华中科技大学HUST类MIPS单周期微处理器设计实验报告
单周期CPU实验报告

MIPS-CPU设计实验报告实验名称:32位单周期MIPS-CPU设计姓名学号:刘高斯11072205实验日期:2014年12月19日目录前言MIPS简介------------------------------------------------------------- 3 实验目的------------------------------------------------------------- 3第一部分VERILOG HDL 语言实现部分实验内容------------------------------------------------------------- 4 试验环境------------------------------------------------------------- 4 模块简介------------------------------------------------------------- 4 实验截图------------------------------------------------------------- 5 实验感想------------------------------------------------------------- 5 实验代码------------------------------------------------------------- 6第二部分LOGISIM 语言实现部分实验内容------------------------------------------------------------- 16 实验环境------------------------------------------------------------- 16模块设计------------------------------------------------------------- 16 试验感想------------------------------------------------------------- 23前言一、MIPS简介MIPS是世界上很流行的一种RISC处理器。
华中科技大学HUST类MIPS单周期微处理器设计实验报告

类MIPS单周期微处理器设计实验报告专业:班级:学号:姓名:一、微处理器各模块设计各模块的框图结构如上图所示。
由图可知,该处理器包含指令存储器、数据存储器、寄存器组、ALU单元、符号数扩张、控制器、ALU控制译码以及多路复用器等。
图中还忽略了一个单元:时钟信号产生器,而且以上各个部件必须在时钟信号的控制下协调工作。
1.指令存储器的设计指令寄存器为ROM类型的存储器,为单一输出指令的存储器。
因此其对外的接口为clk、存储器地址输入信号(指令指针)以及数据输出信号(指令)。
(1)在IP wizard 中配置ROM,分配128个字的存储空间,字长为32位宽。
(2)选择输入具有地址寄存功能,只有当时钟上升沿有效时,才进行数据的输出。
(3)配置ROM内存空间的初始化COE文件。
最后单击Generate按钮生成IROM模块。
2.数据存储器的设计数据存储器为RAM类型的存储器,并且需要独立的读写控制信号。
因此其对外的接口输入信号为clk、we、datain、addr;输出信号为dataout。
数据存储器基本建立过程同ROM的建立。
3.寄存器组设计寄存器组是指令操作的主要对象,MIPS中一共有32个32位寄存器。
在指令的操作过程中需要区分Rs、Rt、Rd的地址和数据,并且Rd的数据只有在寄存器写信号有效时才能写入,因此该模块的输入为clk、RegWriteAddr、RegWriteData、RegWriteEn、RsAddr、RtAddr、reset;输出信号为RsData、RtData。
由于$0一直输出0,因此当RsAddr、RtAddr为0时,RsData以及RtData 必须输出0,否则输出相应地址寄存器的值。
另外,当RegWriteEn有效时,数据应该写入RegWriteAddr寄存器。
并且每次复位时所有寄存器都清零。
代码如下:module regFile(input clk,input reset,input [31:0] regWriteData,input [4:0] regWriteAddr,input regWriteEn,output [31:0] RsData,output [31:0] RtData,input [4:0] RsAddr,input [4:0] RtAddr);reg[31:0] regs[0:31];assign RsData = (RsAddr == 5'b0)?32'b0:regs[RsAddr];assign RtData = (RtAddr == 5'b0)?32'b0:regs[RtAddr];integer i;always @(posedge clk)beginif(!reset)beginif(regWriteEn==1)beginregs[regWriteAddr]=regWriteData;endendelsebeginfor(i=0;i<31;i=i+1)regs[i]=0;regs[31]=32'hffffffff;endendendmodule4.ALU设计在这个简单的MIPS指令集中,微处理器支持add、sub、and、or、slt运算指令,需要利用ALU单元实现运算,同时数据存储指令sw、lw也需要ALU单元计算存储器地址,条件跳转指令beq需要ALU来比较两个寄存器是否相等。
