八年级数学上册 最短路径问题 人教版
合集下载
人教版八年级数学上册1最短路径问题课件

在△AB′C′中,AB′< AC′+B′C′,
B′
∴AC+BC < AC′+B′C′,
即AC+BC最小.
归纳
B A
l
解决实 际问题
B
抽象为数学问题
A
C
l
轴对称
A C
用旧知解决新知
B
l
A
C
l
B′
B′
解决“两点一线”型最短路径问题的方法:
异侧: 连接两点,与直线的交点即为所求的点;
同侧: 作其中某一点关于直线的对称点,对称点与另
a P1
M .P
N
b
P2
解决“两线一点”型最短路径问题:
要作两次轴对称,从而构造出最短路径. a
P1
作法: 1.作点P关于直线a的对称 点P1; 2.作点P关于直线b的对称
M .P
点P2; 3.连接P1P2,分别交直线 a ,b于点M ,N ;
N
b
4.依次连接PM ,MN ,NP , 即所求最短路径。
A1
P
l1
.
A
Q
. B1
B
l2
再学习(4)造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A M
N B
如图假定任选位置造桥MN,连接AM和 BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
问题解决
如图,平移A到A1,使A
A
A1等于河宽,连接A1B
八年级数学人教版(上册)13.4课题学习最短路径问题

F两点,并说明理由.
(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分
别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最
短,找出E、F两点,并说明理由.
D
A
A M
C A 图图①① B
侵权必究
P
O
图图②②
BO
N B
图图③③
当堂练习
D C
AP C' 图①
P' A
E
P
O
F
B
图② P''
点,P是m上到A、B距离相等的点 C.P、Q都是m上到A、B距离之和最
短的点 D.P、Q都是m上到A、B距离相等
的点 侵权必究
当堂练习
2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=
10.在OA上有一点Q,OB上有一点R.若△PQR周长
最小,则最小周长是( A )
A.10
B.15
C.20
在△AB′C′中,
C
AB′<AC′+B′C′,
C′
l
∴ AC +BC<AC′+BC′.
B′
即 AC +BC 最短.
侵权必究
讲授新课
如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处
修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,
图中实线表示铺设的管道,则所需要管道最短的是( D )
Q
Q
B
M' A
E
M
N
O
B
F
N'
图③
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
人教版八年级数学上册《最短路径问题》课件(共15张PPT)

联想:
如果点A、B在直线l的异侧时
A
C
l
B
分析:
B
A
A
C
l
l
C
B
思考:
能把A、B两点从直线 l 的同侧转化为异侧吗?
作法及思路分析
1.作点B关于直线 l 的对称点B′ ,连接
CB′。
B
A C
l
B′
2.由上步可知AC+CB=AC +CB′,
思考:当C在直线 l 的什么位置时AC +CB′最短?
根据前面的分析,我们认为的
人民教育出版社义务教育教科书八年级数学(上册)
第十三章 轴对称
13.4 课题学习 最短路径问题
饮马问题
如图,牧马人从马棚A牵马到河边 l 饮水,然后再到帐蓬B.问:在河边 的什么地方饮水,可使所走的路径最 短?
B B
AA l
l
分析:
B
B
A
A
l
CC
l
转化为数学问题 当点C在直线 l 的什么位置时,AC+CB的和最小?
谢谢观赏
You made my day!
我们,还在路上……
A
B
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例

3.课堂小结,教师引导学生总结本节课的学习内容,使学生对最短路径问题有一个全面的认识。
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册

迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.
八年级数学上册人教版课件:1最短路径问题

将点B“移”到l 的另一侧B′
处,满足直线l 上的任意一点
A
·
C,都保持CB 与CB′的长度
相等?
B
·
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
B
追问2 你能利用轴对称的 A
·
有关知识,找到上问中符合条
·
件的点B′吗?
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
(1)作点B 关于直线l 的对称
A
·
点B′;
(2)连接AB′,与直线l 相交
C
于点C.
则点C 即为所求.
B
·
l B′
探究 活动 1
问题3 你能用所学的知识证明AC +BC最短吗?
即 AC +BC 最短.
B′
探究 活动 1
证明AC +BC 最短时,为什么要在直线l 上任取一 点C′(与点C 不重合),证明AC +BC <AC′
+BC′?这里的“C′”的作用是什么?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
N
A/
P
Q
B/
A
M
B
l
探究 活动 3
(造桥选址问题)如图,A和B两地在一条河的 两岸,现要在河上造一座桥MN,桥造在何处可使 从A到B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直。)
2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)

