——对应分析

多元统计分析——对应分析多元统计分析是指在研究中同时考虑两个或多个自变量对因变量的影响,并通过统计方法进行分析。
对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
对应分析可以帮助人们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
在本文中,我们将详细介绍对应分析的概念、原理、应用以及一些重要的注意事项。
对应分析的应用非常广泛。
它可以用于数据挖掘、市场研究、生态学、社会科学等领域。
在市场研究中,对应分析可以用于确定消费者对产品的喜好和需求,帮助企业调整产品定位和市场战略。
在生态学中,对应分析可以用于研究不同物种之间的相互作用,并帮助我们了解生态系统的结构和动态。
在社会科学中,对应分析可以用于研究不同社会群体之间的关系,例如分析不同年龄段人群的消费行为和购买偏好。
然而,对应分析也需要注意一些重要的事项。
首先,对应分析是一种描述性的分析方法,不能确定因果关系。
其次,对应分析对数据的分布假设了一定的要求,例如对称分布、线性关系等。
如果数据的分布不满足这些假设,结果可能会不准确。
最后,对应分析通常在两个分类变量之间进行,而不适用于连续变量或混合类型的变量。
在总结中,对应分析是多元统计分析的一种方法,用于确定两个或多个分类变量之间的关联性。
它可以帮助我们理解变量之间的相关性,并提供用于可视化和解释数据的工具。
对应分析有着广泛的应用领域,但也需要注意一些重要的事项。
通过理解对应分析的原理和应用,我们可以更好地利用这一方法来分析和解释数据。
对应分析

p12 / p1. p22 / p2. p n 2 / pn .
p1 p / p1. p 2 p / p 2. pnp / pn.
pij n pij E ( ) = ∑ . pi. = p. j , j = 1,2,, p pi. i =1 pi.
因为原始变量的数量等级可能不同,所以为了尽 量减少各变量尺度差异,将行轮廓中的(各列元素) 均除以其期望的平方根.得矩阵D(R)
32 6
15 1
62 8
11 1
40 8
58 6
35 10
58 67
21 23
70 95
17 25
70 71
62 89
83 91
American European Japanese Large Medium Small Family Sporty Work 1 Income 2 Incomes Own Rent Married Married with Kids Single
变量的叉积矩阵
∑ R = (X* )′X* ( p × p)
样品的叉积矩阵
∑ Q = X* ( X* )′ ( n × n)
显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 他们的非零特征根也不一样,那么能否将观测值做变换. 他们的非零特征根也不一样,那么能否将观测值做变换.
含义 雪糕 纯水 碳酸饮料 果汁饮料 保健食品 空调 洗衣机 毛毯
代码 Feel1 Feel2 Feel3 Feel4 Feel5 Feel6 Feel7 Feel8
含义 清爽 甘甜 欢快 纯净 安闲 个性 兴奋 高档
name1
product1 product2 product3 product4 product5 product6 product7 product8 feel1 feel2 feel3 feel4 feel5 feel6 feel7 feel8 50 508 55 109 34 11 30 2 368 217 19 142 16 2 4 3
多元统计分析-对应分析

03
列联表检验的零假设是两变量 X和Y 相互独立,计算一个卡方统计量,与列联表中频数取值 和零假设下期望取值之差有关,当卡方 很大时否定零假设。
BA
患慢性支 未患慢性 气管炎 支气管炎
吸烟
43
162
不吸烟
13
121
为了探讨吸烟与慢性支气管炎有无关系, 调查了339人,情况如表所示:
设想有两个随机变量A,B:A:1表示吸 烟,
对应分析
对应分析基本步骤: 建立列联表
利用对应图解释结 果。
1
2
3
一.获取对应分析 数据 确定研究目的, 选择对应分析 所需数据,应 该包括的背景 资料。
对应分析
4
5
二、对应分析 的原理
01
由于R型因子分析和 02
设原始数据矩阵为:
Q型因子分析是反映
一个整体的不同侧面,
R型因子分析是从列
来讨论(对变量),
k
特征根。
Zu k
设 1 2…
三、对应图u 1u 11u 21 A和l(0Bu <的p 1 i<非m零in特(n征,p根)),为其矩相阵应 u 2u 12u 22 的特征u p 向2量为
v 1 v 1 1v 2 1 v n 1 v 2 v 1 2 v 2 2 v n 2
我们知道因子载荷矩阵的含义是原始变量与公共因子之间的 相关系数,所以如果我们构造一个平面直角坐标系,将第一 公共因子的载荷与第二个公共因子的载荷看成平面上的点, 在坐标系中绘制散点图,则构成对应图。
Q型因子分析是从行
来讨论(对样品),
因此 在的
他们之
联 x系1。1
间
存在
x12
内
对应分析

