职高对口高考数学模拟试题
职高对口高考数学模拟试题word版本

临河一职对口高考模拟试题命题人:王春江一、选择题(本大题共10个小题,满分50分,每小题5分 ) 1 若M N 是两个集合,则下列关系中成立的是A .∅MB .M N M ⊆⋂)(C .N N M ⊆⋃)(D .N )(N M U 2 若a>b ,R c ∈,则下列命题中成立的是A .bc ac >B .1>b aC .22bc ac ≥D .ba 11<3 下列等式中,成立的是A .)2cos()2sin(x x -=-ππ B .x x sin )2sin(-=+πC .x x sin )2sin(=+πD .x x cos )cos(=+π4 “a=0”是“ab=0”的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5对于实数0λ≠,非零向量a →及零向量0→,下列各式正确的是( )A 00=•→a B →→=0a λ C a a →→-=0 D a a →→-=0→6 下列通项公式表示的数列为等差数列的是A .1+=n na n B .12-=n a n C .n n n a )1(5-+= D .13-=n a n7 直角边之和为12的直角三角形面积的最大值等于 A .16 B .18 C .20 D .不能确定 8 若f(x)是周期为4的奇函数,且f (-5)=1,则A .f(5)=1B .f(-3)=1C .f(1)=-1D .f(1)=19 若021log >a ,则下列各式不成立的是A .31log 21log a a < B .3a a <C .)1(log )1(log a a a a a a ->+D .)1(log )1(log a aa a a a -<+10已知 m 、 n 、 l 为三条不同的直线, α、 β为两个不同的平面,则下列命题中正确的是// , , //m n m n αβαβ⊂⊂⇒ , //l l βαβα⊥⊥⇒C . , //m m n n αα⊥⊥⇒ D .// , ,l n l n αβαβ⊥⊂⇒⊥第II 卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在题中的横线上)11 点(-2,1)到直线3x -4y -2=0的距离等于_________12 在],[ππ-内,函数)3sin(π-=x y 为增函数的区间是__________13若)2,0(,54sin παα∈=,则cos2α等于__________14函数11)(+-=x x x f 的定义域是__________ 15不等式21<-x 的解集是 .三、解答题(满分75分,解答应写出文字说明和演算步骤) 16(9分) 求25lg 50lg 2lg )2(lg 2+⋅+的值17(10分已知5,4==→→b a ,→a 与→b 的夹角为ο60,求→→-b a 。
中职数学 2024年湖南省对口招生高考数学模拟试卷

2024年湖南省对口招生高考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)A .∅B .{d }C .{a ,c }D .{b ,e }1.(4分)已知全集U ={a ,b ,c ,d ,e },集合N ={b ,d ,e },M ={a ,c ,d },则∁U (M ∪N )=( )A .{x |x <1}B .{x |x >4}C .{x |1<x <4}D .{x |x <1或x >4}2.(4分)不等式-x 2+5x -4>0的解集是( )A .6B .-4C .4或-6D .6或-43.(4分)已知点P (a ,2)到直线4x -3y +2=0的距离等于4,则a =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(4分)已知直线m 、n 和平面α,且n ⊆α,则“m ⊥α”是“m ⊥n ”的( )A .4B .4+4C .4D .4+45.(4分)设正四棱锥的底面边长和侧棱长都是2,则该四棱锥的表面积为( )M 3M 3M 5M 5A .2B .-2C .1D .-16.(4分)已知向量a =(-2,1),b =(4,3),c =(-1,λ).若(a +b )∥c ,则λ的值为( )→→→→→→A .(0,]B .[0,]C .(-∞,]D .[,+∞)7.(4分)已知函数f (x )=log a x (a >0且a ≠1)满足f (2)=-1,则不等式f (x )≥3的解集是( )18181818二、填空题(本大题共5个小题,每小题4分,共20分)A .10B .9C .8D .78.(4分)从某小学随机抽取100名学生,将他们的身高数据绘制成频率分布直方图如图所示,若要从身高在[120,130)、[130,140)、[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为( )A .f (-π)>f (-2)>-f (3)B .-f (3)>f (-π)>f (-2)C .f (-2)>-f (3)>f (-π)D .f (-π)>-f (3)>f (-2)9.(4分)已知f (x )是R 上的奇函数,且在区间[0,+∞)上是减函数,则f (-2),f (-π),-f (3)的大小关系是(A .函数y =sin 2x 的周期为πB .函数y =sinx 在区间(,)内是减函数C .函数y =sinx +cosx 的值域是[-2,2]D .函数y =sin 2x 的图像可由y =sin (2x -)的图像向左平移个单位得到10.(4分)下列命题中错误的是( )3π45π4π5π1011.(4分)已知sin (π+α)=-,α∈(,π),则sin 2α= .45π212.(4分)不等式|x -a |<2的解集为{x |-1<x <3},则实数a = .13.(4分)从7名运动员中选出4人参加校运会的4×100米接力赛,则甲、乙两人都不跑中间两棒的方法有 种.14.(4分)过点P (2,-1)作圆C :(x -1)2+(y -2)2=2的切线,切点为A 、B .则|PA |= .15.(4分)已知等差数列{a n }中a 1=13,且S 3=S 11,则S n 的最大值为 .