数列求和方法之裂项相消法

合集下载

高中数学复习-数列求和-裂项相消法

高中数学复习-数列求和-裂项相消法

裂项相消法求和把数列的通项拆成两项之差、正负相消剩下首尾若干项。

1、 特别是对于⎭⎬⎫⎩⎨⎧+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭⎫⎝⎛-+111n na a d c ,其中()n n a a d -=+1 2、 常见拆项:111)1(1+-=+n n n n)121121(21)12)(12(1+--=+-n n n n])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n!)!1(!n n n n -+=⋅)!1(1!1)!1(+-=+n n n n例1 求数列1{}(1)n n +的前n 和n S .例2 求数列1{}(2)n n +的前n 和n S .例3 求数列1{}(1)(2)n n n ++的前n 和n S .例4 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例5:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S例6、 求和)12)(12()2(534312222+-++⋅+⋅=n n n S n一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

数列求和的“裂项相消法”讲解[1]

数列求和的“裂项相消法”讲解[1]

裂项相消法(1)求和 1111122334(1)n S n n =++++⨯⨯⨯+…解:通项公式:()()()1111111n n n a n n n n n n +-===-+++所以 111111*********n S n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭…1111n n n =-+=+ (2)求和 1111377111115(41)(43)n S n n =++++⨯⨯⨯-+…解:()()()()()()43411111141434414344143n n n a n n n n n n +--⎛⎫===- ⎪-+-+-+⎝⎭ 得1111377111115(41)(43)n S n n =++++⨯⨯⨯-+… 11111111143771111154143n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦… 1114343n ⎛⎫=- ⎪+⎝⎭ ()343nn =+(3)求和 1111132435(2)n S n n =++++⨯⨯⨯+…()()()21111122222n n n a n n n n n n +-⎛⎫===- ⎪+++⎝⎭ ()()()()1111111113243546572112n S n n n n n n =++++++++⨯⨯⨯⨯⨯--++… 1111111111111112132435462112n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥--++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦…11111212n n =+--++ (仔细看看上一行里边“抵消”的规律 )311212n n =--++ 最后这个题,要多写一些项,多观察,才可能看出抵消的规律来。

倒序相加法如果一个数列{an},与首末两项等距的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.a1+an=a2+an-1=a3+an-2=……当{an}是等差数列,{bn}是等比数列,求数列{anbn}的前n 项和适用错位相减即{anbn}型 an 为等差bn 为等比。

数列求和——裂项相消法

数列求和——裂项相消法
数列求和
————裂项相消法
2015全国I卷节选:
若an1

2n
1, 令bn

1 an an 1
, 求{bn}的前n项和Tn。
裂项求和法:
将数列的通项分解成两项或多项的差,使
数列中的项出现有规律的抵消项,只剩下首 尾若干项。
一般有两种类型:
类型一:an

k f (n) f (n c)

A[ 1 f (n)
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 2)(n 1)
(an
(a 1)an b)(an1

b)
(an
an1 an b)(an1


b)
1 (an b)

1 (an1 b)
类型二:
通过有理化、对数的运算法则、公式的变形、阶乘和组合数

2n Sn
, 求证:T1 T2 L
Tn

3 2
练习:步步高P93例3及跟踪训练3
课堂小结:
1、分解与组合思想在数列求和中的应用。 2、裂项相消常用于方式和根式求和。 可以用通项裂解,也可以利用首项裂解, 甚至可以利用待定系数法去完成裂开通项
(1)应注意抵消后并不一定只剩下第一项和最后一 项,也有可能前面剩多项,后面也剩多项,
(2)再就是将通项公式裂项后,有时候需要调整前 面的系数,使裂开的两项之差和系数之积与原通 项公式相等.
变式:若数列an的前n项和为Sn满足:
Sn

4 3
an

1 3

2n1

2 3
(1)求an
(2)设Tn

例析数列求和的裂项相消法

例析数列求和的裂项相消法

例析数列求和的裂项相消法多数数学问题中都要求求出一个数列的某一个总和,这种推导过程通常是重复加法,涉及到大量的运算时间和工作量,特别是当数列项数很大时,传统的累加法就会遇到非常大的困难。

裂项相消法便是为了解决这一问题而出现的。

它是将正负型数列按照规律因式分解,以减少运算量,从而达到较快求和的目的。

将数列分解为正、负两种类型,正数加上负数可以使其和为0,也就是把问题转化为查找不同正、负数的有效组合。

求和公式:S=a1+a2-a3+a4-a5+a6-a7+...现在引入另一种折叠方法裂项相消法,它是一种数学方法,将一个正数与一个负数相加,让这两个数的和等于0,可以使用更简便的直接求和方法,使时间和空间复杂度更低,从而提高效率。

该方法的实现可以从两个角度进行:1.正数与负数相邻对消,此时正数和负数的组合要满足:两两之和等于0。

2.正数、负数以不等长度分组,此时组内的和相加的和需要等于0。

以上两种方法实现时,关键在于分组和求和的方式,解决方案有很多种,以下将介绍其中一种实现方式。

假设有一个数列S={S1,S2,S3,S4,…,Sn},其中n为未知数,需要求和。

可以用裂项相消法将这个数列分解成三步:步骤1:先把数列分组,每一组包括两个数:第一个数是数列中正数的和,第二个数是数列中负数的和。

步骤2:每一组数的和缩小为单个数,因为每一组的和的计算,我们可以等价的将每一组的两个数相加,把它们减小到一个数,这个数就是最后的求和结果。

步骤3:最后再将每一个单个数相加,就得到了最终的求和结果。

以上就是裂项相消法的具体操作过程,它主要用于求和数列中正负数的组合,以更快的时间求出该数列的总和。

因此,裂项相消法是一种简便有效的求和方法。

不过,引入裂项相消法也有其局限性,因为它比累加法要慢,而且它只适用于数列的求和,并不能应用于其它的数学问题,而且在求和过程中,如果不正确求出最终的结果,就会影响最终的结果。