p
∑ x1k=X1*
k=1
x21 x22 ⋯ x2 p
p
∑ x2k=X2*
k=1
⋮⋮
⋮
⋮
p
xn1 xn2 ⋯ xnp
∑ xnk= Xn*
k =1 np
∑ ∑ X*1 X*2 ⋯ X*p
xlk=X **=T
l=1 k=1
p11 p12 ⋯ p1 p
P1*
p21 p22 ⋯ p2 p
p2*
⋮⋮
⋮
⋮
pn1 pn2 ⋯ pnp
设有 n 个样品,每个样品观测 p 个指标,原始数据阵为
[ ] x11 x12 ⋯ x1p
X= x21 x22 ⋯ x2 p
⋮⋮
⋮
xn1 xn2 ⋯ xnp
x11 x12 ⋯ x1 p x21 x22 ⋯ x2 p
p
∑ x1k=X1*
k=1 p
∑ x2k=X2*
k=1
⋮⋮
⋮
⋮
其中,
n
∑ X*j= xij i=1
对应分析

可见 λk 也是ZZ’的特征根,相应的特征向量是 Zu k
因此将原始数据矩阵X变换成矩阵Z,则变量和 样品的协差阵分别可表示为 A = Z ′Z 和B=ZZ′ ,A和 B具有相同的非零特征值,相应的特征向量有很密 切的关系。 这样就可以用相同的因子轴去同时表示变量 和样品,把变量和样品同时反映在具有相同坐标 轴的因子平面上。
= ∑ z ak z aj
a =1
n
pak − pa. p.k xak − xa. x.k = z ak = pa. p.k xa. x.k
令Z为zij所组成的矩阵,则 A = Z′Z
p1 j 称 p. j
p2 j p. j
L
pnj x1 j = p. j x. j
L
第i个行变量的期望:
E( pij p. j )=∑
j =1 p
pij p. j
. p. j = pi.
因为原始变量的数量等级可能不同,所以为了尽量 减少各变量尺度差异,将列形象中的各行元素均除以 其期望的平方根。得矩阵D(Q)
p11 p.1 p1. p21 D (Q ) = p.1 p2. M p n1 p.1 pn. p12 p.2 p1. p22 p.2 p2. M pn 2 p.2 pn.
X ⋅ X*
*
′
x11 − x1 x21 − x1 L xn1 − x1 x11 − x1 x12 − x2 L x1p − xp x12 − x2 x22 − x2 L xn2 − x2 x21 − x1 x22 − x2 L x2 p − xp = × M M M M M M x − x x − x L x − x x −x x − x L x − x np p n1 1 n2 2 np p 1p p 2 p p
对应分析

对应分析法一、简介对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析;多个变量间——多元对应分析。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
对应分析、典型相关分析、定性数据分析