三、解答题(本大题共7个小题,其中第21、22小题为选做题.满分50分.解答应写出文字说明、证明过程或演算步选做题:请考生在第21、22题中选择一题作答.若两题都做,则按所做的第21题计分.作答时,请写清题号.老师建科类做第21题,服务类做22题.16.(10分)已知点(4,2)在函数f (x )=的图象上.(1)求a 的值,并画出函数f (x )的图象;(2)求不等式f (x )<1的解集.{x +4,x ≤0x ,x >0log a 17.(10分)我校学生心理咨询中心服务电话的接通率为.21机2班的3名同学分别就某一问题在某天咨询该服务中心,只拨打一次电话,设X 表示他们中成功咨询的人数.求:(1)恰有2人成功咨询的概率;(2)随机变量X 的概率分布和数学期望、方差.3418.(10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N +).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .19.(10分)如图四棱锥P -ABCD 的底面是边长为2的菱形,且∠ABC =60°,PA =PC =2,PB =PD .(1)若O 是AC 与BD 的交点,证明:PO ⊥平面ABCD .(2)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.20.(10分)已知椭圆C 的中心在坐标原点O ,焦点在x 轴上,离心率为,椭圆上一点P 到椭圆左右两焦点的距离之和为(1)求椭圆C 的标准方程;(2)已知直线l :y =x +m 与椭圆C 交于A 、B 两个不同的点,且弦AB 的中点恰好在圆+=上,求直线l 的方程.M 32x 2y 2172521.(10分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.M222.某公司计划在今年内同时出售变频空调机和智能洗衣机.由于这两种产品的市场需求量非常大,有多少就能销售多少,该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的是资金和劳动力.通过调查,得到关于这两种产品的有关数据如表:资金(表中单位:百元)单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润6试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?。
(完整版)中等职业学校对口升学考试数学模拟试题及答案

(完整版)中等职业学校对口升学考试数学模拟试题及答案中等职业学校对口升学考试数学模拟试题及答案本试卷分选择题和非选择题两部分。
满分100分,考试时间为90分钟。
答卷前先填写密封线内的项目和座位号。
考试结束后,将本试卷和答题卡一并交回。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生务必将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定要求正确涂卡,否则后果自负。
一、单项选择题(本大题共10小题,每小题4分,共计40分)1.己知M={x|x >4},.N={x|x <5},则M ∪N =( )A.{x|4<x<5}< bdsfid="73" p=""></x<5}<>B.RC.{x|x >4}D.{x|x >5}2.已知sin α=32,则cos2α值为( ) A.352-1 B.91 C.95 D.1-35 3.函数y=x 3是( )A.偶函数又是增函数B.偶函数又是减函数C.奇函数又是增函数D.奇函数又是减函数4.不等式|2x -1|<3的解集是( ) A.{x ︱x <1} B.{x ︱-1<x <2}C.{x ︱x >2}D.{x ︱x <-1或x >2}5.在等差数列{a n }中,a 5+a 7=3,则S 11=( )A.15B.16.5C.18D.18.56.已知直线a,b 是异面直线,直线c ∥a ,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面7.将3封信投入4个不同的邮筒的投法共有( )种A.34 B.43 C.A 34 D.C 348.已知|a|=8,|b|=6,=150°,则a ·b=( )A.-243B.-24C.243D.169.函数f(x)=x 2-3x +1在区间[-1,2]上的最大值和最小值分别是( )A.5,-1B.11,-1C.5,-45D.11,-45 10.椭圆52x +162y =1的焦点坐标是( ) A.(±11,0) B.(0,±11)C.(0,±11) D.(±11,0)非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
职高对口高考模拟数学试卷

#### 一、填空题(每空2分,共20分)1. 若函数 \( f(x) = ax^2 + bx + c \) 在 \( x = 1 \) 处取得极值,则 \( a + b + c = \) ________。
2. 在等差数列 \(\{a_n\}\) 中,若 \( a_1 = 3 \),公差 \( d = 2 \),则\( a_5 = \) ________。
3. 已知圆的方程为 \( x^2 + y^2 - 4x - 6y + 9 = 0 \),则该圆的半径为________。
4. 若 \( \cos \alpha = \frac{1}{3} \),则 \( \sin \alpha \) 的值为________。
5. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
6. 若 \( \sqrt{a^2 + b^2} = 5 \),\( a = 3 \),则 \( b \) 的值为________。
7. 三个数的和为 12,其中两个数分别为 3 和 5,则第三个数为 ________。
8. 若 \( \triangle ABC \) 中,\( a = 5 \),\( b = 6 \),\( c = 7 \),则\( \cos A \) 的值为 ________。