单周期CPU实验报告

MIPS-CPU设计实验报告实验名称:32位单周期MIPS-CPU设计姓名学号:刘高斯11072205实验日期:2014年12月19日目录前言MIPS简介------------------------------------------------------------- 3 实验目的------------------------------------------------------------- 3第一部分VERILOG HDL 语言实现部分实验内容------------------------------------------------------------- 4 试验环境------------------------------------------------------------- 4 模块简介------------------------------------------------------------- 4 实验截图------------------------------------------------------------- 5 实验感想------------------------------------------------------------- 5 实验代码------------------------------------------------------------- 6第二部分LOGISIM 语言实现部分实验内容------------------------------------------------------------- 16 实验环境------------------------------------------------------------- 16模块设计------------------------------------------------------------- 16 试验感想------------------------------------------------------------- 23前言一、MIPS简介MIPS是世界上很流行的一种RISC处理器。
MIPS单周期CPU实验报告材料

《计算机组成原理实验》实验报告(实验二)学院名称:专业(班级):学生姓名:学号:时间:2017 年11 月25 日成绩 :实验二:单周期CPU设计与实现一.实验目的(1) 掌握单周期CPU数据通路图的构成、原理及其设计方法;(2) 掌握单周期CPU的实现方法,代码实现方法;(3) 认识和掌握指令与CPU的关系;(4) 掌握测试单周期CPU的方法;(5) 掌握单周期CPU的实现方法。
二.实验内容设计一个单周期的MIPSCPU,使其能实现下列指令:==> 算术运算指令说明:以助记符表示,是汇编指令;以代码表示,是机器指令功能:rd←rs + rt。
reserved为预留部分,即未用,一般填“0”。
符号扩展再参加“加”运算。
(3)sub rd , rs , rt功能:rd←rs - rt==> 逻辑运算指令(4)ori rt , rs ,immediate功能:rt←rs | (zero-extend)immediate;immediate做“0”扩展再参加“或”运算。
(5)and rd , rs , rt功能:rd←rs & rt;逻辑与运算。
功能:rd←rs | rt;逻辑或运算。
==>移位指令==>比较指令功能:if (rs<rt) rd =1 else rd=0, 具体请看表2 ALU运算功能表,带符号==> 存储器读/写指令(9)sw rt ,immediate(rs) 写存储器功能:memory[rs+ (sign-extend)immediate]←rt;immediate符号扩展再相加。
即将rt寄存器的内容保存到rs寄存器内容和立即数符号扩展后的数相加作为地址的内存单元中。
(10) lw rt , immediate(rs) 读存储器功能:rt ← memory[rs + (sign-extend)immediate];immediate符号扩展再相加。
微机原理实验类MIPS单周期微处理器设计

微机原理实验类MIPS单周期微处理器设计MIPS单周期微处理器设计是一种常见的计算机体系结构,采用简化指令集和单个时钟周期执行指令的方式。
下面将详细介绍MIPS单周期微处理器的设计。
1.指令集架构MIPS单周期微处理器采用五个基本的指令类型,包括加载/存储指令、算术逻辑指令、跳转指令、分支指令和数据传输指令。
这些指令类型可以通过相应的操作码和寄存器编号来确定具体的指令操作。