总之,裂项相消法是一种较为简单灵活的求和方法,可以在计算算式上带动效率,减少时间和空间复杂度。

数列求和之裂项相消法 PPT课件

数列求和之裂项相消法 PPT课件

变式:
数列an的通项公式是an
试求bn 的前 n项和 S n .
2n
1, 如果数列bn 是bn

an
2n an1
,
小结4:
1
1 n k n ,特别地
1
n 1 n.
nk n k
n1 n
知识归纳
裂项相消法的常见类型 分式型、等差数列型、根式型
数列求和
裂项相消法
2016年4月1日
教学目标:
知识与技能目标
数列求和的方法之裂项相消法
过程与能力目标
裂项相消法的常见题型及解题思路
教学重难点:
重 点: 裂项相消法的常见题型及解题思路
难 点: 裂项相消法适用题型的特征及相消
后所剩项的判断
教学过程 新课导入
小学奥数中:
? 1 1 1 1

1 a2a3

1 a3a4

1 an an 1
求 Sn .
解:
小结3: (5) 若an是等差数列, an 0,公差d 0,则
1 an an 1

1 d

1 an

1 an1

巩固练习
练习3:
已知数列an是等差数列,且其通项公式 an n,则
Sn

1 a1a3
1 2 2 3 3 4
100101
学生思考:
1 1 1 1 98 99 99 100
1 1 1 1 1 1 1 1
2 2 3 3 4
100 101
1 1 100 101 101
? 问题:

数列之裂项相消求和

数列之裂项相消求和

=1
3
1(1- )
=39
1-
⇒a1=3,所以 an=3n.
(2)由已知得 bn=log332n+1=2n+1,所以 Tn=3+5+…+(2n+1)=n(n+2),
1
=
=
1
=
1 1
( +2) 2
1 1 1
-
2 1 3
-
1
+2
1
1
1
,所以 ∑ = + + +…+
1
=1
1 1 1
1 1 1
1 1
2 2 4
项和

.
解析 (1)因为 , 9 为函数 () = ( − 2)( − 99) 的两个零点且
(−1)
1+
2
= 2, 9 = 99 .又因为 =
= 3 ,所以数列 {
( − 1) = 2 + 1 .
1
(2)因为
所以
1
(
2


=
=
1
(
2
,所以 9
9×8
1+ 2
< 9 ,所以
× 2 = 99 ,解得
(2n+1)
1
1

1
1
解析∵an=
= 2n-1 2n+1 ,
(2n-1)
(2n+1) 2
1
1-
1
1
n
1
1
1 1
1
2n+1 =
∴Sn= [(1- )+( - )+…+(

)]=
.
2

裂项公式原理

裂项公式原理

裂项公式原理
裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。

裂项相消公式有n·n!=(n+1)!-n!;
1/[n(n+1)]=(1/n)- [1/(n+1)]等。

数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。

三小特征:
1、分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

2、分母上均为几个自然数的乘积形式,并且满足用户相连2个分母上的因数“首尾
相接”。

3、分母上几个因数间的高就是一个定值。

裂差型运算的核心环节是“两两抵消达到简化的目的”。

高考数学裂项相消十个基本公式

高考数学裂项相消十个基本公式

裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。

裂项相消公式有n·n!=(n+1)!-n!;1/[n(n+1)]=(1/n)- [1/(n+1)]等。

裂项法求和公式
(1)1/[n(n+1)]=(1/n)- [1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
什么是裂项相消法
数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。

三大特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(3)分母上几个因数间的差是一个定值。

裂差型运算的核心环节是“两两抵消达到简化的目的”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列的通项公式及前n项和公式

【例2】已知等差数列{an}满足:a3=7,a5+a7=bn

1、利用等差数列的有关公式和性质自己解决第一小题;
2、写出数列bn的通项公式,并讨论其n前项和。

解(1)设等差数列{an}的首项为a1,公差为d,

作业
书面:资料P81:1、3、8
预习:本章小结
教学提纲
1、例题讲解
2、裂项相消法求和的注意事项
高考链接

A C
解析:
∴所求和
答案:B
教学反思
教研组长签字:年级组蹲点领导签字:教研组蹲点领导签字:
∵a3=7,a5+a7=26,∴a1+2d=7,2a1+10d=26,解得a1=3,d=2.
∴an=2n+1,Sn=n(n+2).

1.若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.
2.使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.
3.常见的裂项相消技巧有:
互助三中教师教案
第6周第4课时主备人:任守成科目:高一数学学科组长签字:2018年4月日
课题:数列求和方法——裂项相消法课型:新授
考纲要求
1、掌握数列求和的常用方法——裂项相消法
2、掌握裂项思路和基本的裂项方法
教学重点
掌握数列求和的常用方法——裂项相消法
教学难点
裂项思路和基本的裂项方法
教学流程
个人二次备课
相关文档
最新文档