9. 下列不等式中,正确的是 ________(选项:A. \( 2x > 4 \);B. \( 3x \leq 9 \);C. \( x^2 \geq 4 \);D. \( \frac{1}{x} < 1 \))10. 已知 \( \log_2 8 = 3 \),则 \( \log_2 32 = \) ________。
#### 二、选择题(每题3分,共30分)1. 函数 \( y = x^3 - 3x \) 的图像在 \( x = 0 \) 处的切线斜率为:A. 0;B. -3;C. 3;D. 不存在。
高职对口升学数学模拟试卷之二(含答案)

数学模拟试卷2第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分。
对每小题的命题做出选择,对的选A ,错的选B ,填在题前的括号里。
( )1、已知集合A={}3,2,1,B={}4,3,2,则A ∩B={}3,2. ( )2、(1+x)n 的二项展开式共有n 项.( )3、直线2X +3y-1=0与直线4x+6y+7y=0平行.( )4、数列2,1,21 ,41,81,…的通项公式是a n =2n . ( )5、椭圆252x +42y =1的焦点在x 轴上. ( )6、函数f(x)=3x +x+5是奇函数.( )7、y=sinx 在第一象限内单调递增.( )8、a 、b 表示两条直线,α、β表示两个平面,若a ⊂α,b ⊂β,则a与b 是异面直线( )9、“a 2=b 2是“a=b ”成立的必要不充分条件.二、单项选择题:本大题共8小题,每小题5分,共40分。
( )11、函数y=lgx 的定义域是A .()+∞∞-, B.[0,+∞] C.(0,+∞) D.(1,+∞)( )12.式子log 39的值为A.1B.2C.3D.9( )13.已知锐角α的终边经过点(1,1),那么角α为A .30° B. 90° C. 60° D. 45°( )14、已知一个圆的半径是2,圆心是A (1,0),则该圆的方程是A .(x-1)2+ y 2=4 B.(x+1)2+y 2=4C. (x-10)2+y 2=2D. (x+1)2+y 2=2( )15、已知a=4, b=9,则a 与b 的等比中项是A .6 B. -6 C.±6 D.±61 ( )16、同时抛掷两枚均匀的硬币,出现两个反面的概率是A .21 B.31 C.41 D.51 ( )17、设椭圆14522=+y x 的两个焦点分别是F 1、F 2,AB 是经过F 1的弦,则△ABF 2的周长是A 、2 D. 2( )18、如图,直线PA 垂直于直角三角形ABC 所在的平面,且∠ABC=90°,在△PAB, △PBC, △PAC 中,直角三角形的个数是 A. 0 B. 1 PC. 2D. 3A BC第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分。
河北职高对口升学数学高考复习模拟试题一(含答案)01

数学试题一、选择题:(共15题,每题4分,共60分)1、若34sin (cos )55z i θθ=-+-是纯虚数,则tan()4πθ-的值为( ) A .7- B .17-C .7D .-7或-17 2、命题“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则11x x ≥≤-,或B .若11x -<<,则21x <C .若11-<>x x ,或,则12>xD .若11x x ≥≤-,或,则21x ≥3、“12x -<成立”是“01x x <-成立”的( ). A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4、在△ABC 中,已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,则△ABC 的形状为 ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形5、直线1()y kx k R =+∈ 与椭圆2215x y m+=恒有公共点,则m 的取值范围是( )(A )[1,5)∪(5,+∞(B )(0,5) (C) [)+∞,1 (D) (1,5)6、执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( )A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]7、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a <b的概率为( )A.45 B.35C.25 D.158、函数()sin f x x x =+在区间[)0,+∞内( )A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点9、一个几何体的三视图如图,其侧视图是一个等边三角 形,则这个几何体的体积为( )A.()433π+ B.()836π+ C.()833π+ D.()43π+7 8 99 4 4 6 4 7 3 10、如图1是2013年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( ) A . 85,84B . 84,85C . 86,84D . 84,86 11、函数)0)(sin()(>+=ωϕωx x f 的图象如图所示,为了得到函数)6cos(πω+=x y 的图象,只需将)(x f y =的图象( ) A .向右平移3π个单位B .向左平移3π个单位C .向右平移6π个单位D .向左平移6π个单位 12、已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ( )A .12B .122±C .1102D .3222-± 13、函数()y f x =是定义在R 上的增函数,且函数满足)()(x f x f -=-,若任意的()()2,10x R f ax f ax ∈++>不等式恒成立,则a 的取值范围为( )A. ()0,4B. [)0,4C. ()4,0-D. (]4,0- 14、已知点P (x ,y )在直线x +2y =3上移动,当y x 42+取最小值时,过点P (x ,y )引圆C :⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +142=12的切线,则此切线长等于( )A. 12 B. 32 C. 62 D. 32 15、若点(1,0)A 和点(4,0)B 到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题:(共5题,每题4分,共20分)16、 设y x ,均为正实数,且33122x y+=++,则xy 的最小值为 . 