2.寄存器文件MIPS单周期微处理器使用了32个通用寄存器,每个寄存器的位宽为32位。
其中,除了$0寄存器始终为零,其他的寄存器可用于存储数据和进行运算。
3.控制单元控制单元是MIPS单周期微处理器的核心部分,负责解码指令,生成相应的控制信号,控制数据通路的各个部件以正确执行指令。
控制单元包括指令寄存器、程序计数器、指令解码器等。
4.数据通路MIPS单周期微处理器的数据通路由多个组成部分组成,包括寄存器文件、算术逻辑单元(ALU)、数据存储器(DM)等。
数据通路用于执行指令的各个操作步骤,如指令的读取、寄存器操作、运算和数据存储。
5.指令执行过程MIPS单周期微处理器的指令执行过程包括指令的取指、指令解码、操作数的读取、指令执行和结果的写回等步骤。
在每个时钟周期中,通过控制信号控制数据通路的各个部件,按照指令的操作要求完成相应的操作。
总体而言,MIPS单周期微处理器设计简洁高效,适用于大多数应用场景。
然而,由于单周期处理器的指令执行时间较长,且不支持流水线技术,所以在一些对性能要求较高的应用中可能会受到限制。
综上所述,MIPS单周期微处理器设计是一种常用的计算机体系结构,通过合理的指令集架构、寄存器文件、控制单元和数据通路的设计,实现了对指令的有效执行和数据操作。
该设计具有一定的优势和限制,需要根据实际需求进行选用和改进。
mips运算器设计的实验报告

mips运算器设计的实验报告MIPS运算器设计的实验报告在计算机科学领域,MIPS(Microprocessor without Interlocked Pipeline Stages)是一种常见的指令集架构,被广泛用于教学和研究。
MIPS运算器设计实验旨在通过实际操作,加深对MIPS指令集的理解,提高学生的计算机系统设计能力。
实验开始前需要明确设计的目标和功能需求。
在设计MIPS运算器时,需要考虑指令的执行流程、寄存器的设计、ALU的功能等关键要素。
设计者应该清楚每条指令的操作码、操作数及操作结果的存储位置,确保整个运算器的功能正常实现。
根据设计要求,搭建MIPS运算器的硬件结构。
在硬件设计中,需要考虑到时钟频率、数据通路的连接、控制信号的传输等方面。
合理的硬件设计是保证运算器正常运行的基础,需要对各个模块进行充分测试和调试,确保整个系统的稳定性和可靠性。
接着,进行指令集的编码和解码工作。
MIPS指令集包括常见的算术运算指令、逻辑运算指令、分支跳转指令等,设计者需要为每条指令赋予唯一的操作码,并实现指令的编码和解码功能。
编码和解码的准确性直接影响到指令的执行结果,需要仔细检查和验证每条指令的功能和操作。
进行仿真和调试工作。
通过仿真软件模拟MIPS运算器的运行过程,检查指令执行的正确性和时序的准确性。
在调试过程中,需要重点关注指令执行的过程中是否存在冲突和错误,及时修改和优化设计方案,确保运算器的功能完整和稳定。
总的来说,通过设计MIPS运算器的实验,可以帮助学生深入理解计算机系统的结构和工作原理,提高他们的设计和调试能力,培养他们的团队合作和问题解决能力。
同时,这也是一个很好的实践机会,让学生将理论知识应用到实际项目中,提升他们的综合素质和创新能力。
希望通过这样的实验,能够激发学生对计算机科学的兴趣,培养他们对技术研究的热情,为未来的科技发展做出贡献。
MIPS单周期CPU实验报告

MIPS单周期CPU实验报告一、实验目的本实验旨在设计一个基于MIPS指令集架构的单周期CPU,具体包括CPU的指令集设计、流水线的划分与控制信号设计等。
通过本实验,可以深入理解计算机组成原理中的CPU设计原理,加深对计算机体系结构的理解。
二、实验原理MIPS(Microprocessor without Interlocked Pipeline Stages)是一种精简指令集(RISC)架构的处理器设计,大大简化了指令系统的复杂性,有利于提高执行效率。
MIPS指令集由R、I、J三种格式的指令组成,主要包括算术逻辑运算指令、存储器访问指令、分支跳转指令等。
在单周期CPU设计中,每个指令的执行时间相同,每个时钟周期只执行一个指令。
单周期CPU的主要部件包括指令内存(IM)、数据存储器(DM)、寄存器文件(RF)、运算单元(ALU)、控制器等。
指令执行过程主要分为取指、译码、执行、访存、写回等阶段。
三、实验步骤1.设计CPU指令集:根据MIPS指令集的格式和功能,设计符合需求的指令集,包括算术逻辑运算指令、存储器访问指令、分支跳转指令等。
2.划分CPU流水线:将CPU的执行过程划分为取指、译码、执行、访存、写回等阶段,确定每个阶段的功能和控制信号。
3.设计控制器:根据CPU的流水线划分和指令集设计,设计控制器实现各个阶段的控制信号生成和时序控制。
4.集成测试:进行集成测试,验证CPU的指令执行功能和正确性,调试并优化设计。
5.性能评估:通过性能评估指标,如CPI(平均时钟周期数)、吞吐量等,评估CPU的性能优劣,进一步优化设计。
四、实验结果在实验中,成功设计了一个基于MIPS指令集架构的单周期CPU。
通过集成测试,验证了CPU的指令执行功能和正确性,实现了取指、译码、执行、访存、写回等阶段的正常工作。
同时,通过性能评估指标的测量,得到了CPU的性能参数,如CPI、吞吐量等。
