甲烷燃料电池原理及其发展应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、前言

科技文明不停的进步,人口不断的增加以及为了追求更美好的生活,人们不停的增加能源的使用量,使得石化燃料(石油、煤炭、天然气等)日已枯竭,大量的使用石化燃料也衍生出许多问题如:空气污染、酸雨以及温室效应等问题。据统计,以现今石油消耗的速度,地球上的石油储存量最多能再用40到50年,为了避免届时世界陷入难以估计的经济恐慌,各国提出了各种以绿色能源取代石化燃料的方案。

目前世界上绿色能源有太阳能、风力、水力、潮汐、地热、生物能以及氢能等。但太阳能转化效率不高、制造过程复杂生产成本昂贵;而风力会受到地形天候限制;水力发电建设费用相当高,且在河流上建造水坝会破坏河流生态;地热又少;因此在这些绿色能源中以燃料电池最具发展潜力。

燃料电池能够应用的领域相当广泛,包括电力、工业、运输、太空、军事、通讯产品等等。目前许多国家都在发展燃料电池,经过多年研究以及技术改良现在燃料电池技术已经进入商业化阶段,未来极有可能成为最重要的绿色科技之一。

二、燃料电池发展史

燃料电池技术起源于1838年,C. F. Schonbein发现了燃料电池的电,氢气与白

金电极上的氯气或氧气发生的化学反应能产生电流,并将这种现象命名为极化效应。

1839年,Willian Grove设计了一款气体电池,他的基本设想来自于水的电解反应,水电解之后产生氧气和氢气,若将电解反应逆转则能产生电流,于是用两条白金分别放入两个密封的瓶子中,一瓶充满氢气,一瓶充满氧气,将两容器浸入稀硫酸溶液时,电流便在两个电极之间流动,为了提高装置产生的电压,就将四组装置串联起来,此装置就是后来全世界公认的第一个燃料电池。

1899年,Nernst提出将固态氧化物当做电解质用于燃料电池之中。

1959年,Francis T. Bacon 制作出一个5KW的燃料电池,能够推动电焊,电锯以及堆高机,使燃料电池技术走出实验室。

1960年美国太空署为了发展太空科技而开始将燃料电池实用化。

1965年氢燃料电池正式应用在太空船双子星五号上,为美国太空计划中的电力提供系统,因产物是纯水也为太空人提供饮用水。此后燃料电池在太空行动如阿波罗7~17号中均起到重责大任。

1973年发生石油能源危机,各国开始认识到能源的重要性,纷纷拟定各种能源政策以期望降低对石油的依赖。燃料电池因其高的能源转化率而引起各国重视。

1980年代环保意识的高涨,开法绿色能源技术使人类的发展不用受限于有限的天然资源,也可以让人类在享受能源提供生活便利的同时还能维持一个良好的生活环境,燃料电池以其低污染的特性再次走入大众视野。

现今燃料电池生产状况并不轻松,与化石燃料的竞争过于激烈。而且受制于成本问题,除非国家政策扶植力度大,否则很多燃料电池企业都很难盈利甚至亏损。如FuelCell能源公司2010年就在燃料电池领域亏损。但是燃料电池的优势还是十分显著的,环保方面的零排放,应用围之广,无论大到发电厂,还是汽车,还是小到电子消费产品都可以使用燃料电池。业认为,随着今后数十年的发展,再配合液态氢基础设施网络的建设和完善,燃料电池就会变得更稳定廉价,燃料电池发展的真正春天也就来了。

三、燃料电池发电原理

燃料电池严格来说并非电池,算是发生电化学反应的媒介,一种发电装置。因为所参与电极反应的活性物质不能储存于电池部,而是由电池之外供应,所以只要燃料不断输入,电力就会不断的输出。

燃料电池的主要燃料通常以氢气为主,氢气与氧气通过电化学反应发生氧化作用输出电能、纯水和热量,如图1

图1:水的电解与电化学反应

由图可以看出由于直接将化学能转化为电能,不需要经过多次转换,而且没有卡诺循环的限制,所以节省了转换为机械能浪费的能量损失,因此比燃机多了30%以上的能量转换效率,目前效率可达70%,若加上热回收利用,更可高达85%,渴望成为最具经济效益的能源。

燃料电池的基本原件是两个电极夹着一种具有渗透性的电解质,两电极通常加入碳粉、铂等触媒作为催化剂加速氢、氧分子分解为电子及离子,电解质作为离子的通道用,其传输效率越高则电流密度越高;而电解质对于电子的传输效果差,所以电子由外接电路传输,如图2

图2:燃料电池工作原理图

四、燃料电池分类

现今燃料电池出现多种形式,人们依据电解质的不同将燃料电池分为碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固态氧化物燃料电池、质子交换膜燃料电池以及甲醇燃料电池等。也有依据操作温度的高低来区分为高温型(>300℃)、中温型(150~ 300℃)以及低温型(<150℃),但通常以电解质类型来区分。以下针对一些燃料电池作简单说明:

1.碱性燃料电池

最早是在1925年由Dr. Francis Thomas Bacon 开始发展,一般被运用于人工卫星、航天及军事等用途上。因氧气在碱性溶液中的活性大于在酸性溶液中,

所以可以使用非贵金属如银、镍等作为电极材料。但电解质溶液为强碱会与空气中的二氧化碳生成碳酸盐而沉积在多孔电极上造成堵塞,所以须以纯氢气作为阳极燃料,以纯氧气作为阴极的氧化剂。

2.磷酸燃料电池

有第一代燃料电池之称。使用浓磷酸为电解质的酸性溶液燃料电池,所以电池性能不受二氧化碳的影响,因此可将空气直接提供给阴极。目前大都运用在发电机组上,虽已商业化生产,但因为成本始终居高不下,而未能普遍。

3.熔融碳酸盐燃料电池

碱金属碳酸盐只有在熔融状态时,才能发挥离子传导的功能,所以操作温度须在熔点以上。在操作温度下,阴极的二氧化碳与氧气发生反应形成CO32 -,CO32 -经电解质导引至阳极与氢气反应,生成二氧化碳及水蒸气。二氧化碳经阳极回收后,可再循环至阴极使用。由于熔融盐燃料电池反应容易,不需以昂贵的金属作为触媒,使用镍及氧化镍即可。

4.固态氧化物燃料电池

固态氧化物燃料电池有第三代燃料电池的称号,电解质为固态、无孔隙的金属氧化物,由氧离子在晶体中穿梭来传送离子,电池本体材料局限于瓷或金属氧化物。目前技术已进入成熟稳定阶段,但仅有少数材料可于高温下长期运转且价格昂贵,因此有朝中温型电池的方向发展的趋势。

相关文档
最新文档