17、若曲线2ln y kx x =+在点()1,k 处的切线与直线210x y +-=垂直,则k =____. 18、已知直线220x y -+=过椭圆22221(0,0,)x y a b a b a b+=>>>的左焦点1F 和一个顶点B.则该椭圆的离心率____.图119、写出函数()2sin(2)3f x x π=-的单调递减区间 .20、已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题:①若α⊥β,m ∥α,则m ⊥β;②若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β; ③若m ⊥β,m ∥α,则α⊥β;④若m ∥α,n ∥β,且m ∥n ,则α∥β. 其中真命题的序号是______.答案选择题:ADBDA ADBBA填空题:16.16 17. _12_18. 552。
山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题(答案解析)

山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.33.已知132a =,2log 0.3b =,b c a =,则()A.a b c<< B.b a c<< C.c a b<< D.b c a<<4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.45.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.566.函数π)()ex f x =的图象大致为()A. B.C. D.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.278.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.050.010k 3.8416.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为33的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.山西职业教育2024届中等职业学校6月对口升学模拟(数学)试题答案解析一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{M x y ==,{}220N x x x =-<,则M N ⋂=()A.{}01x x << B.{}01x x <≤ C.{}12x x << D.{}12x x ≤<【答案】B 【解析】【分析】求出集合,M N 后可得它们的交集.【详解】{(],1M x y ===-∞,{}()2200,2N x x x =-<=,故(]0,1M N = .故选:B.【点睛】本题考查集合的交运算以及一元一次不等式、一元二次不等式的解,考虑集合运算时,要认清集合中元素的含义,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图象.2.已知复数z 满足1i21iz +-=-(i 为虚数单位),则z =()A. B.2 D.3【答案】C 【解析】【分析】利用复数的除法计算可得z ,再利用复数的模的计算公式可得z .【详解】因为1i 21i z +-=-,故()()1i 1i 222z i ++=+=+,故z =故选:C.【点睛】本题考查复数的乘法和除法以及复数的模,注意复数的除法是分子、分母同乘以分母的共轭复数,本题属于基础题.3.已知132a =,2log 0.3b =,b c a =,则()A.a b c << B.b a c<< C.c a b<< D.b c a<<【答案】D 【解析】【分析】根据对数函数的单调性和指数函数的单调性可得三者之间的大小关系.【详解】因为2log y x =为增函数,且0.31<,故22log 0.30log 1b =<=,又2x y =为增函数,且103>,故103221a =>=,又x y a =为增函数,且0b <,故001b a a c =<=<,故b c a <<.故选:D .【点睛】本题考查指数幂、对数式的大小关系,此类问题的关键是根据底数的形式构建合理的单调函数,必要时还需利用中间数来传递大小关系.4.若圆P 的半径为1,且圆心为坐标原点,过圆P 上一点作圆22(4)(3)4x y -+-=的切线,切点为Q ,则PQ 的最小值为()A. B. C.2D.4【答案】B 【解析】【分析】根据题意,分析圆22(4)(3)4x y -+-=的圆心以及半径,由勾股定理分析可得||PQ =,当||PC 最小时,||PQ 最小,由点与圆的位置关系分析||PC 的最小值,计算可得答案.【详解】由题意可知,点P 在圆221x y +=上,圆22(4)(3)4x y -+-=的圆心(4,3)C ,半径2r =过点P 作圆22(4)(3)4x y -+-=的切线,切点为Q ,则||PQ =当||PC 最小时,||PQ 最小又由点P 在圆221x y +=上,则||PC 的最小值为||114OC -==则||PQ==;故选:B.【点睛】本题主要考查了直线与圆位置关系,涉及直线与圆相切的性质,属于中档题.5.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?()A.13B.23C.16D.56【答案】B 【解析】【分析】设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,结合等差数列的通项公式及求和公式即可求解.