通过性能评估,发现了CPU的性能瓶颈,并进行了相应的优化,提高了CPU的性能表现。
mips运算器设计的实验报告

mips运算器设计的实验报告
MIPS运算器设计的实验报告
MIPS运算器是一种使用MIPS指令集进行运算的微型计算机。
它是一个重要的数字逻辑电路设计实验,能够让我们深入了解计算机的内部结构、运算的实现原理和操作系统等重要的概念。
本文将简要介绍MIPS运算器的设计原理和实验过程。
首先,MIPS运算器的设计由以下六个部分组成:存储器、CPU、输入控制器、输出控制器、时钟和调试器。
存储器包括一个程序存储器和一个数据存储器,分别用于存储程序和数据。
CPU包括ALU和寄存器,用于处理运算。
输入控制器用于控制输入设备,输出控制器用于控制输出设备,时钟用于同步和计时,调试器用于调试程序。
其次,在设计MIPS运算器时,我们采用了门级逻辑的方法。
首先,我们先根据MIPS指令集定义CPU的指令格式和指令编码,然后使用Karnaugh图和布尔代数等方法进行逻辑门电路的设计和优化,最终实现电路的硬件描述语言(HDL)编写和模拟仿真。
最后,我们进行了一系列实验验证了MIPS运算器的正确性和性能。
我们通过加载不同的程序和数据,进行了各种不同的运算测试,包括加、减、乘、除、与、或、异或、移位等运算,同时还测试了运算器的运行速度和存储器的容量等性能
指标。
实验结果表明,MIPS运算器的设计符合MIPS指令集的规范,功能完备,性能稳定,能够满足各种不同的运算需求。
总之,MIPS运算器是一款非常实用且具有挑战性的数字逻辑电路设计实验,它可以让我们更好地理解计算机的原理和操作系统等重要的概念,同时也能够培养我们的动手能力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类MIPS单周期微处理器设计实验报告专业:班级:学号:姓名:一、微处理器各模块设计各模块的框图结构如上图所示。
由图可知,该处理器包含指令存储器、数据存储器、寄存器组、ALU单元、符号数扩张、控制器、ALU控制译码以及多路复用器等。
图中还忽略了一个单元:时钟信号产生器,而且以上各个部件必须在时钟信号的控制下协调工作。
1.指令存储器的设计指令寄存器为ROM类型的存储器,为单一输出指令的存储器。
因此其对外的接口为clk、存储器地址输入信号(指令指针)以及数据输出信号(指令)。
(1)在IP wizard 中配置ROM,分配128个字的存储空间,字长为32位宽。
(2)选择输入具有地址寄存功能,只有当时钟上升沿有效时,才进行数据的输出。
(3)配置ROM内存空间的初始化COE文件。
最后单击Generate按钮生成IROM模块。
2.数据存储器的设计数据存储器为RAM类型的存储器,并且需要独立的读写控制信号。
因此其对外的接口输入信号为clk、we、datain、addr;输出信号为dataout。
数据存储器基本建立过程同ROM的建立。
3.寄存器组设计寄存器组是指令操作的主要对象,MIPS中一共有32个32位寄存器。
在指令的操作过程中需要区分Rs、Rt、Rd的地址和数据,并且Rd的数据只有在寄存器写信号有效时才能写入,因此该模块的输入为clk、RegWriteAddr、RegWriteData、RegWriteEn、RsAddr、RtAddr、reset;输出信号为RsData、RtData。
由于$0一直输出0,因此当RsAddr、RtAddr为0时,RsData以及RtData 必须输出0,否则输出相应地址寄存器的值。
另外,当RegWriteEn有效时,数据应该写入RegWriteAddr寄存器。
并且每次复位时所有寄存器都清零。
代码如下:module regFile(input clk,input reset,input [31:0] regWriteData,input [4:0] regWriteAddr,input regWriteEn,output [31:0] RsData,output [31:0] RtData,input [4:0] RsAddr,input [4:0] RtAddr);reg[31:0] regs[0:31];assign RsData = (RsAddr == 5'b0)?32'b0:regs[RsAddr];assign RtData = (RtAddr == 5'b0)?32'b0:regs[RtAddr];integer i;always @(posedge clk)beginif(!reset)beginif(regWriteEn==1)beginregs[regWriteAddr]=regWriteData;endendelsebeginfor(i=0;i<31;i=i+1)regs[i]=0;regs[31]=32'hffffffff;endendendmodule4.ALU设计在这个简单的MIPS指令集中,微处理器支持add、sub、and、or、slt运算指令,需要利用ALU单元实现运算,同时数据存储指令sw、lw也需要ALU单元计算存储器地址,条件跳转指令beq需要ALU来比较两个寄存器是否相等。
所有这些指令包含的操作为加、减、与、或小于设置5种不同的操作。