应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。
对应分析

STATA中对应分析应用
Syntax for predict:
predict [type] newvar [if] [in] [, statistic ] statistic description fit fitted values; the default rowscore(#) row score for dimension # colscore(#) column score for dimension #
STATA中对应分析应用
二元对应分析之后的统计量和作图
command description cabiplot biplot of row and column points caprojection CA dimension projection plot estat coordinates display row and column coordinates estat distances display chi-squared distances between row and column profiles estat inertia display inertia contributions of the individual cells estat loadings display correlations of profiles and axes("loadings") estat profiles display row and column profiles + estat summarize estimation sample summary(not available after camat.) estat table display fitted correspondence table screeplot plot singular values + predict fitted values, row coordinates, or column
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对应分析对应分析表(A correspondence table)是一个两维表(two-way table),表中的单元包含行变量和列表量之间对应测度的一些信息。
所谓的对应测度(The measure of correspondence),可以表明行变量或列变量之间的近似程度(similarity)、密切关系(affinity)、复杂关系(confusion)、关联程度(association)或交互作用(interaction)。
交叉列联表(a crosstabulation)是对应分析表中最普通的一种类型,该表中的单元格包含频数(计数)。
利用SPSS中的列联表分析也可以得到交叉列联表,但是交叉列联表并不总是能够清晰地刻画出行变量和列变量之间的本质关系。
当我们所感兴趣的变量是名义变量(没有内在的次序或秩序)同时还包含很多类型时,这种问题尤其突出。
一个有关职业和早餐谷类食品的交叉列联表,也许能够告诉我们观测单元频数和期望频数是否存在显著差异,但是它很难识别出从事何种职业的人们喜欢哪种类似的早餐食品,同时也很难对早餐口味进行归类。
利用多维空间图形,对应分析可以分析两个名义变量之间的关系。
这种图形称为对应分析图,是利用计算出来的行变量和列变量得分而绘制的。
变量中相似的类型在图形中比较接近,因此通过这种方法可以很容易看出某个变量的哪些类型和其它类型相似,也可以分析出行变量和列变量的哪些类型存在相关性。
SPSS的对应分析方法还容许用辅助点(supplementary points)对根据活动点定义出的空间进行拟合。
如果没有办法根据类型的得分排序,或者这种排序与我们的直觉不相符,那么可以设定某些类型的得分相同,实际上就是对类型的次序设定限定条件。
比如说,我们预期变量“吸烟行为”有四个类型:不吸烟、少量吸烟、适度吸烟和大量吸烟,每一类型都有对应于次序的得分,但是对应分析对这四个类型进行排序时,可以限定适度吸烟和大量吸烟的得分相同。
利用距离来进行对应分析依赖于我们所使用的正态化方法。
对应分析可用来分析一个变量类型之间的差异,同时也可以分析变量(行变量和列变量)之间的差异。
在默认的正态化方法下下,SPSS的对应分析主要用来研究行变量与列变量之间的差异(。
对应分析算法可以进行各种类型的分析。
标准的对应分析以行变量和列变量为中心并且分析这两个变量之间的开方距离。
但是也有其它的中心选项,利用欧式距离,并且以低维空间的矩阵作为代表。
正态化过程将惯量分布到行变量和列变量得分上,不管采用哪种类型的正态化方法,对应分析的某些输出结果,比如奇异值(the singular values)、每个维度的惯量(the inertia per dimension)和贡献度(contributions)并不发生变化。
但是行变量得分、列变量得分和它们的方差却受到正态化方法的影响。
对应分析有多种分散惯量的方法,最常用的方法是将惯量仅仅分散到行得分或列得分上,或者将它对称分散到行得分或者列得分上。
对应分析有下面四种正态化方法:1、行主成分法(Row principal):在行主成分正态化过程中,行点之间的欧氏距离(Euclidean distances)近似于对应分析表中行变量之间的开方距离,行得分是列得分的加权平均,列得分要进行标准化,使得其平方距离的加权和为1(质心)。
由于主成分正态化方法对行类型距离取最大值,如果我们仅仅对行变量各类型之间的差距感兴趣,那么就应该使用这种方法;2、列主成分法(Column principal):在另外一个方面,列点之间的欧氏距离(Euclidean distances)近似于对应分析表中行变量之间的开方距离,此时列得分是行得分的加权平均,行得分要进行标准化,使得其平方距离的加权和为1(质心)。
列成分正态化方法对列类型距离取最大值,如果我们仅对列变量各类型之间的差距感兴趣,那么就应该使用这种方法;3、对称法(Symmetrical):行变量和列变量可以按照一视同仁的方法来处理,这种对称正态化方法将相同的惯量分布到行得分和列得分上。
需要注意的时,此时行点距离或者列点距离与开方距离都不存在近似相等关系,如果我们对两组变量间的差异性或者近似性感兴趣,通常使用这种方法;使用这种方法时,通常还要绘制二维图。