【详解】解:设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,故113327a d a d +=+,15105a d +=,解可得,123a =,16d =,故任意两人所得的最大差值243d =.故选:B.【点睛】本题主要考查了等差数列的通项公式及求和公式在实际问题中的应用,属于基础题.6.函数π)()ex f x =的图象大致为()A. B.C. D.【答案】A 【解析】【分析】利用()10f <,结合选项运用排除法得解.【详解】解:1)(1)0ln f e=<,可排除选项BCD ;故选:A.【点睛】本题主要考查函数图象的识别和判断,利用特征值的符号是否与选项对应是解决本题的关键.7.窗的运用是中式园林设计的重要组成部分,常常运用象征、隐喻、借景等手法,将民族文化与哲理融入其中,营造出广阔的审美意境.从窗的外形看,常见的有圆形、菱形、正六边形、正八边形等.如图,在平面直角坐标系xOy 中,O 为正八边形128PP P 的中心,18PP x ⊥轴,现用如下方法等可能地确定点M :点M 满足2i j OM OP OP ++=0 (其中1,8i j ≤≤且*,i j N ∈,i j ≠),则点M(异于点O )落在坐标轴上的概率为()A.35B.37C.38D.27【答案】D 【解析】【分析】写出i j OP OP +所有可能结果,结合条件找到满足点M (异于点O )落在坐标轴上的结果,根据古典概率进行求解.【详解】由题意可知i j OP OP +所有可能结果有:12131415161718OP OP OP OP OP OP OP OP OP OP OP OP OP OP +++++++ ,,,,,,,232425262728OP OP OP OP OP OP OP OP OP OP OP OP ++++++ ,,,,,,3435363738OP OP OP OP OP OP OP OP OP OP +++++ ,,,,,45464748OP OP OP OP OP OP OP OP ++++ ,,,,565758OP OP OP OP OP OP +++ ,,,676878OP OP OP OP OP OP +++ ,,,共有28种;点M (异于点O )落在坐标轴上的结果有:23456718OP OP OP OP OP OP OP OP ++++,,,,14365827OP OP OP OP OP OP OP OP ++++,,,,共有8种;所以点M (异于点O )落在坐标轴上的概率为82287p ==.故选:D.【点睛】本题主要考查古典概率的求解,求出所有基本事件及符合题意的基本事件是解题关键,侧重考查数学建模的核心素养.8.将函数()cos f x x =的图象向右平移2π3个单位长度,再将各点的横坐标变为原来的1(0)ωω>,得到函数()g x 的图象,若()g x 在π0,2⎡⎤⎢⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦,则ω范围为()A.48,33⎡⎤⎢⎥⎣⎦B.15,33⎡⎤⎢⎥⎣⎦C.4,3⎡⎫+∞⎪⎢⎣⎭ D.8,3⎡⎫+∞⎪⎢⎣⎭【答案】A 【解析】【分析】由题意利用函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,得出结论.【详解】解:将函数()cos f x x =的图象向右平移23π个单位长度,可得2cos()3y x π=-的图象;再将各点的横坐标变为原来的1(0)ωω>,得到函数2()cos()3g x x πω=-的图象.若()g x 在[0,]2π上的值域为1[,1]2-,此时,22[33x ππω-∈-,2]23ωππ-,220233ωπππ∴-,求得4833ω ,故选:A.【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,属于基础题.二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合要求.9.已知m ,n 为两条不重合的直线,α,β为两个不重合的平面,则()A.若//m α,βn//,//αβ,则//m nB.若m α⊥,n β⊥,αβ⊥,则m n ⊥C.若//m n ,m α⊥,n β⊥,则//αβD.若//m n ,n α⊥,αβ⊥,则//m β【答案】BC 【解析】【分析】根据直线和直线,直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】若//m α,βn//,//αβ,则//m n 或,m n 异面,A 错误;若m α⊥,αβ⊥,则//m β或m β⊂,当//m β时,因为n β⊥,所以m n ⊥;当m β⊂时,由n β⊥结合线面垂直的性质得出m n ⊥,B 正确;若//m n ,m α⊥,则n α⊥,又n β⊥,则//αβ,C 正确;若//m n ,n α⊥,则m α⊥,又αβ⊥,则//m β或m β⊂,D 错误;故选:BC【点睛】本题考查了直线和直线,直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力.10.某校计划在课外活动中新増攀岩项目,为了解学生喜欢攀岩和性别是否有关,面向学生开展了一次随机调查,其中参加调查的男女生人数相同,并绘制如下等高条形图,则()参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.050.01k 3.841 6.635A.参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多B.参与调查的女生中喜欢攀岩的人数比不喜欢攀岩的人数多C.若参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关D.无论参与调查的男女生人数为多少,都有99%的把握认为喜欢攀岩和性别有关【答案】AC【解析】【分析】由于参加调查的男女生人数相同,则设为m人,从而可求出男女生中喜欢攀岩的人数和不喜欢攀岩的人数,再代入2K公式中计算,可得结论.