该模块根据输入控制信号对输入数据进行相应的操作,并获得输出结果以及零标示,由于MIPS处理器ALU单元利用4根输入控制线的译码决定执行何种操作,因此该模块的接口为:输入:input1(32bit),input2(32bit),aluCtr(4bit)输出:zero(1bit),alluRes(32bit)代码如下:module ALU(input [31:0] input1,input [31:0] input2,input [3:0] aluCtr,output [31:0] aluRes,output zero);reg zero;reg[31:0] aluRes;always @(input1 or input2 or aluCtr)begincase(aluCtr)4'b0110:beginaluRes=input1-input2;if(aluRes==0)zero=1;elsezero=0;end4'b0010:aluRes=input1+input2;4'b0000:aluRes=input1&input2;4'b0001:aluRes=input1|input2;4'b1100:aluRes=~(input1|input2);4'b0111:beginif(input1<input2)aluRes = 1;enddefault:aluRes = 0;endcaseendendmodule5.ALU控制设计制信号。
它们之间的对应关系如表所示:因此该模块的主要功能就是根据译码控制单元产生2位操作码以及6位功能码产生4位ALU控制信号,接口为:输入:aluop(2bit),funt(6bit)输出:aluctr(4bit)代码为:module aluctr(input [1:0] ALUOp,input [5:0] funct,output [3:0] ALUCtr);reg[3:0] ALUCtr;always @(ALUOp or funct)casex({ALUOp,funct})8'b00xxxxxx:ALUCtr=4'b0010;8'b01xxxxxx:ALUCtr=4'b0110;8'b11xxxxxx:ALUCtr=4'b0000;8'b10xx0000:ALUCtr=4'b0010;8'b10xx0010:ALUCtr=4'b0110;8'b10xx0100:ALUCtr=4'b0000;8'b10xx0101:ALUCtr=4'b0001;8'b10xx1010:ALUCtr=4'b0111;endcaseendmodule6.控制器设计控制器输入为指令的opCode字段,即操作码。
操作码经过主控制单元的译码,给ALUCtr、Data、Memory、Registers、Muxs等部件输出正的控制信号。
微处理器在执行不同指令时,控制信号相对应的状态表如下:因此该模块的接口为:输入:opcode(6bit)输出:alusrc,memtoreg,regwrite,memread,memwrite,branch,,aluop[1:0],jmp 代码为:module ctr(input [5:0] opCode,output regDst,output aluSrc,output memToReg,output regWrite,output memRead,output memWrite,output branch,output [1:0] aluop,output jmp);reg regDst;reg aluSrc;reg memToReg;reg regWrite;reg memRead;reg memWrite;reg branch;reg[1:0] aluop;reg jmp;always @(opCode)begincase(opCode)6'b000010://jmpbeginregDst=0;aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0; branch=0; aluop=2'b00; jmp=1;end6'b000000://R beginregDst=1; aluSrc=0; memToReg=0; regWrite=1; memRead=0; memWrite=0; branch=0; aluop=2'b10; jmp=0;end6'b100011://lw beginregDst=0; aluSrc=1; memToReg=1; regWrite=1; memRead=1; memWrite=0; branch=0; aluop=2'b00; jmp=0;end6'b101011://sw beginregDst=0; aluSrc=1; memToReg=0; regWrite=0; memRead=0; memWrite=1; branch=0; aluop=2'b00; jmp=0;end6'b000100://beqbeginregDst=0;aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0;branch=1;aluop=2'b01;jmp=0;end6'b001100://andibeginregDst=0;aluSrc=1;memToReg=0;regWrite=1;memRead=0;memWrite=0;branch=0;aluop=2'b11;jmp=0;enddefault:beginregDst=0;aluSrc=0;memToReg=0;regWrite=0;memRead=0;memWrite=0;branch=0;aluop=2'b00;jmp=0;endendcaseendendmodule7.符号数扩展将16位有符号扩展为32位有符号数。