第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
人教版八年级数学上册1课题学习最短路径问题(第一课时)课件

P1
CC O
DD
A PC+CD+DP
思考:你能利用解决牧 马人饮马问题的办法, 解决本题吗?
P
= P1C+CD+DP2 利用轴对称(实现线段转移).
B
两点之间,线段最短.
P2
拓展提升
如图,分别在OA、OB上求作点C、D,使得
PC+CD+DP和最短.
P1
A 作法:
C
(1)过点P分别作关于OA、OB的对称点
依据:
两点之间,线段最短
解决问题二
例:如图,在直线l上求作一点C,使CA+CB最短.
A
B
A l
C
l
A、B在直线l的同侧
B
A、B在直线l的异侧
思考2:能否通过图形的变换,把左边未知的问题 转化为我们右边研究过的问题呢?
解决问题二
例:如图,在直线l上求作一点C,使CA+CB最短.
B
A l
C
问题转化为:
八年级—人教版—数学—第十三章
13.4课题学习 最短路径问题(第一课时)
学习目标
1.能利用轴对称解决简单的最短路径问题.
2.能把实际问题抽象为数学问题,体会图形的变化
在解决最值问题中的作用,感悟转化和类比思想.
学习重点
利用轴对称将最短路径问题转化为“两点之间,线段 最短”问题.
情境引入
观察图片,生活中你通常如何选择路径,使所走路 径最短呢?
D
B
P2
思想方法:类比、转化
课堂小结
最短路径问题:
解决方法:利用轴对称实 现线段的转移,化折为直. 理论依据:两点之间,线 段最短. 思想方法:类比、转化.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心素养 利用轴对称和平移解决最短路径问题,让学生体会图形
的变化在解决最值问题中的作用,感悟转化思想. 例11 如图13-4-20,在由边长为1个单位长度的小正方
形组成的网格中,请分别在AB,AC上找到点E,F,使四边 形PEFQ的周长最小.
图13-4-20
解:如图13-4-21,分别作点P关于AB,点Q关于AC的对称 点P′,Q′,连接P′Q′,交AB于点E,交AC于点F,则E,F即 为所求.
图13-4-8
思路导图:
作点P关于BC的对称点
利用轴对称,求线段和最小
解:如图13-4-9,作点P关于BC的对称点P′,连接P′Q, 交BC于点M,M是所求的点.
图13-4-9
题型二 求线段和的最小值 例6 如图13-4-10,△ABC为等边三角形,高AH=10 cm, P为AH 上一动点,D为AB的中点,求PD+PB的最小值.
A.转化思想 B.三角形的两边之和大于第三边 C.两点之间,线段最短 D.三角形的一个外角大于与它不相邻的任 意一个内角
解析:∵点B和点B′关于直线l对称,且点C在l上, ∴CB=CB′.又∵AB′交l于点C,且两条直线相交只有 一个交点,∴CB′+CA的长度最短,即CA+CB的值 最小.此最短路径问题运用了“两点之间,线段最 短”,体现了转化思想,验证时运用了三角形的两 边之和大于第三边.故选D.
考点一 线段和最小问题 例9 (贵州黔南中考)如图13-4-17,直线l外不重合的两点A, B,在直线l上求作一点C,使得AC+BC的长度最短.作法为: ①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点 C,则点C为所求作的点.在解决这个问题时没有运用到的 知识或方法是( D )
图13-4-17
于点C,D,则A→C→D→B就是山娃走的最短路径.
图13-4-13
题型四 利用平移解决有关桥梁选址问题
例8 如图13-4-14,护城河在CC′处直角转弯,河宽相等, 从A处到达B处,需经两座桥:DD′,EE′(桥宽不计),设两 座桥分别是南北、东西方向的,如何架桥可使ADD′E′EB 的路程最短?
以直线 l 2 为对称轴作点A的对称点N,连接MN,分别 交 l 1 , l 2 于点 A 1 , A 2 ,则 A 1 ,A 2 即为所求.
过两条直线内侧一点,分别作关于两条直线的对称点, 即可得三点所组成的三角形的周长最小.
平移在求最短距离问题中的应用
巧记乐背
君若寻求路径短, 折曲变直线段短; 点与直线垂线段, 两点之间线段短; 对称图形对称点, 利用对称求最短; 若遇折线变直难, 平移让难变简单.
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。
图13-4-14
图13-4-15