【详解】解:由题意设参加调查的男女生人数均为m 人,则喜欢攀岩不喜欢攀岩合计男生0.8m0.2m m 女生0.3m 0.7m m合计1.1m0.9m2m所以参与调查的学生中喜欢攀岩的男生人数比喜欢攀岩的女生人数多,A 对B 错;22222(0.560.06)501.10.999m m m m K m m m m -==⋅⋅⋅,当100m =时,2505010050.505 6.6359999m K ⨯==≈>,所以当参与调查的男女生人数均为100人,则有99%的把握认为喜欢攀岩和性别有关,C 对D 错,故选:AC【点睛】此题考查了独立性检验,考查了计算能力,属于基础题.11.已知1(F ,2F 是双曲线C :22221(0,0)x y a b a b -=>>的焦点,A 为左顶点,O 为坐标原点,P 是C 右支上一点,满足2222()()0F P F A F P F A +⋅-=,2222F P F A F P F A +=- ,则()A.C 的方程为2244139x y -=B.C 的渐近线方程为y =C.过1F 作斜率为3的直线与C 的渐近线交于M ,N 两点,则OMN 的面积为38D.若点Q 是2F 关于C 的渐近线的对称点,则1QOF 为正三角形【答案】ABD 【解析】【分析】由2222()()0F P F A F P F A +-= ,2222||||F P F A F P F A +=- ,可得22||||F A F P = ,22F A F P ⊥,及c =,再由a ,b ,c 之间的关系求出a ,b 的值,进而求出双曲线的方程及渐近线的方程,可得A ,B 正确;求过1F作斜率为3的直线方程,与C 的渐近线方程求出交点M ,N 的坐标,求出||MN 的值,再求O 到直线MN 的距离,进而求出OMN 的面积可得C 不正确;求出2F 关于渐近线的对称点Q 的坐标,进而求出||OQ ,1|OF |,1||QF 的值,可得1QOF 为正三角形,所以D 正确.【详解】解:由2222()()0F P F A F P F A +-= ,可得2222F P F A = ,即22||||F A F P = ,由2222||||F P F A F P F A +=- ,可得22F A F P ⊥,将x c ==代入双曲线的方程可得2||by a =,由题意可得2222b ac a c c a b ⎧=+⎪⎪⎪=⎨⎪=+⎪⎪⎩解得234a =,294b =,所以双曲线的方程为:2244139x y -=,渐近线的方程:b y x a =±=,所以A ,B 正确;C 中:过1F 作斜率为33的直线,则直线MN的方程为:x =,则x y ⎧=-⎪⎨=⎪⎩解得:2x =,32y =,即(2M ,32,则x y ⎧=-⎪⎨=⎪⎩,解得:4x =-,34y =,即(4N -,34,所以3||2MN ==,O 到直线MN的距离为2d ==,所以113||22228△=== MNO S MN d 所以C 不正确;D 中:渐近线方程为y =,设2F ,0)的关于渐近线的对称点(,)Q m n ,则32233n m ⎧+=⎪⎪⎨=-解得:m =,32n =,即(2Q -,32,所以||OQ ==,1||OF =,1||QF ==,所以1QOF 为正三角形,所以D 正确;故选:ABD.【点睛】本题考查由向量的关系线段的长度及位置关系,及点关于线的对称,和三角形的面积公式,属于中档题.12.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则()A.()f x 是周期为2的函数B.()()201920201f f +=-C.()f x 的值域为[-1,1]D.()f x 的图象与曲线cos y x =在()0,2π上有4个交点【答案】BCD 【解析】【分析】对于A,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A;对于B,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B.对于C,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C.对于D,构造函数()()cos g x f x x=-,利用导数法求出单调区间,结合零点存在性定理,即可判断D.【详解】根据题意,对于A,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=-即(4)(2)()f x f x f x +=-+=则()f x 是周期为4的周期函数,A 错误;对于B,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-;故B 正确.对于C,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--,[0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---,[6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x=-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin 20g g '=>'=-+<,存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增,0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点,即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--,则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增,且()()3sin3>0,22+sin 20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=,所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<,又()()2cos 2>0,4cos 4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点,所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,,当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点,当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确;故选:BCD.