4、主成分法(Principal):第四个选项是主成分正态化(principal normalization),利用这种方法在进行对应分析时,惯量要被分散两次,一次是分散到行得分上,另外一次是分散到列得分上。
如果我们仅对行点之间的距离和列点之间的距离感兴趣,但是并不关心行点和列点之间的关系时,可以使用这种方法。
使用主成分正态化方法时,绘制二维图就不合适了,因此我们使用主成分正态化方法时,就不能选择输出二维图。
例1 吸烟行为与工作类型的关系前面的分析中已经提到过,对应分析的主要目标是利用对应表显示行变量和列变量之间的关系。
本例中使用的数据来自Greenacre(1984),利用他假设的数据来分析职员类型和吸烟之间的关系。
下表是数据中使用的变量名、变量标签和变量标签值:其中变量staff最后一个类型(National Average)和smoke的最后两个类型(No Alcohol 和Alcohol)在分析中作为辅助(supplementary)类型。
打开SPSS中tutorial\sample files文件夹中的smoking.sav .数据文件中的个案以计数值进行了加权,因此在分析之前要以变量count为权数,对个案进行加权,点击Data→Weight Cases...,进入加权个案对话框;选择变量count,移入Weight cases by下Frequency Variable文本框中,点击OK按钮,完成个案的加权;首先使用行主成分正态化的方法来进行对应分析,点击Analyze→Data Reduction→Correspondence Analysis...,进入对应分析对话框;从左侧变量列表框中选择Staff Group为行变量,移入Row Variable方框中,点击Define 按钮,进入定义行变量范围对话框;在minimum value后键入1,maximum value后键入5,设定行变量的类型数为5个,点击Update后再键入Continue按钮,回到对应分析对话框;选定Smoking为列变量,移入Column Variable方框中,点击Define Range按钮,也进入定义行变量范围对话框;在minimum value后键入1,maximum value后键入4,设定列变量的类型数为4个,点击Update后再键入Continue按钮,回到对应分析对话框点击Statistics ,进入对应分析统计量对话框;增加Row profiles 、Column profiles 、Permutations of the correspondence table 以及Confidence Statistics for 下的Row points 和Column points 这几个选项,点击Continue 按钮,回到对应分析对话框,点击OK 按钮,输出对应分析结果。
对应表(correspondence table)显示列变量smoking behavior 和行变量staff group 的分布,也就是说表中每一行对应一类职员,每一列对应一种吸烟行为。
行边际总和(The marginal row totals)显示该公司的高级职员有51人,低级职员有88人,他们的人数远远多于管理人员和秘书;但是高级管理人员(Sr Managers)和低级管理人员(Jr Managers)的吸烟行为的分布,与高级职员和低级职员的情况是非常相似的。
观察列边际总和(column totals),发现不吸烟的人数(nonsmokers)和适度吸烟的人(medium smokers)大体相等。
但是考虑到吸烟行为以后,各种职员是否有某种共同点?工作类型和吸烟行为是否存在某种关系?要回答这些问题还要进行下面的分析。
在理想状态下,对应分析应该在尽可能低的维度中反映出行变量和列变量中的关系。
但是看看上面综述表(Summary)中的最大维度数,可以了解每一维度的相对重要性。
分别将(活动的,active rows)行变量数和(活动的,active columns)列变量数减去1,取它们的最小值,就得到最大维度数(即()min 1,1r c --)。
比如本例中真正进入分析过程的行变量有5个类型,列变量有四个类型,因此本例最多有3个维度(()min 51,413--=)。
从综述表中可以看到第一维度的惯量(inertia ,测度数据变动程度的统计量)最大;第二维度的惯量与第一维度的惯量正交,而且它尽量解释剩下的变动;同样第三维度的惯量也和第二维度正交。
每一维度尽可能对总惯量进行分解,将每一维度的惯量和总惯量进行对比就可以知道每一维度的重要性。
比如本例中第一维度的惯量占总体的87.8%(0.075/0.085),而第二维度仅占11.8%(0.010/0.085)。
如果对应分析结果中有q 个维度,但是前p 个维度已经能显示总惯量的绝大部分,此时我们不需要再关注那个最大维度。
比如本例前两个维度的惯量加起来已占总惯量的99.6%,第三维度仅占总惯量的0.4%,因此两个维度就已足够了。
可以将奇异值(The singular values)理解为行得分和列得分之间的相关系数,它们近似于相关分析中的佩尔森相关系数。
对每个维度来说,奇异值的平方就是特征值(eigenvalue),也就等于惯量inertia ,因此奇异值也是测度每一维度重要性的统计量。
对应分析可以输出很多图形,分析它们可以知道变量类型之间和变量之间潜在的关系。
上面显示的是行得分与列得分在二维空间中的散点图。
解释这个图形比较简单,图中行/列点接近的点,它们的近似程度当然大于那些行/列点较远的点。
第一维度(横坐标)方向,Senior Employees 与Junior Employees 这两个行点之间的距离较远,因此第一维度分离出高级雇员和低级雇员这两个类型;第二维度(纵坐标)方向,Managers 与Employees 、Secretaries 列点之间的距离较大,管理人员和其他类型工作人员在这个维度中被分离出来;使用对称正态化方法很容易观察到工作类型与吸烟之间的关系。
比如从上图中看到Managers 与Heavy smoking 的点较近,管理人员的烟瘾可能都比较大;Senior Employees 与None smoking 比较接近,高级雇员可能不怎么吸烟;Junior Employees 与Medium smoking 或Light smoking 距离较小,低级雇员吸烟不多,他们也有可能适度吸烟;Secretaries 和吸烟行为的距离都较远,从事秘书工作的人没有呈现出特定的吸烟行为(当然他们远离Heavysmoking,不会是瘾君子)。