解:如图13-4-15,作AF垂直河岸于点F,取AI=河宽,作 BG垂直河岸于点G,取BH=河宽,连接IH,与河岸相交 于E′,D′两点,作DD′垂直河岸于点D,EE′垂直河岸于 点E,连接BE,AD,即当桥建于DD′与EE′的位置时,路径 ADD′E′EB最短.
解读中考:中考中对于线段和最短问题的考查,通常在 轴对称图形(等边三角形、长方形和圆等)中结合相关知识 求线段和的最小值.
方法点拨:
在轴对称图形中,求对称轴上的一点使线段和最小时,注 意选择图形中已有的对称点,不要重作某一点的对称点来 求解.
题型三:最短路径问题的实际应用 例7 如图13-4-12,山娃星期天从A处赶了几只羊到草地
l 1 放羊,然后赶羊到小河 l 2 饮水,之后再回到B处的家.
假设山娃赶羊走的都是直路,请你为他设计一条最短的路 径,标明放羊与饮水的位置.
第十三章 轴对称
13.4课题学习 最短路径问题
轴对称与最短距离问题
l1 l2
l1
l1
l2
l2
l1
l2
l1 l2
l1 l2
l1
l2
l1
l2
l1
l2
注意:在解决最短路径问题时,我们通常利用轴对称, 将在一条直线同侧的两点转化到异侧,从而作出最短 路径.
例1 如图13-4-1,A,B两村合伙在河MN建一座扬水站,要 使所用管道最少,请你帮助他们确定扬水站的位置.(画出图 形,不写作法,保留作图痕迹)
例3 A和B两地在一条河的两岸,现要在河上造一座桥
MN,使从A到B的路径AMNB最短的是(假定河的两岸
是平行直线,桥要与河岸垂直)
( D)
A.BM垂直于a
B.AM与BN不平行
C.AN垂直于b
D.AM平行于BN
解析:图13-4-5根据垂线段最短,得出MN是河的宽时最短, 即MN⊥直线a(或直线b),只要AM+BN最短即可.如图13-4-5, 过点A作河的垂线AH,垂足为H,在AH所在直线上取点I, 使AI等于河宽,连接IB交河的b岸于点N,作MN垂直于河岸, 交a岸于点M,连接AM,所得MN即为所求.故选D.
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。
弄混“点与直线的距离”与“两点之间,线段最短”
例4 如图13-4-6,在四边形ABCD中,∠BAD=120°, ∠B=∠D=90°,在BC,CD上分别找一点M,N,使 △AMN的周长最小,求此时∠AMN+∠ANM的度数.
图13-4-6
图13-4-7
解:如图13-4-7,分别作点A关于BC和CD的对称点A′,A″, 连接A′A″,交BC于点M,交CD于点N,则A′A″的长即为 △AMN的周长的最小值. 如图13-4-7,延长DA至H. ∵∠DAB=120°,∴∠HAA′=60°, ∴∠AA′M+∠A″=∠HAA′=60°. ∵∠MA′A=∠MAA′,∠NAD=∠A″,且 ∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM, ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″= 2(∠AA′M+∠A″)=2×60°=120°.
图13-4-10
思路导图:
利用轴对称 的性质
在等边三角形 ABC的高AH上 找一点P
将PD+PB的 最小值转化 为PD+PC
解:图13-4-11如图13-4-11,连接DC,交AH于点P,连接
PB. ∵△ABC为等边三角形,D为AB的中点,∴CD也是 △ABC的高, ∴CD=AH=10 cm. 又∵AH所在直线是等边三角形ABC的对称轴, ∴点B,C是关于AH的对称点, ∴PC=BP, ∴PD+PB的最小值=PC+PD=CD=10 cm.
图13-4-12
思路导图:
利用轴对称的性 质及两点之间, 线段最短来求解
分别作点A关
于直线 l 1 ,点 B关于直线 l 2
的对称点E,F
连接EF, 即得最短 路径
解:如图13-4-13,作出点A关于直线 l 1 的对称点E,点B 关于直线 l 2 的对称点F,连接EF,分别交直线 l 1 ,l 2
图13-4-21
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
如何才能想得开?哲学大师冯友兰曾提出“人生四重境界”说,其中最高那层境界正是道家境界,所以正是路径所在。 一是自然境界。有些人做事,可能只是顺着他的本能或者社会的风俗习惯,而对所做的事并不明白或者不太明白。这种“自然”并非道家那个自然,而是指混沌、盲目、原始,那些人云亦云、随波逐流的人就是这种人。
图13-4-1
图13-4-2
解:如图13-4-2,点O即为所求.
例2 如图13-4-3,点A是总邮局,想在公路 l 1 上建一分
局 A 1 ,在公路 l 2 上建一分局 A 2 ,使 AA 1A 1A2AA2