【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.三、填空题:13.6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项是.【答案】1516【解析】【详解】试题分析:通项为261231661()()(1)22r r rr r r r r T C x C x x---+=-=-,令1230r -=,得4r =,所以常数项为422456115()()216T C x x =-=.考点:二项展开式系数【方法点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.14.已知向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭b ,且// a b ,则cos 2θ=________.【答案】59-【解析】【分析】直接利用向量共线的充要条件列出方程求解,然后利用二倍角公式求解即可.【详解】解:向量(cos θ= a ,1,tan 3θ⎛⎫= ⎪⎝⎭ b ,且// a b ,∴可得tan cos 3θθ=,sin 3θ∴=,225cos 212sin 129θθ∴=-=-⨯=-.故答案为:59-.【点睛】本题考查向量共线的充要条件,二倍角的余弦函数的应用,考查计算能力,属于基础题.15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1(,0)F c -,2(,0)(0)F c c >,两条平行线1l :y x c =-,2l :y x c =+交椭圆于A ,B ,C ,D 四点,若以A ,B ,C ,D 为顶点的四边形面积为22b ,则椭圆的离心率为________.【答案】2【解析】【分析】直线CD 的方程与椭圆的方程联立求出两根之和及两根之积,进而求出弦长CD ,再求两条平行线间的距离,进而求出平行四边形的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率.【详解】解:设1(C x ,1)y ,2(D x ,2)y ,联立直线1l 与椭圆的方程:22221y x c x y ab =-⎧⎪⎨+=⎪⎩,整理可得:22222222()20a b x a cx a c a b +-+-=,212222a cx x a b +=+,22221222a c ab x x a b -=+,所以222||CD a b ==+,直线1l ,2l 间的距离d ==,所以平行四边形的面积2222||2S CD d b a b===+ ,整理可得:2220c a +-=,即220e +-=,解得:2e =±,由椭圆的性质可得,离心率2e =故答案为:2【点睛】本题考查椭圆的性质及直线与椭圆的综合,属于中档题.16.已知ABC 是边长为4的等边三角形,D ,E 分别是AB ,AC 的中点,将ADE 沿DE 折起,使平面ADE ⊥平面BCED ,则四棱锥A BCED -外接球的表面积为________,若P 为四棱锥A BCED -外接球表面上一点,则点P 到平面BCED 的最大距离为________.【答案】(1).52π3(2).3【解析】【分析】由题意画出图形,找出四棱锥外接球的球心,利用勾股定理求半径,代入球的表面积公式求球的表面积,再由球的对称性可知,球表面上的点到平面BCED 距离的最大值为半径加球心到面的距离.【详解】解:如图,取BC 的中点G ,连接,,DG EG AG ,AG 交DE 于K ,可知DG EG BG CG ===,则G 为等腰梯形BCED 的外接圆的圆心,过G 作平面BCED 的垂线,再过折起后的ADE 的外心作平面ADE 的垂线,设两垂线的交点为O ,则O 为四棱锥A BCED -外接球的球心,因为ADE 的边长为2,所以33OG HK ==,所以四棱锥A BCED -外接球的半径223392()33OB =+=,所以四棱锥A BCED -外接球的表面积为23952433ππ⎛⎫⨯= ⎪ ⎪⎝⎭,由对称性可知,四棱锥A BCED -外接球的表面上一点P 到平面BCED 的最大距离为:393393333++=故答案为:52π3;3933+【点睛】此题考查空间中点、线在、面间的距离计算,考查空间想象能力,属于中档题.。
对口高职高考数学模拟试卷

2019对口高职高考数学模拟试卷(2018.11.18)一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9}7. “a>0且b>0”是“ab>0”的( )条件。
A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ).A.偶函数B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ).A.2B.3C.3D.1310.sin 800-√3cos 800−2 sin 200的值为( )。
A.0B.1C.−sin200D.4sin20011.等比数列的前4项和是203,公比q=−13,则a 1=( ).A.-9B.3C.9D.1312.已知(23) y =(32) x 2+1,则y 的最大值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高对口高考数学模拟试题一:单选题(在每小题给出的四个选项中,只有一个选项中,只有一个选项是正确的,请把你认为正确的选项填入后面的括号内,本大题共10小题,每小题4分,共40分)1)设集合M={}2/16xx >N={}2/16xx >,则M {}2/16xx > N= ( )A) {}2/16xx > B) {}2/16xx > C) {}2/16xx > D){}2/16xx > {}2/16xx >2)若命题p,q 中,q 为假,则下列命题为真的是( )1)A) {}2/16xx > B) {}2/16xx >{}2/16xx >q C) {}2/16xx > D) {}2/16xx >3)下列函数既是奇函数又是增函数的是( )A) {}2/16xx > B) {}2/16xx > C) {}2/16xx > D) {}2/16xx >4)复数{}2/16xx >,{}2/16xx >,则{}2/16xx >在复平面内的对应点位于 象限。