带符号扩展只需要在前面补足符号即可。
代码为:module signext(input [15:0] inst,output [31:0] data);assign data=inst[15:15]?{16'hffff,inst}:{16'h0000,inst};endmodule8.顶层模块顶层模块需要将前面多个模块实例化,通过导线以及多路复用器将各个部件连接起来,并且在时钟的控制下修改PC的值,PC是一个32位的寄存器,每个时钟沿自动增加4。
多路复用器MUX直接通过三目运算符实现:Assign OUT = SEL?INPUT1:INPUT2;其中,OUT、SEL、INPUT1、INPUT2都是预先定义的信号。
代码如下:module top(input clkin,input reset);reg[31:0] pc,add4;wire choose4;wire[31:0] expand2,mux2,mux3,mux4,mux5,address,jmpaddr,inst;wire[4:0] mux1;//wire for controllerwire reg_dst,jmp,branch,memread,memwrite,memtoreg;wire[1:0] aluop;wire alu_src,regwrite;//wire for aluunitwire zero;wire[31:0] aluRes;//wire for aluctrwire[3:0] aluCtr;//wire for memorywire[31:0] memreaddata;//wire for registerwire[31:0] RsData,RtData;//wireforextwire[31:0] expand;always @(negedge clkin)beginif(!reset) beginpc=mux5;add4=pc+4;endelse beginpc=32'b0;add4=32'h4;endendctr mainctr(.opCode(inst[31:26]),.regDst(reg_dst),.aluSrc(alu_scr),.memToReg(memtoreg),.regWrite(regwrite),.memRead(memread),.memWrite(memwrite),.branch(branch),.aluop(aluop),.jmp(jmp));ALU alu(.input1(RsData),.input2(mux2),.aluCtr(aluCtr),.zero(zero),.aluRes(aluRes));aluctr aluctr1(.ALUOp(aluop), .funct(inst[5:0]),.ALUCtr(aluCtr));dram dmem(.a(aluRes[7:2]),.d(RtData),.clk(!clkin),.we(memwrite),.spo(memreaddata) );irom_number imem(.a(pc[8:2]),.clk(clkin),.spo(inst));regFile regfile(.RsAddr(inst[25:21]),.RtAddr(inst[20:16]),.clk(!clkin),.reset(reset),.regWriteAddr(mux1),.regWriteData(mux3),.regWriteEn(regwrite),.RsData(RsData),.RtData(RtData));signext signext(.inst(inst[15:0]),.data(expand));assign mux1=reg_dst?inst[15:11]:inst[20:16];assign mux2=alu_scr?expand:RtData;assign mux3=memtoreg?memreaddata:aluRes;assign mux4=choose4?address:add4;assign mux5=jmp?jmpaddr:mux4;assign choose4=branch&zero;assign expand2=expand<<2;assign jmpaddr={add4[31:28],inst[25:0],2'b00};assign address=pc+expand2;endmodule二、Rom汇编程序设计下面以将本人学号U201513343的ASCII码存入RAM的连续内存区域编写为汇编程序为例:编辑MIPS汇编源代码:采用ultraedit编辑汇编源程序代码,并保存为number.asm文件。