A)第一 B)第二 C)第三 D)第四5)直线{}2/16xx >和直线{}2/16xx >的位置关系是( )A) 相交不垂直 B) 垂直 C) 平行 D)重合6)函数{}2/16xx >在{}2/16xx >=0处( )A)极限为1 B)极限为-1 C)不连续 D)连续7)已知二项式{}2/16xx >的展开式中所有项的系数和是3125,此展开式中含{}2/16xx >的系数是( )A)240 B)720 C)810 D)10808)等差数列{}2/16xx >中,{}2/16xx >{}2/16xx >,则数列{}2/16xx >的前9项和{}2/16xx >等于( )A)66 B)99 C)144 D)2979)某校二年级有8个班,甲,乙两人从外地转到该年级插班,学校让他们各自随机选择班级,他们刚好选在同一个班的概率是( )A) {}2/16xx > B) {}2/16xx > C) {}2/16xx > D) {}2/16xx >10)若抛物线{}2/16xx >过点M {}2/16xx >,则点M 到准线的距离d=( )A) 5 B) 4 C) 3 D)2二:填空题(本大题共6小题,每小题5分,共30分)11)设直线{}2/16xx >和{}2/16xx >的圆相交于A,B 两点,则线段AB 的垂直平分线的方程是12)已知向量{}2/16xx >={}2/16xx > {}2/16xx >={}2/16xx >,则{}2/16xx >与{}2/16xx >的夹角等于13) {}2/16xx>,则{}2/16xx>=14) 若{}2/16xx>,则{}2/16xx>15)在正方体A {}2/16xx>中,E,F分别为棱AB,{}2/16xx>的中点,则直线AB与截面{}2/16xx>ECF所成角的正弦值等于D {}2/16xx>=50分,解答时应写出简要步骤)17)求不等式{}2/16xx>的解集(8分)18)抛物线{}2/16xx>与过点M{}2/16xx>的直线L相交于A,B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线L的方程。
(8分)19)在三角形ABC中,{}2/16xx>,{}2/16xx>,且知三角行的最大边的长为1。
(1)求角C的度数(4分)(2)求三角行的最短的边的长(4分)20)某村2003年底共有人口1480人,全年工农业生产总值为3180万元,从2004年其计划10年内该村的总产值每年增加60万元,人口每年净增a人,设从2004年起的第x年(2004年为第一年)该村人均产值为y万元。
(1)写出y与x之间的函数关系式(3分)(2)为使该村的人均产值年年都有增长,那么该村每年人口的净增量不能超过多少人?(5分)21)已知函数{}2/16 xx>(1)求函数{}2/16xx>的解析式(2分)(2)讨论函数{}2/16xx>的单调性(3分)(3)当{}2/16xx>时,函数{}2/16xx>满足{}2/16xx>,求实数{}2/16xx>的取值范围。
(3分)22)在一条马路上,间搁一定距离顺次有4盏红绿信号灯,若每盏灯均以0.5的概率允许或禁止车辆望前通行(1)求一辆汽车在第一次停车时通过信号灯数 X的分布列(6分)(2)求X的数学期望E(X)(4分)23)设函数{}2/16xx>的图象关于原点对称,且{}2/16xx>的图象在点P{}2/16xx>处的切线的斜率为-6,且当{}2/16xx>=2时,{}2/16xx>有极值。
(1)求{}2/16xx>的值(4分)(2)若{}2/16xx>,求证{}2/16xx>(6分)附参考答案:一大题:1)--------5)B C B D B 6)--------10) C C B B A11) {}2/16xx>12){}2/16xx>13) 4 14){}2/16xx>15){}2/16xx>16) 0.4417)解:原不等式可化为:{}2/16 xx>即:{}2/16xx>{}2/16xx>所以,原不等式的解集为{}2/16 xx>18)设直线L的方程为:{}2/16xx>,点A{}2/16xx>,B{}2/16xx>,由{}2/16 xx>得:{}2/16xx>,{}2/16xx>,{}2/16xx>{}2/16 xx>即,{}2/16xx>=2,{}2/16xx>,得{}2/16xx>=2 所以,直线方程为y=2x+119) 解:{}2/16 xx>{}2/16 xx>(2) 由{}2/16xx>,得{}2/16xx>,{}2/16xx>20)(1){}2/16 xx>(2){}2/16xx>,由{}2/16xx>,得{}2/16xx>{}2/16 xx>21)(1)令{}2/16xx>,{}2/16xx>,{}2/16xx>(2){}2/16xx>,所以函数在定义域内单调递增。
(3){}2/16xx>,所以f(x)为奇函数由{}2/16xx>,得{}2/16xx>,即:{}2/16xx>,所以,{}2/16xx>,解不等式组{}2/16 xx>{}2/16xx>得:{}2/16 xx>{}2/16xx>22)解:(1)X的可能取值为0,1,2,3,4P(X=0)= {}2/16xx>, P(X=1)={}2/16xx>{}2/16xx>,, P(X=1)={}2/16xx>{}2/16xx>,P(X=3)={}2/16xx >, P(X=4)= {}2/16xx >所以X 的分布列为:(2)E(X)= 2/16xx >23)(1)解:由题意知,b=d=0{}2/16xx > ,由 {}2/16xx >{}2/16xx > 得, a=2, c=-2(2) {}2/16xx >,由,{}2/16xx >,当{}2/16xx >时,有{}2/16xx > {}2/16xx >,{}2/16xx >,{}2/16xx >{}2/16xx >。